Propriedade dos materiais magnéticos
|
|
|
- Luiz Eduardo Vasques Garrau
- 8 Há anos
- Visualizações:
Transcrição
1 Propriedade dos materiais magnéticos
2 Comportamento da permeabilidade magnética Para ilustrar o comportamento da permeabilidade magnética em um material ferromagnético, aplique uma corrente contínua ao núcleo, começando com 0 A e lentamente subindo até a máxima corrente permitida. Quando se faz um gráfico do fluxo produzido no núcleo versus a força magnetomotriz, forma a relação entre fluxo e força magnetomotriz:
3 Comportamento da permeabilidade magnética A intensidade de campo magnético é diretamente proporcional à força magnetomotriz e a densidade de fluxo magnético é diretamente proporcional ao fluxo. Portanto, a relação entre B e H tem a mesma forma que a relação entre fluxo e força magnetomotriz. = BA H = Ni l = F l A inclinação da curva é a permeabilidade do núcleo para essa intensidade de campo magnético
4 Laço de histerese Relação entre a densidade de fluxo magnético B e o campo magnético H, confinados no núcleo
5 Força magnetomotriz coercitiva Quando a força magnetomotriz é removida, o fluxo no núcleo não vai até zero. Em vez disso, um campo magnético permanece no núcleo. Esse campo magnético é denominado fluxo residual do núcleo. Os ímãs permanentes são produzidos exatamente dessa maneira. Para que o fluxo seja forçado a voltar a zero, um valor de força magnetomotriz conhecido como força magnetomotriz coercitiva Fc deve ser aplicado ao núcleo no sentido oposto.
6
7 Coercitividade Coercividade alta, denominados ferromagnéticos duros, eles só se magnetizam quando aplicamos a um alto campo magnético externo, são ideais para a construção de ímãs permanentes, pelo fato de, uma vez magnetizados seus ímãs elementares resistem bastante a mudança de posição, retendo a sua magnetização.
8 Ciclos de magnetização Ciclos de magnetização de matérias magnéticos tidos como intermediários (a), duros (b) e moles (c)
9 Saturação magnética É o estado alcançado quando um aumento na aplicação externa de um campo magnético H não pode aumentar a magnetização do material adicionalmente, de modo que o campo magnético total B limita-se
10 Aço elétrico de grão orientado - GO Foi desenvolvido para alcançar baixas perdas e elevada permeabilidade magnética, requeridas para a maior eficiência dos equipamentos e economia de energia elétrica. Uma laminação a frio e um recozimento intermediário para alívio de tensões (introduzido devido ao corte de estampagem), acrescido de um recozimento final a alta temperatura, produzse chapas com melhores propriedades magnéticas na direção de laminação. Esta melhora é devido a uma textura magneticamente favorável, produzida por um recristalização secundária, durante o recozimento a alta temperatura.
11
12 Aço elétrico de grão não orientado - GNO Totalmente processado apresenta suas propriedades magnéticas plenamente desenvolvidas, sem necessidade de cozimento, boas propriedades magnéticas em qualquer direção considerada.
13 Perdas no ferro Podem ser estimadas a partir do laço de histerese
14 Perdas no ferro Ciclos de perdas do ferro a) Somente perdas por histerese (frequência muito baixa 1 a 3Hz) b) Perdas por histerese e correntes de Foucault c) Perdas por histerese, correntes Foucault e excedentes P total = P Histerese + P Focault + P excedentes
15 Perdas por histerese Para um dado ciclo, como ocorre uma perda de energia t P histerese = W = න p dt = නi dλ = න Hl c N d NA cb c = A c l c නH db c P histerese = V c නH db c A cada ciclo existe esta perda de energia, logo, a potência das perdas por histerese é proporcional P histerese = f. V c නH db c
16 Perdas por histerese Numa amostra de material ferromagnético as perdas por histerese são proporcionais à área do ciclo de histerese, obtido em regime quase-estático, ou seja a potência perdida por ciclo será: Onde: P Histerese = f. V ර H db ර H db = densidade volumétrica de energia no ciclo [J/m³] V = volume da amostra V ර H db = energia total f = frequência do ensaio
17
18
19
20 Domínio No interior do metal, há inúmeras regiões minúsculas denominadas domínios. Em cada domínio, os átomos estão alinhados de forma que todos os seus campos magnéticos apontam no mesmo sentido, de modo que cada domínio dentro do material comporta-se como um pequeno ímã permanente. Um bloco inteiro de ferro pode aparentar não ter nenhum fluxo porque todos esses domínios estão orientados de forma aleatória dentro do material domínio
21 Domínio Inicialmente, quando um campo magnético externo é aplicado a esse bloco de ferro, os domínios que estão apontando com o mesmo sentido que o campo crescem, porque os átomos em suas periferias sofrem rotação, mudando fisicamente de orientação e alinhando-se com o campo magnético aplicado.
22 Domínio Esses átomos extras, alinhados com o campo, aumentam o fluxo magnético no ferro. Esse efeito leva o ferro a ter uma permeabilidade muito mais alta do que a do ar. À medida que o campo magnético externo continua crescendo, domínios inteiros alinhados na direção errada terminam se reorientando e formando um bloco único alinhado com o campo externo. Uma vez que tudo estiver alinhado, o ferro tornou-se saturado com o fluxo.
23 Domínio Quando o campo é removido, não há nenhuma fonte de energia para fazer com que os domínios sofram rotação de volta a suas posições originais. Agora, o bloco de ferro tornou-se um ímã permanente. Uma vez que os domínios tenham sido realinhados, alguns deles permanecerão assim até que uma fonte de energia externa seja aplicada para mudá-los. Exemplos de fontes de energia externa, que podem alterar as fronteiras e/ou os alinhamentos dos domínios, são uma força magnetomotriz aplicada em outra direção, um choque mecânico intenso e um aumento de temperatura.
24 Perda por histerese A perda por histerese em um núcleo de ferro é a energia necessária para realizar a reorientação dos domínios a cada ciclo de uma corrente alternada aplicada ao núcleo. Pode-se demonstrar que a área delimitada pelo laço de histerese, formado pela aplicação de uma corrente alternada ao núcleo, é diretamente proporcional à energia perdida em um dado ciclo CA
25 Magnetização Remanente Magnetização do material Magnetização de saturação Coercividade Magnetização nula Magnetização nula Campo magnético aplicado Magnetização de saturação no sentido oposto
26 Excitação CA Em sistemas de potência de corrente alternada, as formas de onda de tensão e de fluxo são bastante próximas de funções senoidais de tempo. Iniciaremos o estudo em um circuito magnético de núcleo fechado, sem entreferro. A variação senoidal do fluxo será suposta: φ t = max sen (wt) = A c B max sen (wt) Onde: max = amplitude do fluxo no núcleo [weber] B max = amplitude da densidade de fluxo [ tesla] w = 2πf=frequência angular f= frequência [hertz]
27 Excitação CA Da equação da tensão induzida no enrolamento temos: e t = N dφ dt = wn maxcos wt = 2πfNA c B max cos wt e t = E max cos wt
28 B = A H = Ni l
29 Valor eficaz O valor eficaz é definido por uma função periódica é definido por: F(t) eficaz = 1 T න 0 Aplicando a equação da tensão induzida temos: T f t 2 dt E eficaz = 1 T න 0 T E eficaz = e t 2 dt = 2π 2 fna cb max 2πfNA c B max H eficaz = NI eficaz l c O valor do Volts-ampères eficaz de excitação E eficaz I eficaz = 2πfl c A c B max H eficaz
30 Valor eficaz Um material magnético tem densidade de massa: ρ c = massa volume = massa l c A c O valor do Volts-ampères eficaz de excitação por unidade de massa será: P a = E eficaz I eficaz massa P a = = 2πf l ca c massa B maxh eficaz = 2πf B max H eficaz ρ c
31 Correntes de Foucault Um fluxo variável no tempo induz uma tensão no interior do núcleo ferromagnético, exatamente do mesmo modo que uma tensão é induzida em um fio que está enrolado em torno desse núcleo. Essas tensões fazem com que correntes fluam dentro no núcleo, formando caminhos circulares ou vórtices. É a forma de redemoinho dessas correntes que dá origem à denominação correntes parasitas*, também denominadas correntes de Foucault ou correntes de vórtice. Essas correntes estão circulando em um material resistivo (o ferro do núcleo) e, sendo assim, elas devem dissipar energia. Essa energia perdida transforma-se em calor no interior do núcleo de ferro.
32 Correntes de Foucault A quantidade de energia perdida devido às correntes parasitas depende do tamanho dos vórtices de corrente e da resistividade do material dentro do qual circulam as correntes. Quanto maior o vórtice, maior será a tensão induzida resultante (devido ao maior fluxo no interior do vórtice). Quanto maior a tensão induzida, maior será o fluxo de corrente resultante e, portanto, maiores serão as perdas do tipo I2R. Por outro lado, quanto maior a resistividade do material em que as correntes fluem, menor será o fluxo de corrente para uma dada tensão induzida no vórtice. R = l c μ c A c
33 Correntes de Foucault Se um núcleo ferromagnético, submetido a um fluxo magnético alternado, for dividido em muitas camadas ou lâminas delgadas, então o tamanho máximo de um vórtice de corrente será reduzido, resultando uma tensão induzida menor, uma corrente menor e perdas menores. Essa redução é grosseiramente proporcional à espessura dessas lâminas, de modo que as mais finas são melhores. O núcleo é construído com muitas lâminas em paralelo. Uma resina isolante é usada entre elas, limitando os caminhos das correntes parasitas a áreas muito pequenas.
34 Correntes de Foucault A segunda abordagem para reduzir as perdas por correntes parasitas consiste em aumentar a resistividade do material do núcleo. Frequentemente, isso é feito pela adição de um pouco de silício ao aço do núcleo. Para um dado fluxo, se a resistência do núcleo for mais elevada, então as correntes e as perdas I2R serão menores. R = l c μ c A c
35 Transformador
36 MOTOR DE INDUÇÃO
37
38 Gráfico dado
39 𝒍𝒄
40 Gráfico dado
41 ρ c = M c Vol c M c = Vol c * ρ c = [V.A] para o núcleo do circuito magnético do exercício S a = E ef I ef = E max 2 I ef
42 [V.A/m] para o núcleo do circuito magnético do exercício Gráfico dado P núcleo = P Histerese + P Focault + P excedentes
43
44
45
46 Gráfico dado
47
48
49
50
51
52
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA. Excitação CA
Os circuitos magnéticos dos transformadores e das máquinas CA são excitados por fontes CA. Com excitação CA, a indutância influi no comportamento do regime permanente. Joaquim Eloir Rocha 1 Com excitação
MOTOR DE INDUÇÃO MONOFÁSICO
MOTOR DE INDUÇÃO MONOFÁSICO Joaquim Eloir Rocha 1 Muitos consumidores não são alimentados por um sistema trifásico de tensões. No entanto, eletrodomésticos e outros equipamentos utilizam-se de motores.
Aula 05 Materiais Magnéticos
Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Materiais Elétricos - Teoria Aula 05 Materiais Magnéticos Clóvis Antônio Petry, professor. Florianópolis, outubro de 2006. Bibliografia
Força Magnetizante, Histerese. e Perdas Magnéticas
INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Força_Magnetizante_Histerese-e-Perdas-Magnéticas -1-40. 18 Curso Técnico em Eletrotécnica Força Magnetizante, Histerese
SEL 404 ELETRICIDADE II. Aula 05
SL 404 LTRICIDAD II Aula 05 Revisão xcitação em corrente alternada: rms max fn max 4,44 fn max 4,44 fna n B max e f t Revisão Indutância: L N l A N Indutância na presença de entreferro: L 0N g A N g A
Curvas de Magnetização e Histerese Perdas Magnéticas Materiais Magnéticos
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Curvas de Magnetização e Histerese Perdas Magnéticas Materiais Magnéticos Clóvis Antônio Petry, professor.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.
Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Força Magnetizante, Histerese e Perdas Magnéticas Prof. Clóvis Antônio Petry. Florianópolis, setembro de
Projeto de Elementos Magnéticos Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Eletrônica de Potência! Projeto de Elementos Magnéticos Revisão de Eletromagnetismo Prof. Clovis
Materiais Elétricos - Teoria. Aula 04 Materiais Magnéticos
Materiais Elétricos - Teoria Aula 04 Materiais Magnéticos Bibliografia Nesta aula Cronograma: 1. Propriedades gerais dos materiais; 2. ; 3. Materiais condutores; 4. Materiais semicondutores; 5. Materiais
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Revisão de Eletromagnetismo Prof. Clóvis Antônio Petry. Florianópolis,
DISCIPLINA DE MEDIDAS ELÉTRICAS
DISCIPLINA DE MEDIDAS ELÉTRICAS Prof. Patrícia Lins Prática 2 15/04/2018 Salvador/BA UNIME Departamento de Engenharia 1 Roteiro de Práticas Roteiro de Aulas Práticas: Medições com multimedidor de grandezas
Aulas de Eletromagnetismo
Centro Federal de Educação Tecnológica de Santa Catarina Gerência Educacional de Eletrônica Fundamentos de Eletricidade Aulas de Clóvis Antônio Petry, professor. Florianópolis, novembro de 2006. Bibliografia
Figura 1: Forma de onda da tensão quadrada.
Problema 1.21 a) O esboço da forma de onda da tensão quadrada com frequência de 60 Hz e amplitude E é exposto na Figura 1. Figura 1: Forma de onda da tensão quadrada. E T = 1/60 s -E Para determinar a
Experimento 6 Laço de histerese
Experimento 6 aço de histerese. OBJETIVO Obter a curva BH do materiaagnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
Revisão de Eletromagnetismo
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina! Departamento Acadêmico de Eletrônica! Pós-Graduação em Desen. de Produtos Eletrônicos! Conversores Estáticos e Fontes Chaveadas Revisão
PROJETO FONTE CHAVEADA FORWARD
IFES - INSTITUTO FEDERAL DO ESPÍRITO SANTO Abílio Marcos Coelho de Azevedo PROJETO FONTE CHAVEADA FORWARD Trabalho apresentado ao professor Ricardo Brioschi da coordenadoria de Engenharia Elétrica do Instituto
Experimento 6 Laço de histerese
Experimento 6 Laço de histerese 1. OBJETIVO Obter a curva BH do material magnético de um transformador monofásico por meio do ensaio experimental. A partir da curva BH, identificar o tipo do material (mole,
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 05
SEL 39 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 05 Revisão da Aula 04 Excitação em corrente alternada: E E πfn max rms φmax 4,44 fnφmax 4,44 fna n max e φ E t Φ Revisão da Aula 04 Indutância: L N l µ A
Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2018 Exame de Conhecimentos em Física. Candidato(a):
1 Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2018 Exame de Conhecimentos em Física Candidato(a): Curso: ( ) Mestrado ( ) Doutorado Observações: O Exame de Conhecimentos em Física consiste
LISTA DE EXERCÍCIOS Nº 1
LISTA DE EXERCÍCIOS Nº 1 Problemas 1) Determine as dimensões físicas das quantidades (a) campo elétrico E, (b) campo magnético H, (c) campo deslocamento elétrico D e (d) campo indução magnética B em termos
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
Conversão de Energia II
Departamento de Engenharia Elétrica Aula 1.2 Circuitos Magnéticos Prof. João Américo Vilela Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas: com Introdução à Eletrônica
Materiais Magnéticos Utilizaveis: Ferromagnéticos e Ferrimagnéticos
Materiais Magnéticos Utilizaveis: Ferromagnéticos e Ferrimagnéticos INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO MAGNÉTICO Campo Molecular Dominante Estado ferromagnético M S magnetização de saturação T
4) Reobtenha e reanalise os resultados auferidos nos problemas nº 1, nº 2 e nº 3 quando (a) Z! Z!, (b)
LISTA DE EXERCÍCIOS Nº 1 Problemas 1) Uma onda eletromagnética plana linearmente polarizada incide de forma normal em uma interface existente entre um meio 1 e um meio 2. A impedância do meio 1 é Z! e
Instituto de Física. Experimento 11. Deflexão de feixe de elétrons - relação carga massa (e/m) 1. Descrição do experimento
Experimento Deflexão de feixe de elétrons - relação carga massa (e/m). Descrição do experimento Sabe-se que um elétron de massa m e carga e ao mover-se num campo magnético B e num campo elétrico E, a uma
Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha.
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Projeto de Indutores para Alta Frequência
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Projeto de Indutores para Alta Frequência Prof. Clóvis Antônio Petry. Florianópolis,
Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 e 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 0 e 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano: 06 Sumário Equação Exponencial... Equação Exponencial... Exemplo... Método da redução à base comum...
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Torção 1 Torção Antonio Dias / Resistência dos Materiais / Torção 2 Introdução A princípio vamos estudar eixos circulares
UNIDADE 6 Defeitos do Sólido Cristalino
UNIDADE 6 Defeitos do Sólido Cristalino 1. Em condições de equilíbrio, qual é o número de lacunas em 1 m de cobre a 1000 o C? Dados: N: número de átomos por unidade de volume N L : número de lacunas por
LINHA DE AERADORES E MISTURADORES
LINHA DE AERADORES E MISTURADORES Os aeradores e misturadores fabricados pela HIGRA são construídos com material 100% reciclável, seguem as mais altas exigências internacionais de qualidade e foram concebidos
P ( Introdução à Física, J. Dias de Deus et al.)
Problemas de Mecânica e Ondas MEAer 2015 Série 11 P 11.1. ( Introdução à Física, J. Dias de Deus et al.) Uma nave, cujo comprimento em repouso é de 60 m, afasta-se de um observador na Terra (ver figura).
Escola Secundária de Lagoa. Ficha de Trabalho 15. Chamadas de Atenção. Fórmulas Matemáticas. Exercícios
Escola Secundária de Lagoa Física e Química A 11º Ano Turma A Paula Melo Silva Chamadas de Atenção Ficha de Trabalho 15 Forças e trabalho Não se esqueçam do teorema do trabalho-energia W(F resultante )
Problemas de Mecânica e Ondas MOAer 2015 Série 7 P 7.1
Problemas de Mecânica e Ondas MOAer 2015 Série 7 P 7.1 Considere que as vagonetas de massa m 1 e m 2 (ver figura) podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos,
Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 0 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... Equação Exponencial... Exemplo... Método da redução à base comum... Exemplo......
Avisos. Entrega do Trabalho: 8/3/13 - sexta. P2: 11/3/13 - segunda
Avisos Entrega do Trabalho: 8/3/13 - sexta P2: 11/3/13 - segunda Lista de Apoio: disponível no site até sexta feira não é para entregar é para estudar!!! Resumo de Gerador CA Símbolo Elétrico: Vef = ***
Gabarito. Velocidade (µmol/min)
Gabarito ) A cinética de uma enzima foi medida em função da concentração de substrato na presença e ausência de mm do inibidor I. [S] µm 0 0 90 Velocidade (µmol/min) Sem inibidor 0.4 4. 4. 6.4...8.6 40..8
CAPÍTULO 1 - ELETROMAGNETISMO
UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA - DEP. DE ENGENHARIA ELÉTRICA ELE 0941 - ELETROTÉCNICA CAPÍTULO 1 - ELETROMAGNETISMO 1.0 Magnetismo 1.1 Domínio Magnético
Escola Secundária de Lagoa. Ficha de Trabalho 3. Física e Química A 11º Ano Paula Melo Silva Forças e Movimentos
Escola Secundária de Lagoa Física e Química A 11º Ano Paula Melo Silva Ficha de Trabalho 3 1.3. Forças e Movimentos 1. Uma bola é lançada, verticalmente para cima, a partir do solo, com uma velocidade
Problemas de Mecânica e Ondas MOAer 2015 Série 8
Problemas de Mecânica e Ondas MOAer 2015 Série 8 Problemas 8.1 a 8.9 são do livro Introdução à Física, J. Dias de Deus et. al.. As soluções estão disponíveis no final dos enunciados. P 8.1 a) A figura
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti INDUTORES: CONCEITOS E DEFINIÇÕES CAMPO MAGNÉTICO Campo Magnético Nem só os imãs possuem campo magnético, mas a corrente
Conversão de Energia I. Capitulo 2 Circuito Magnético
Conversão de Energia I Capitulo 2 Circuito Magnético 2 1. Introdução Nos dispositivos eletromecânicos geradores, motores, contactores, relés, etc. a utilização de enrolamentos e núcleos objetiva o estabelecimento
2ª. Prova de Física 1 FCM 0501 (Peso 0,35) 2013
ª. Prova de Física 1 FCM 001 (Peso 0,3) 013 Nome do Aluno Número USP Valor das Questões 1ª. a) 1, ª. a) 1, b) 1, Bônus 0, 3ª. a) 1, 4ª. a) 1,0 c) 0, Nota Nota Final Boa Prova A prova é sem consulta. As
TE052 Laboratório de Engenharia Elétrica III
MI TE052 Laboratório de Engenharia Elétrica III Prof. Alessandro L. Koerich 2014 MI SUMÁRIO Experimento 1: Amplificador Inversor e Não-Inversor com AmpOp Simulação 1: Amplificador Inversor e Não-Inversor
Avaliação Professor. Grupo I. Os cinco itens deste grupo são de escolha múltipla. Para cada um deles, escolhe a única opção correta.
Nome N.o Turma Data /out./08 Avaliação Professor Grupo I Os cinco itens deste grupo são de escolha múltipla. Para cada um deles, escolhe a única opção correta. Teste. Quatro raparigas e cinco rapazes vão
Conversão de Energia I Circuitos Magnéticos Aula I.3
Departamento de Engenharia Elétrica Conversão de Energia I Circuitos Magnéticos Aula I.3 Prof. Clodomiro Unsihuay Vila Bibliografia FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquinas Elétricas:
Nome : Assinatura : Data : 01/12/2015
Escola Politécnica da Universidade de São Paulo Programa de Pós-Graduação em Engenharia Elétrica Prova de Conhecimento da Área de Engenharia Biomédica 1o. Período de 2016 Nome : Assinatura : Data : 01/12/2015
MANUAL DO TREINADOR NÍVEL I MARCHA ATLÉTICA
MARCHA ATLÉTICA 1. REGRAS DA MARCHA ATLÉTICA Regra 230 Manual da IAAF Definição: É uma forma de progressão por passos na qual o marchador estabelece contacto com o solo de tal forma que não seja visível
6 (FFC 2005) A velocidade escalar de um móvel, que percorre uma trajetória retilínea, varia
1 Sabe-se que a equação horária do movimento de um corpo é S = 2 + 10 t + 3 t 2. A posição está em metros e o tempo em segundos. Determine: a) A posição inicial do corpo; b) A velocidade inicial do corpo;
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO
Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO 1. PARTES PRINCIPAIS As Máquinas elétricas tem duas partes principais (Figuras 1): Estator Parte estática da máquina. Rotor Parte livre para girar Figura
CARACTERIZAÇÃO E CONSTRUÇÃO DE CURVA DE CARGA RESIDENCIAL
PHA 3496 - ENERGIA E MEIO AMBIENTE SISTEMAS ENERGÉTICOS E SEUS EFEITOS AMBIENTAIS CARACTERIZAÇÃO E CONSTRUÇÃO DE CURVA DE CARGA RESIDENCIAL Grupo 1 Álvaro Ferro Caetano 7631744 Bianca Ortega Carlos 8994870
PROPOSTA DE RESOLUÇÃO DA PROVA DO ENSINO SECUNDÁRIO DE MATEMÁTICA APLICADA Às CIÊNCIAS SOCIAIS (CÓDIGO DA PROVA 835) 2.ª FASE 21 DE JULHO 2017
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 Fax: +351 21 716 64 24 http://www.apm.pt email: [email protected] PROPOSTA
W60 Motor de Indução Trifásico. Motores Automação Energia Transmissão & Distribuição Tintas
W60 Motor de Indução Trifásico Motores Automação Energia Transmissão & Distribuição Tintas www.weg.net Os motores WEG da linha W60 foram projetados para atender as mais variadas aplicações industriais,
Física I. Curso: Engenharia Elétrica Prof. Rafael Augusto R de Paula
Física I Curso: Engenharia Elétrica Prof. Rafael Augusto R de Paula A natureza da Física É a ciência procura descrever a natureza fundamental do universo e como ele funciona. Baseia-se em observações experimentais
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO Centro das Ciências Exatas e Tecnologia Faculdades de Engenharia, Matemática, Física e Tecnologia EXPERIÊNCIA: ENSAIOS EM CURTO E VAZIO DE TRANSFORMADORES
Universidade Federal de Minas Gerais Colégio Técnico Plano de Ensino
Disciplina: Carga horária total: Universidade Federal de Minas Gerais Plano de Ensino 4 horas/aula semanais (3 horas e 20 minutos) Ano: 2015 Curso: Matemática Regime: anual (anual/semestral/outro) Série:
Propriedades Magnéticas II
Propriedades Magnéticas II INFLUÊNCIA DA TEMPERATURA NO COMPORTAMENTO MAGNÉTICO Ferromagnéticos e ferrimagnéticos Agitação Térmica: Enfraquece as forças de acoplamento entre dipolos, mesmo na presença
Prova de Análise de Dados
Prova de Análise de Dados Página 1 de (D1) Pulsar Binário Através de buscas sistemáticas ao longo das últimas décadas, astrônomos encontraram um grande número de pulsares de milissegundo (período de rotação
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA. Aula 02 Circuitos Magnéticos
SEL 329 CONVERSÃO ELETROMECÂNICA DE ENERGIA Aula 02 Circuitos Magnéticos Revisão Aula Passada Aplicação da Lei Circuital de Ampère Exemplo 1 l r N núcleo toroidal de material ferromagnético I H.dl NI H
Introdução. Resultados do ensaio em carregamento de um trafo monofásico: Rendimento (%) Potência no Secundário (W) Potência no Primário (W) ,5
Transformador 1 ntrodução Resultados do ensaio em carregamento de um trafo monofásico: otência no rimário (W) otência no Secundário (W) Rendimento (%) 35 0 0 96 60 6,5 155 10 77,4 10 180 85,71 65 40 90,57
Mecânica Clássica. (Notas de Aula) MÓDULO 5 (Dinâmica 2)
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 5 (Dinâmica 2) 2015 Continuando
Magnetismo e Eletromagnetismo. Odailson Cavalcante de Oliveira
Magnetismo e Eletromagnetismo Odailson Cavalcante de Oliveira Ímãs Naturais O imã é capaz de atrair substâncias magnéticas como certos metais. Imãs Naturais são encontrados na natureza, compostos por minério
Gabarito. b) Quantos mols de sítios ativos existem em 1 mg de enzima? Assuma que cada subunidade possui um sítio ativo.
Gabarito 4. A hidrólise de pirofosfato a ortofosfato é uma reação acoplada importante para deslocar o equilíbrio de reações biossintéticas, por exemplo a síntese de DNA. Esta reação de hidrólise é catalisada
OLGA COLOR, UMA DAS MAIORES FABRICANTES DE PERFIS DE ALUMÍNIO DO PAÍS.
A história da Olga Color começou em 1968 e hoje lideramos os segmentos de extrusão de perfil de alumínio, anodização, jateamento e pintura eletrostática a pó, com capacidade para 20 mil toneladas. Apresentamos
ELETRICIDADE GERAL E APLICADA. Armando Alves Hosken Neto
ELETRICIDADE GERAL E APLICADA Armando Alves Hosken Neto MAGNETISMO IMÃS: ATRAÇÃO DE CERTOS MATERIAIS (FERRO) MAGNETISMO IMÃ: Dispositivo capaz de atrair Fe, Co, Ni, Aço (ferromagnéticos) MAGNETISMO TIPOS
GELE-7183 Circuitos Integrados
GELE-7183 Circuitos Integrados Prof. Luciano M. Camillo https://sites.google.com/site/circuitosintegradoscefetrj/ Prof. Luciano M. Camillo Parte funcional do componente discreto Os componentes
Problemas de Mecânica e Ondas MOAer 2015
Problemas de Mecânica e Ondas MOAer 205 Série 3 P 3.. ( Exercícios de Física, A. Noronha, P. Brogueira, McGraw Hill, 994) Considere uma esfera de densidade ρ e raio r imersa num fluido de viscosidade η
1 Introdução aos princípios de máquinas
capítulo 1 Introdução aos princípios de máquinas OBJETIVOS DE APRENDIZAGEM Aprender os fundamentos da mecânica de rotacional: velocidade angular, aceleração angular, conjugado e a lei de Newton para a
Aula demonstrativa Apresentação... 2 Modelos de questões comentadas CESPE-UnB... 3 Relação das questões comentadas Gabaritos...
Aula demonstrativa Apresentação... 2 Modelos de questões comentadas CESPE-UnB... 3 Relação das questões comentadas... 12 Gabaritos... 13 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal Tudo bem
Mecânica Clássica. (Notas de Aula) MÓDULO 4 (Dinâmica 1)
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 4 (Dinâmica 1) 2015 A
MANUAL DE INSTRUÇÕES DO ALICATE DIGITAL MODELO AD-8000
MANUAL DE INSTRUÇÕES DO ALICATE DIGITAL MODELO AD-8000 Leia atentamente as instruções contidas neste manual antes de iniciar o uso do instrumento ÍNDICE 1. Introdução... 01 2. Regras de segurança... 01
Eletrotecnia Aplicada Transformadores (parte 1) Engenharia Eletrotécnica e de Computadores ( )
Eletrotecnia Aplicada Transformadores (parte ) Engenharia Eletrotécnica e de Computadores (3-0-03) Conceito de transformador Os transformadores elétricos são dispositivos eletromagnéticos acoplados indutivamente
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA
UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA EAE 206 Macroeconomia I 1º Semestre de 2017 Professor Fernando Rugitsky Gabarito da Lista de Exercícios
PROPRIEDADES MAGNÉTICAS DOS MATERIAIS
UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES MAGNÉTICAS DOS MATERIAIS INTRODUÇÃO Algumas Aplicações
Mecânica Clássica. (Notas de Aula) MÓDULO 6 (Dinâmica 3)
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 6 (Dinâmica 3) 2015 Neste
Prof. Gustavo Oliveira Cavalcanti https://sites.google.com/a/poli.br/professorgustavooc/
Teoria dos Dispositivos Semicondutores Prof. Gustavo Oliveira Cavalcanti [email protected] https://sites.google.com/a/poli.br/professorgustavooc/ Origem histórica Pedras denominadas de magnetitas que atraiam
Propriedades Magnéticas em Materiais
FACULDADE SUDOESTE PAULISTA Ciência e Tecnologia de Materiais Prof. Msc. Patrícia Correa Propriedades Magnéticas em Materiais Propriedades Magnéticas dos Materiais Materiais magnéticos: Imãs Esses possuem
Movimento Rotacional. Mecânica dos Sólidos Prof. MSc. Rafael Augusto R de Paula
Movimento Rotacional Mecânica dos Sólidos Prof. MSc. Rafael Augusto R de Paula Momento de Inércia de um Sistema de Partículas Momento de Inércia para um Corpo Contínuo ENERGIA CINÉTICA ROTACIONAL 2 Momento
UNIDADE 18 Propriedades Magnéticas dos Materiais
UNIDADE 18 Propriedades Magnéticas dos Materiais 1. O que são domínios magnéticos? 2. Defina os seguintes termos: Magnetização de saturação Permeabilidade magnética inicial Remanência Coercividade 3. Preencha
CONVERSÃO ELETROMECÂNICA DE ENERGIA
CONVERSÃO ELETROMECÂNICA DE ENERGIA Circuitos magnéticos INTRODUÇÃO A eletricidade é a única forma de energia cujo controle, utilização e conversão em outras formas de energia são relativamente fáceis.
