UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO"

Transcrição

1 UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO MARCOS DE FRIAS RAPOSO PINHEIRO THIAGO LUIS MARQUES DE SOUZA MANHÃES AVALIAÇÃO DE MÉTODOS DE PREDIÇÃO DE PROPRIEDADES DE FLUIDOS DE RESERVATÓRIO NITERÓI, RJ 2016

2 MARCOS DE FRIAS RAPOSO PINHEIRO THIAGO LUIS MARQUES DE SOUZA MANHÃES AVALIAÇÃO DE MÉTODOS DE PREDIÇÃO DE PROPRIEDADES DE FLUIDOS DE RESERVATÓRIO Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Petróleo da Universidade Federal Fluminense, como requisito parcial para a obtenção do grau de Bacharel em Engenharia de Petróleo. Orientador: Orientador: Prof. Rogério Fernandes de Lacerda, D.Sc. Coorientador: Prof. Krishnaswamy Rajagopal, Ph.D. Niterói, RJ 2016

3

4 MARCOS DE FRIAS RAPOSO PINHEIRO THIAGO LUIS MARQUES DE SOUZA MANHÃES AVALIAÇÃO DE MÉTODOS DE PREDIÇÃO DE PROPRIEDADES DE FLUIDOS DE RESERVATÓRIO Trabalho de Conclusão de Curso apresentado ao Curso de Engenharia de Petróleo da Universidade Federal Fluminense, como requisito parcial para a obtenção do grau de Bacharel em Engenharia de Petróleo. Aprovado em 30 de junho de 2016 BANCA EXAMINADORA Prof. Rogério Fernandes de Lacerda, D.Sc. - UFF Orientador Prof. Krishnaswamy Rajagopal, Ph.D. - UFRJ Orientador Engª. Luciana Loureiro, M.Sc. - UFRJ Niterói, RJ 2016

5 RESUMO Estudos sobre correlação, predição, e modelagem de propriedades PVT (Pressão-Volume- Temperatura) de fluidos de reservatório de petróleo são temas de grande interesse da indústria de petróleo. Na literatura existem diversos métodos de cálculo para cada uma das propriedades, mas a qualidade dos resultados previstos pelos métodos depende do tipo de fluido e das condições de temperatura e pressão do reservatório. Este trabalho propõe a avaliar e comparar modelos de predição de propriedades de fluidos de reservatório a altas pressões de interesse na produção de petróleo. Após a identificação e seleção de modelos bem avaliados na literatura, foi desenvolvido um software, planilha Excel, para realizar os cálculos das propriedades e comparar com dados experimentais disponíveis. O software propicia comparar diferentes métodos e calcular, a partir de dados experimentais facilmente medidos, propriedades de difícil medição que possuem elevado custo experimental devido ao tempo necessário para serem obtidas e da infraestrutura laboratorial necessária. No atual cenário de baixos preços do petróleo no mercado mundial, este trabalho vem de encontro às demandas por redução de custo e agilidade nos processos da indústria do petróleo. O ensino de Engenharia de Petróleo da UFF também será beneficiado por esse trabalho por disponibilizar uma ferramenta de predição de propriedades de petróleo que permite não só realizar cálculos com também desenvolver o senso crítico dos alunos. Palavras-chave: PVT, reservatório de Petróleo, fluidos, predição, propriedades, avaliação, Métodos, Software, Excel, Ponto de bolha, viscosidade, fator volume-formação, massa específica, Hidrocarbonetos, temperatura, pressão, API, RGO, Liberação Flash, Liberação Diferencial, compressibilidade, Fator de compressibilidade, Razão de solubilidade.

6 ABSTRACT Correlation, prediction, modeling and PVT properties (pressure-volume-temperature) studies of reservoir petroleum fluids are topics of great interest in the oil industry. In the literature, there are numerous methods for calculating each of the properties, but the provided results quality by the methods depends on the type of fluid and reservoir temperature and pressure. This paper aims to evaluate and compare predictive models of reservoir fluid properties at high pressures of interest in oil production. After the identification and selection of well-evaluated models in the literature, we developed a software, Excel spreadsheet to perform calculations of the properties and compare them with available experimental data. The software provides comparing different methods and calculate, from easily measured experimental data, properties that are difficult in measurement that have high experimental cost due to the time required for retrieval and necessary laboratory infrastructure. In the current scenario of low oil prices on the world market, this work is in line with the demands for cost reduction and agility in the oil industry processes. The teaching of Petroleum Engineering will also be benefited by this work, providing a prediction tool of oil properties that allows not only perform calculations, also the development of students critical thinking. Keywords: PVT, reservoir fluids, prediction, properties, evaluation methods, software, Excel, bubble point, viscosity, formation volume factor, density, Hydrocarbons, temperature, pressure, API, GOR, Flash-Release, Differential Release, compressibility, compressibility factor, solubility ratio.

7 LISTA DE FIGURAS Figura 2.1 Diagrama de fases de uma mistura Figura 2.2 Diagrama de fases Misturas líquidas Figura Gás úmido Figura Gás seco Figura Gás retrógrado Figura Liberação flash Figura Liberação diferencial Figura Diferença na curva de Bo para liberação Flash e Diferencial Figura 2.9 Comparação entre os resultados de Rs das liberações flash e diferencial Figura 2.10 Fluxo laminar Figura 2.11 Liberação de gás de uma mistura inicialmente líquida Figura Exemplo de um gráfico Bo vs P Figura 3.1 Célula PVT do LATCA Figura 5.1- Menu principal Figura 7.1- Pressão x massa específica - campo A Figura 7.2- Compressibilidade x pressão experimental e calculada óleo A Figura 7.3- Fator volume formação do óleo x pressão Experimental e calculado - óleo A Figura 7.4- Fator de compressibilidade x Pressão - campo A Figura 7.5- Resultados dos métodos para predição de Pb Campo A Figura 7.6- Resultados dos métodos para predição de razão de solubilidade Campo A Figura Resultados dos métodos para predição de viscosidade Campo A

8 LISTA DE TABELAS Tabela 3.1 Composição do fluido A Tabela 3.2- Expansão do fluido a composição constante a 212 ºF Tabela 3.3- Liberação diferencial a 212 F Tabela 3.4- Gás liberado diferencialmente a 212 F Tabela 3.5- Viscosidade a 212 F A Tabela 3.6- Comparação dos testes das liberações Flash e Diferencial Tabela Propriedades usadas em cada método para predição de Pb Tabela Propriedades usadas em cada método para predição de Viscosidade para óleo saturado (μob) Tabela Propriedades usadas em cada método para predição de fator volume formação do óleo para pressões abaixo do ponto de Bolha (Bob) Tabela Propriedades usadas em cada método para predição de Razão de solubilidade para pressões abaixo de Pb (Rs) Tabela Dados Básicos campo A Tabela Condições de reservatório - campo A Tabela Dados Experimentais de Composição do Gás e do Óleo (% mol/mol) do campo A Tabela Pressão x Bo x Rs x Volume relativo x viscosidade do campo A Tabela Propriedades Pressão-Volume a 212 F do óleo A Tabela Liberação a 212 F do campo A Tabela Liberação de Gás a 212 F do campo A Tabela Dados de Viscosidade a 212 F do campo A Tabela Resultado das correlações de Pb e valor utilizado do mesmo- campo A Tabela 7.1- Pressão x Massa específica - campo A Tabela 7.2- Compressibilidade x pressão experimental e calculada óleo A

9 Tabela 7.3- Fator volume formação do óleo x pressão acima do Pb - óleo A Tabela 7.4- Fator volume formação do óleo x pressão abaixo do Pb Tabela 7.5- Fator de compressibilidade x Pressão - campo A Tabela 7.6- Resultados dos métodos para predição de Pb Campo A Tabela 7.7- Resultados dos métodos para predição de razão de solubilidade Campo A Tabela 7.8- Resultados dos métodos para predição de viscosidade Campo A Tabela 7.9- Resultados do cálculo da composição do fluido

10 LISTA DE ABREVIATURAS E SIGLAS API Bbl E&P FVF LATCA LGN PVT RGO - American Petroleum Institute - Barril padrão de petróleo - Exploração e produção - fator volume-formação - Laboratório de Termodinâmica e Cinética Aplicada da UFRJ. - Líquido de gás natural - Pressão-Volume- Temperatura - Razão gás-óleo

11 LISTA DE SÍMBOLOS T P m ρ v μ Z Co M Pb Rs B PM - Temperatura - Pressão - Massa - Massa específica. - volume viscosidade dinâmica (cp) Peso Específico - Fator de Compressibilidade - Compressibilidade Isotérmica - Peso molecular - Pressão de bolha - Razão de solubilidade - Fator volume- formação - Peso molecular Subscritos c r R o g i od ob pc pr b - crítica - reduzida - Reservatório - óleo - gás - Componente i - óleo morto (cp) - abaixo do ponto de bolha - pseudocrítica - pseudoreduzida - no ponto de bolha

12 Sumário 1 INTRODUÇÃO REVISÃO BIBLIOGRÁFICA TIPOS DE RESERVATÓRIOS Diagrama de fases Reservatórios de óleo Reservatórios de gás FLUIDOS DE RESERVATÓRIO Produção de Óleo Produção de gás Produção de água PROPRIEDADES DAS MISTURAS LÍQUIDAS DE HIDROCARBONETOS Tipos de liberação de gás Temperatura de reservatório (TR) Pressão de reservatório (PR) Ponto de Bolha (Pb) Massa específica ( ) Volume específico (v) Viscosidades Dinâmica ( ) e Cinemática ( ) Fator Volume Formação de Óleo (Bo) Razão Gás-Óleo (RGO) Peso Específico ( Temperatura e Pressão Reduzidas (Tr, Pr) Fator de Compressibilidade (Z) Compressibilidade Isotérmica (Co)... 31

13 3 RELATÓRIO DE APRESENTAÇÃO DE RESULTADOS PVT RESUMO DO FLUIDO DE RESERVATÓRIO Dados do reservatório Compressibilidade do fluido na temperatura de reservatório (212 ºF): Propriedades na pressão (10640 psia) e temperatura de reservatório (212 ºF) Propriedades na pressão de saturação (7153 psia) e temperatura de reservatório (212 ºF) Composição do fluido Expansão do fluido a composição constante a 212 ºF Liberação diferencial a 212 F Gás liberado diferencialmente a 212 F Viscosidade a 212 F Comparação dos testes das liberações Flash e Diferencial MÉTODOS DE PREDIÇÃO DE PROPRIEDADES PONTO DE BOLHA (Pb) Standing (1977) Lasaster(1958) Glaso(1990) Marhoun (1988) Petrosky-Farshad (1993) Vazquez e Beggs (1980) Kartoamodjo e Schmidt (1994) Valko e McCain (2003) VISCOSIDADE PARA ÓLEO SATURADO (μob) Standing (1977)... 49

14 4.2.2 Beggs e Robinson (1975) Petrosky e Farshad (1993) Kartoatmodjo e Schmidt (1994) FATOR VOLUME FORMAÇÃO DE ÓLEO PARA PRESSÕES ABAIXO DO PONTO DE BOLHA (BOB) Standing (1977) Glaso (1990) Marhoun (1988) Petrosky and Farshad (1993) Kartoatmodjo e Schmidt (1994) Vazquez and Beggs (1980) RAZÃO DE SOLUBILIDADE PARA PRESSÕES ABAIXO DO PONTO DE BOLHA (RS) Standing (1977) Lasaster (1958) Vazquez e Beggs (1980) Glaso (1990) Petrosky (1993) Al-Marhoun (1988) Kartoatmodjo e Schmidt (1994) Velarde, Blasingame e McCain (1997) TEMPERATURA E PRESSÃO REDUZIDAS (Tpc, Ppc ) Brown (1948) (Tpc, Ppc ) Wichert-Aziz (1972) (Tpc, Ppc ) Whitson and Brule (2000) (Tpc, Ppc ) Carr-kobayashi (1954)... 67

15 4.6 FATOR DE COMPRESSIBILIDADE PaPay (1985) COMPRESSIBILIDADE ISOTÉRMICA (CO) SOFTWARE DADOS OBRIGATÓRIOS DADOS COMPLEMENTARES CÁLCULOS DETALHADOS VALORES UTILIZADOS NOS CÁLCULOS FAIXA DE VALIDADE APLICANDO OS DADOS DO CAMPO A-5 NO SOFTWARE DADOS OBRIGATÓRIOS DADOS COMPLEMENTARES CÁLCULOS DETALHADOS RESULTADOS DO CAMPO A Massa Específica Compressibilidade Fator volume formação do óleo Fator de compressibilidade Pressão de bolha Razão de solubilidade Viscosidade do óleo Saturado (μob) Peso Molecular do Fluido Conclusão Bibliografia

16 1 INTRODUÇÃO A análise PVT (Pressão-Volume-Temperatura) de fluidos de reservatório precisa ser realizada em amostras de fluidos representativas na etapa de exploração e ao longo de toda a vida produtiva do poço. A primeira amostra é obtida durante a perfuração do primeiro poço de exploração e certamente antes que o reservatório entre na fase de produção. Os resultados da análise PVT são fundamentais para o desenvolvimento do reservatório e no projeto e operação das instalações de produção. Os estudos PVT podem ser realizados nos diversos tipos de fluidos condensados de reservatório, óleo pretos e fluidos essenciais. As amostras representativas são examinadas à pressão e temperaturas do reservatório para determinar o comportamento de fases e as alterações de composição ao longo das linhas de produção e da vida produtiva do reservatório, à medida que pressão é reduzida. O presente trabalho tem como base a planilha de dados PVT de nome: Black Oil Appendix 5A (EKZEKWE, 2011) que visa fornecer uma análise PVT calculada, de modo a apresentar valores próximos aos medidos experimentalmente e sem o custo e o tempo necessário para uma análise experimental.

17 2 REVISÃO BIBLIOGRÁFICA 2.1 TIPOS DE RESERVATÓRIOS Diagrama de fases O comportamento de uma mistura pode ser expresso pelo seu diagrama de fases. Importante ressaltar que cada mistura possui um diagrama de fases particular. A Figura 2.1 ilustra a forma do envelope de fase, diagrama pressão-temperatura de um fluido de reservatório. As curvas de ponto de bolha e ponto de orvalho delimitam a coexistência das fases líquida e gasosa da mistura. À direita da curva de ponto de orvalho se localiza a região das misturas gasosas e a esquerda da curva de ponto de bolha, se localiza a região de misturas líquidas. Existe uma reta tangente à curva dos pontos de orvalho chamada cricondenterma que representa a maior temperatura que ainda possui coexistência de duas fases. Já a reta tangente à curva dos pontos de bolha é chamada cricondenbárica e representa a maior pressão a qual existe coexistência de duas fases. Figura 2.1 Diagrama de fases de uma mistura (Rosa et al, 2010)

18 2.1.2 Reservatórios de óleo Reservatórios de óleo são aqueles que apresentam uma parte líquida de hidrocarbonetos nas condições de reservatório e este líquido que viabiliza economicamente a produção. De acordo com a posição que ocupa no diagrama de fases, uma mistura líquida de hidrocarbonetos pode receber o nome de óleo saturado ou óleo subsaturado. Observando na Figura 2.2, nota-se que o ponto 1 encontra-se exatamente em cima da curva dos pontos de bolha (Pb) - a qual é o marco do começo da presença de gás na mistura - então diz-se que o óleo está saturado em gás ou apenas saturado. Nota-se também no diagrama, que para esse fluido, qualquer redução de pressão qualquer acarretará uma vaporização de alguns componentes da mistura. (Rosa et al, 2010) Figura 2.2 Diagrama de fases Misturas líquidas. (Rosa et al, 2010) Se a mistura está submetida a uma pressão maior que a pressão de bolha, como no ponto R, diz-se que o óleo está subsaturado. Ao iniciar a produção, o fluido produzido e o fluido que permanece na formação passam por mudanças nas condições que se encontravam inicialmente. O fluido produzido 17

19 passa das condições de pressão e temperatura de reservatório para condições de pressão e temperatura de superfície. O fluido que permanece no reservatório pode sofrer uma redução uma diminuição na pressão enquanto a temperatura permanece inalterada. A curva RS da Figura 2.2 representa justamente a transição do fluido nas condições iniciais de reservatório (Ponto R) para as condições de superfície (Ponto S). Neste exemplo, nas condições de superfície, o fluido se encontra com aproximadamente 60% de hidrocarbonetos líquidos e 40% de hidrocarbonetos na fase gasosa. O comportamento do fluido no reservatório é expresso por uma linha vertical (temperatura constante). A pressão vai diminuindo conforme a produção de fluidos ocorre até o reservatório ser abandonado (produção suspensa) e sua temperatura permanece constante e igual a TR, temperatura original. Conforme a liberação de gás, o óleo (parte líquida da mistura) reduz o volume quando levado a superfície. De acordo com essa redução o óleo pode ser classificado como de baixa contração (óleo normal) ou de alta contração (óleo volátil). Os primeiros hidrocarbonetos a serem liberados são os componentes mais leves, como metano, etano, propano, etc. Também são liberadas frações pesadas, porém em quantidades muito pequenas. Portanto o grau de volatilidade está ligado à liberação dos componentes mais leves do óleo. (Thomas, 2007) Reservatórios de gás É a jazida de petróleo que se encontra em estado gasoso nas condições de reservatório. Corresponde aos pontos a direita da curva de ponto de orvalho no diagrama de fases. Dependendo do comportamento do fluido de reservatório quando sujeito a mudanças de pressão no reservatório ou na superfície, o reservatório pode ser classificado como de gás seco, de gás úmido ou de gás retrograda Reservatório de gás seco e reservatório de gás úmido Ao ser levada para superfície, uma mistura gasosa é submetida a processos de separação dos componentes mais leves dos mais pesados. Se após esses processos a mistura 18

20 produzir alguma quantidade de líquido, o reservatório é classificado como reservatório de gás úmido, caso não produza, ele é classificado como reservatório de gás seco. A Figura 2.4 ilustra o comportamento do fluido de reservatório de gás seco ao longo da linha de produção. Figura Gás úmido (Rosa et al, 2010) Figura Gás seco (Rosa et al., 2010) 19

21 Tal classificação não depende apenas do tipo de óleo, e sim do tipo de processo no qual ele será sujeito, podendo um mesmo reservatório ser classificado como sendo de gás seco e gás úmido dependendo do processo no qual ele é submetido Reservatório de gás retrogrado ou condensado. É quando a mistura de hidrocarbonetos se encontra toda em estado gasoso na jazida, como no ponto 2 da Figura 2.5 e conforme ocorre a produção (a pressão vai caindo e a temperatura se mantêm constante) parte da mistura se liquefaz e após uma queda maior ainda de pressão a mistura volta a ser gás. Figura Gás retrógrado (Rosa et al, 2010) Em suma, este fenômeno é quando uma redução de pressão causa a condensação do gás, quando o esperado é que se submetido a uma baixa de pressão ocorra a vaporização dos líquidos. Note que este fenômeno ocorre no interior da rocha reservatório. 20

22 2.2 FLUIDOS DE RESERVATÓRIO Produção de Óleo O óleo é a parte dos hidrocarbonetos que se mantem líquida quando levado a superfície. Mesmo com a mistura de hidrocarbonetos toda em estado gasoso é possível extrair líquido em superfície, esse líquido é conhecido como LGN (Líquido do Gás Natural). (Thomas, 2007) Produção de gás O gás é proveniente de três partes. A primeira é resultado dos hidrocarbonetos que já se encontram em estado gasoso nas condições de reservatório, recebem o nome de gás livre. A segunda é a parcela que está dissolvida no óleo e quando levada para condições de superfície se vaporizam. A terceira é a parcela do gás que se encontra dissolvido na água em condições de reservatório e normalmente é desprezada nos cálculos (Thomas, 2007) Produção de água Além de hidrocarbonetos é comum a produção de água e sua produção depende das condições em que ela se encontra no reservatório. Mesmo sempre presente no reservatório, a água depende de uma saturação mínima para se deslocar em meio poroso, sendo assim, abaixo dessa saturação mínima não existe produção de água. A água produzida também pode ter origem de aquíferos que se encontram adjacentes ao reservatório de óleo ou pode vir através da injeção de água para aumentar a recuperação de óleo. (Rosa et al, 2010) 2.3 PROPRIEDADES DAS MISTURAS LÍQUIDAS DE HIDROCARBONETOS Tipos de liberação de gás A maneira como o gás é liberado de uma mistura líquida afeta significativamente as propriedades PVT (Pressão-Volume-Temperatura) e por consequência os dados de fator 21

23 volume-formação do óleo e a razão de solubilidade. Basicamente existem dois tipos de liberação de gás: flash e diferencial Liberação flash Nesse tipo de liberação o gás vai saindo de solução à medida que a pressão é reduzida e se mantém em contato com o líquido do qual foi liberado ao longo de todo o processo, conforme está ilustrado na Figura 2.6, onde podem ser visualizados vários estágios de um experimento de liberação flash em uma célula PVT. Basicamente, a célula PVT consiste de um cilindro onde é colocado o líquido a ser analisado. A pressão no interior da célula, ou seja, a pressão a que é submetido o fluido durante os vários estágios do experimento, é reduzida gradativamente com a expansão do volume. Figura Liberação flash (Rosa et al,2010) 22

24 A liberação flash apresenta as seguintes características: A composição total do sistema permanece constante (nenhum gás é removido da célula onde é feita a liberação); O equilíbrio termodinâmico entre as fases é alcançado; O processo termina quando se chega à capacidade máxima da célula. O experimento ilustrado na Figura 2.6 inicia-se na pressão de bolha do líquido, líquido saturado, mas pode ser realizado partindo-se de uma pressão maior que a pressão de bolha, i.e., líquido subsaturado. Durante a expansão de volume, é medido o volume total de hidrocarbonetos (líquido + gás) existente no interior da célula e, eventualmente, o volume total de gás liberado de solução e o volume de líquido final, caso a capacidade da célula permita o alcance das condições-padrão de pressão e temperatura. A Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP) define como condição padrão no Brasil a temperatura de 20 ºC e pressão de 1 atm, Outros países definem suas próprias condições padrão, por exemplo, nos Estados Unidos o American Petroleum Institute (API) define como condições padrão 60 ºF (15,5 ºC)e 14,7 psia (1 atm). A partir de experimento de uma liberação flash normalmente podem ser obtidas a pressão de bolha, a razão gás-óleo, a razão gás-óleo (RGO) da liberação flash e, para fluidos subsaturados. o coeficiente de compressibilidade isotérmica do líquido acima da pressão de bolha. O fator volume-formação das fases gasosa e líquida e a razão de solubilidade inicial podem eventualmente ser obtidos se a capacidade da célula permitir alcançar as condições padrão de pressão e temperatura durante o processo de expansão. Nesse caso, ao final do experimento o gás e o líquido devem ser separados e os seus volumes medidos nas condições padrão de pressão e temperatura. A pressão de bolha é determinada analisando o comportamento da variação do volume de líquido na câmara (célula PVT) em função da pressão, durante o processo de expansão. O coeficiente de compressibilidade do líquido subsaturado é calculado a partir de dados de variação de volume com pressão para pressões acima do ponto de bolha, aplicando a definição de compressibilidade isotérmica. O fator volume-formação de duas fases em cada estágio de pressão é determinado pelo quociente entre o volume total de hidrocarbonetos existente no interior da célula e o volume de líquido no interior da célula ao final do experimento, ou seja, quando a célula estiver submetida às condições padrão de pressão e temperatura. A razão de 23

25 solubilidade acima da pressão de bolha é calculada como a relação entre o volume total de gás liberado e o volume final de líquido, ambos medidos nas condições padrão de temperatura e pressão. A liberação flash não permite determinar o fator volume-formação do óleo abaixo da pressão de bolha e do fator volume-formação do gás, pois o gás liberado permanece em contato com o líquido no interior da célula ao longo dos vários estágios de pressão, não sendo possível, portanto, medir os volumes de óleo e de gás em cada estágio. Também a determinação dos fatores volume de formação de gás e de líquido e a razão de solubilidade geralmente não ocorre na liberação flash, devido ao volume da célula PVT expandida ser insuficiente para atingir as condições padrão de pressão e temperatura ((Rosa et al, 2011)) Liberação Diferencial Nesse tipo de liberação, à medida que o gás é liberado, é retirado do contato com a fase líquida remanescente, conforme mostra a Figura 2.7. Figura Liberação diferencial (Rosa et al, 2010) As características da liberação diferencial são: A composição total da mistura que permanece na célula se altera durante o processo de liberação; O equilíbrio termodinâmico entre as fases não é estabelecido; O processo de liberação pode se desenvolver até alcançar a pressão atmosférica. 24

26 A partir de uma liberação diferencial são obtidos o volume de líquido no interior da célula e o volume de gás liberado em cada estágio de pressão. Com isso podem ser determinados o fator de encolhimento do líquido e a quantidade de gás dissolvido em função da pressão, bem como as propriedades do gás liberado em cada estágio de pressão. Finalmente são determinados a razão de solubilidade (Rs), o fator volume-formação do óleo (Bo) e o fator volume-formação do gás (Bg) (ROSA et al, 2010) Comparação entre liberação flash e diferencial Como já foi dito anteriormente, os dois métodos de liberação fornecem resultados diferentes. A quantidade de gás liberado na liberação diferencial é menor que na liberação flash, portanto o volume residual de líquido, ou seja, de óleo, é maior. Como consequência o fator volume-formação é menor. A Figura 2.8 ilustra a diferença entre as curvas de Bo, fator volume formação de óleo para liberação flash e diferencial. (Rosa et al, 2010). Figura Diferença na curva de Bo para liberação Flash e Diferencial. (Rosa et al, 2010) Como mais componentes permanecem formando o volume residual de líquido, ou seja, de óleo, a razão de solubilidade também é menor na liberação diferencial, conforme está representado na Figura

27 Figura 2.9 Comparação entre os resultados de Rs das liberações flash e diferencial. (Rosa et al, 2010) Temperatura de reservatório (TR) É a temperatura em que se encontra o reservatório, pode-se considerar como constante sem que ocorram erros significativos nos cálculos. Nos campos de Marlim na Bacia de Campos as temperaturas de reservatório são da ordem de 100 ºC Pressão de reservatório (PR) É a pressão de poros do reservatório, e varia a medida que a produção do reservatório se desenvolve. Há o decaimento dela conforme se retira os fluidos do reservatório. As pressões dos reservatórios podem variar da ordem de 10 atm., em poços onshore, a 1000 atm, em poços offshore do pré-sal brasileiro Ponto de Bolha (Pb) A pressão em que começa a vaporização de uma mistura de substâncias à temperatura constante é chamada de pressão de saturação ou pressão de bolha. 26

28 A pressão no ponto de bolha do fluido de reservatório é requerida por quase todas as correlações para predição de propriedades de óleo saturado e subsaturado. Existem disponíveis na literatura diversas equações para predição da pressão no ponto de bolha, Pb, de fluidos de reservatório. Neste trabalho, após uma avaliação crítica de diversos métodos de predição de Pb disponíveis na literatura, foram selecionados os Standing (1977), Lasater (1958), Glaso (1990), Marhoun (1988), Petrosky-Farshad (1993), Vazquez e Beggs (1980), Kartoatmodjo (1994), Schmidt (1994) e Valko e McCain (2003). Vale destacar que os principais métodos de predição de propriedades disponíveis na literatura utilizam dados de entrada e geram resultados no Sistema Inglês de Unidades Massa específica ( ) A massa específica do óleo é definida como a razão entre a massa e o volume a uma dada temperatura e pressão: Onde: mo - massa do óleo (lb) vo - volume do óleo (ft³) ρ o = m o v o (1) Para uma substância i qualquer a massa específica é dada por: Onde: mi - massa do componente i (lb) vi - volume do componente i (ft³) ρi - massa específica do componente i (lb/ft³) ρ i = m i v i (2) 27

29 2.3.6 Volume específico (v) É o inverso da massa específica, ρ, ou seja: v = 1 ρ (3) Onde: v - volume específico (ft³/lb) ρ - massa específica (lb/ft³) Viscosidades Dinâmica ( ) e Cinemática ( ) Viscosidade é a resistência que um fluido oferece ao escoamento, quanto mais viscoso o fluido maior a sua resistência ao escoamento. A Figura 2.10 ilustra dois planos adjacentes dentro do fluido, um estático e o outro se deslocando (chamado de S ) numa velocidade V, a resistência ao movimento é: Proporcional à velocidade; Proporcional ao contato do fluido na área S ; Inversamente proporcional à distância h entre os dois planos. Figura 2.10 Fluxo laminar (Donnez, 2007) A viscosidade dinâmica ou absoluta (μ) é dada em termos da força requerida para mover uma unidade de área do fluido a uma unidade de distância, resulta do atrito interno do movimento de uma camada de fluido em relação a outra. A unidade mais utilizada na indústria 28

30 do petróleo para expressar valores dessa viscosidade é cp (centipoise). 1 Poise = 100 cp = 1 gm/(cm.s) A viscosidade cinemática (ν) é definida como a razão entre a viscosidade dinâmica (μ) e a massa específica (ρ): v = μ ρ (4) Onde: ν viscosidade cinemática (cst) μ viscosidade dinâmica (cp) ρ massa específica (gm/cm 3 ) Sendo a unidade dessa viscosidade dada geralmente em cst (centistokes). 1 Stokes (St) = 1 cm 2 /s = 100 centistokes (cst) Fator Volume Formação de Óleo (Bo) É a razão entre o volume ocupado pela fase líquida a uma determinada pressão e temperatura qualquer e o volume ocupado por ela nas condições standard. Ou seja, o Fator Volume de Formação do óleo nos diz qual volume de líquido nas condições de temperatura e pressão qualquer, eu preciso para obter uma unidade de volume de óleo nas condições padrão. Figura 2.11 Liberação de gás de uma mistura inicialmente líquida. (ROSA et al, 2010) 29

31 Figura Exemplo de um gráfico Bo vs P. (ROSA et al, 2010) Fator volume de formação por liberação diferencial É o fator volume de formação obtido por liberação diferencial. Nesse método, como o gás liberado por etapas, acaba que a quantidade do mesmo é maior em relação à quantidade liberada na Liberação Flash. Em correlações onde se pede o fator volume de formação, o mais recomendado é utilizar o valor obtido por meio da liberação diferencial por ser um valor mais fiel ao valor real Fator volume de formação por liberação flash É o fator volume de formação obtido por liberação Flash Razão Gás-Óleo (RGO) Relação entre a vazão de gás e a vazão de óleo, ambas relatadas em condições de superfície RGO por liberação diferencial É a RGO obtida na liberação diferencial RGO por liberação Flash É a RGO obtida na liberação Flash. 30

32 Peso Específico ( O peso específico é definido como o peso por unidade de volume ( ). É igual ao produto da massa específica pela aceleração da gravidade Temperatura e Pressão Reduzidas (Tr, Pr) Temperatura reduzida é o quociente da temperatura absoluta pela sua temperatura crítica, ou pseudocrítica, no caso de calculada para uma mistura de componentes. Pressão reduzida é o quociente da pressão absoluta pela sua pressão crítica, ou pseudocrítica no caso de calculada para uma mistura de componentes. As temperaturas e pressões são usadas para definir o somatório ponderado, por fração mássica, dos pontos críticos dos componentes da mistura, a partir do qual a distinção entre fase a líquida e gasosa não existe. Existem diversos métodos na literatura para calcularmos a temperatura e pressão reduzidas (Tr,Pr), nesse trabalho são utilizados os métodos de Brown (1948), Wichert-Aziz (1972), Whitson and Brule (2000) e Carr-Kobayashi (1954) Fator de Compressibilidade (Z) Define o quão compressível é um fluido a uma temperatura e pressão Compressibilidade Isotérmica (Co) É a variação fracional de volume do fluido por variação unitária de pressão (Rosa et al, 2010). 31

33 3 RELATÓRIO DE APRESENTAÇÃO DE RESULTADOS PVT O objetivo principal da análise PVT de uma amostra de fluido de reservatório é a sua caracterização e, posteriormente, a modelagem do comportamento físico-químico. Os dados experimentais obtidos são utilizados para a estimativa de reservas, nos estudos de engenharia reservatório e no projeto e operação dos sistemas de produção. Neste capítulo é apresentado um modelo de relatório de resultados da análise PVT completa de fluido de reservatório. A análise é realizada em uma célula PVT em uma amostra representativa proveniente da amostragem de fundo, i.e., amostra retirada diretamente do reservatório, ou da amostragem de superfície, ou seja, amostra dos fluidos produzidos (óleo e gás) obtida a partir das instalações de superfície. A Figura 3.1 mostra a Célula PVT disponível no LATCA - Laboratório de Termodinâmica e Cinética Aplicada da UFRJ. Figura 3.1 Célula PVT do LATCA

34 A análise PVT, parcial ou completa, pode ser realizada em fluidos de reservatórios e black-oil, óleos voláteis e gás condensado retrógrado, definidos a seguir. Os reservatórios black oil contém grandes proporções de hidrocarbonetos pesados em sua composição e são conhecidos como óleo de baixo encolhimento. Apresentam alta recuperação em superfície do líquido produzido do reservatório, decorrente da reduzida quantidade de gás dissolvido. Este é o tipo de reservatório encontrado nos principais campos da Bacia de Campos. Black oil é uma definição que abrange uma grande quantidade de reservatórios de petróleo, em geral incluindo os reservatórios portadores de petróleo pesado e mediano. Valores típicos de densidade estão na faixa de 10 a 40 API, com RGO inferior a 200 m³std/m³std. Os reservatórios de óleos voláteis contêm proporções maiores de hidrocarbonetos leves e intermediários quando comparado com o black oil. O óleo volátil libera maior volume de gás durante sua produção, deixando menor quantidade de líquido recuperado em superfície e, por isso, são referidos como óleo de alto encolhimento. Em geral estão associados aos reservatórios portadores de petróleo leve, incluindo, por exemplo, campos do pré-sal brasileiro. Tipicamente apresentam densidade até a 50 API e RGO na faixa de 200 a 1000 m³std/m³std. Nos reservatórios de gás condensado retrógrado, o fluido de reservatório encontra-se originalmente na fase gasosa. Com a redução de pressão durante a produção ocorre a formação de uma fase líquida na superfície. Reservatórios deste tipo apresentam RGO inferior a m³std/m³std e os líquidos produzidos em superfície (condensado). As definições acima estão disponíveis no sítio da Queiroz Galvão E&P ( Os dados experimentais apresentados a seguir são os resultados da Análise PVT completa de uma amostra de fluido de reservatório black oil, disponibilizada por Ezekwe (2011). Estes dados são aqueles utilizados como exemplo no capítulo de avaliação de resultados dos métodos de predição de propriedades de fluidos de reservatório desse trabalho. 33

35 3.1 RESUMO DO FLUIDO DE RESERVATÓRIO Dados do reservatório Nome do campo: 5-A Temperatura de reservatório: 212 ºF Pressão de reservatório: psia Pressão de saturação: 7153 psia Compressibilidade do fluido na temperatura de reservatório (212 ºF): Na pressão de reservatório (10640 psia): Na pressão de bolha (7153 psia): 8.25E-06 psi E-06 psi Propriedades na pressão (10640 psia) e temperatura de reservatório (212 ºF) Massa específica do fluido: 0,6931 gm/cm 3 = 242,9 lb/bbl Volume específico: 0,02311 ft 3 /bbl Viscosidade: 0,676 cp Compressibilidade do fluido 8.25E-06 psi -1 Fator Volume-Formação do Óleo: o Óleo residual a 60 F: 1,5031 bbl/bbl (liberação diferencial) o Óleo no stock tank a 60 F: 1,4658 bbl/bbl (liberação flash) Propriedades na pressão de saturação (7153 psia) e temperatura de reservatório (212 ºF) Massa específica do fluido: 0,6690 gm/cm 3 = 234,5 lb/bbl Volume específico: 0,02394 ft 3 /bbl Viscosidade: 0,467 cp Compressibilidade do fluido 11.96E-06 psi -1 Fator Volume-Formação do Óleo: o Óleo residual a 60 F: 1,5572 rb/bbl (liberação diferencial) o Stock tank a 60 F: 1,5186 rb/bbl (liberação flash) Razão de Solubilidade: o Óleo residual a 60 F: 1153 ft/bbl (liberação diferencial) 34

36 3.1.5 Composição do fluido o Óleo no stock tank a 60 F: 1049 ft/bbl (liberação flash) No. Id. Nome Número de Carbonos GÁS % mol ÓLEO % mol 1 H2S Sulfeto de Hidrogênio 0,00% 0,00% 2 N2 Nitrogênio 0,31% 0,01% 3 CO2 Dióxido de Carbono 0,40% 0,00% 4 C1 Metano 1 90,14% 0,47% 5 C2 Etano 2 2,98% 0,09% 6 C3 Propano 3 2,41% 0,26% 7 i-c4 i-butano 4 0,74% 0,22% 8 C4 n-butano 4 1,18% 0,48% 9 i-c5 i-pentano 5 0,49% 0,54% 10 C5 n-pentano 5 0,49% 0,73% 11 C6 Hexanos 6 0,52% 2,81% 12 C7 Heptanos 7 0,23% 4,38% 11 C8 Octanos 8 0,07% 4,78% 12 C9 Nonanos 9 0,02% 5,40% 13 C10 Decanos 10 0,01% 5,05% 14 C11 Undecanos 11 0,00% 4,16% 15 C12 Dodecanos 12 0,00% 3,92% 16 C13 Tridecanos 13 0,00% 3,92% 17 C14 Tetradecanos 14 0,00% 3,53% 18 C15 Pentadecanos 15 0,00% 3,68% 35

37 19 C16 Hexadecanos 16 0,00% 4,71% 20 C17 Heptadecanos 17 0,00% 4,16% 21 C18 Octadecanos 18 0,00% 2,46% 22 C19 Nonadecanos 19 0,00% 4,79% 23 C20 Eicosanos 20 0,00% 2,73% 24 C21 Heneicosanos 21 0,00% 2,30% 25 C22 Docosanos 22 0,00% 2,10% 26 C23 Tricosanos 23 0,00% 1,94% 27 C24 Tetracosanos 24 0,00% 1,74% 28 C25 Pentacosanos 25 0,00% 1,70% 29 C26 Hexacosanos 26 0,00% 1,27% 30 C27 Heptacosanos 27 0,00% 1,39% 31 C28 Octacosanos 28 0,00% 1,27% 32 C29 Nonacosanos 29 0,00% 1,19% 33 C30+ Triacontanos 0,00% 21,83% Total Fração maior Cn+ 100% 100% Tabela 3.1 Composição do fluido A-5 1. Base de recombinação: 1167 scf/bbl 2. Peso molecular total: 88,37 lb/lbmol 3. Peso molecular dos Triacontanos + : 610,6 lb/lbmol 4. Densidade dos Triacontanos + : 0,

38 3.1.6 Expansão do fluido a composição constante a 212 ºF Poço: 5-A Volume Massa Função Y Pressão Relativo específica Compressibilidade (Psat-P)/P*(Bt-1) (psia) (V/Vsat) (gm/cm 3 ) ( V/V)/ P (1) 0,965 0,6931 8,25E ,971 0,6893 8,61E ,980 0,6829 9,27E ,990 0,6759 1,03E (2) 1,000 0,6690 1,20E-05 Região de duas fases ,004 0,6667 6, ,023 0,6539 5, ,050 0,6372 5, ,088 0,6148 5, ,144 0,5850 4, ,229 0,5445 4, ,367 0,4894 4, ,616 0,4141 3, ,147 0,3115 3, ,832 0,1746 3,255 Tabela 3.2- Expansão do fluido a composição constante a 212 ºF (1) Pressão de reservatório (2) Pressão no ponto de bolha 37

39 3.1.7 Liberação diferencial a 212 F FVF Gás GOR GOR Pressão Massa Específica Compressibilidade (óleo residual a 60 F) liberado RSD RST FVF (3) (psia) (gm/cm 3 ) ( V/V)/ P*10-6 RB/STB scf/bbl scf/bbl scf/bbl RB/STB (1) 0, , , , (2) 0, Região de duas fases @60 F Tabela 3.3- Liberação diferencial a 212 F (1) Pressão de reservatório 38

40 (2) Pressão no ponto de bolha (3) Ajustado para as condições do separador de campo por barril de óleo armazenado a 60 ºF Gás liberado diferencialmente a 212 F Densidade Fator de FVF Gás FVF Total Viscosidade do Gás Pressão Ar = 1,00 Compressibilidade BG Bt (1) (Calculada) (2) psia Incremental Acumulativa Z RB/MMscf RB/STB cp 7150 Pressão de saturação a 212 F (1) Bt = Bo + [Rl * Rg] * 10-6 (2) Baseada em Lee et al. Tabela 3.4- Gás liberado diferencialmente a 212 F 39

41 3.1.9 Viscosidade a 212 F Viscosidade Razão de Viscosidade do gás viscosidade Pressão do óleo (calculada) (3) óleo/gás (psia) cp cp (1) (2) Região de duas fases Tabela 3.5- Viscosidade a 212 F A-5 (1) Pressão de reservatório (2) Pressão no ponto de bolha (3) Ajustado para as condições do separador de campo por barril de óleo armazenado a 60 ºF 40

42 Comparação dos testes das liberações Flash e Diferencial Tipo de liberação Razão Gás / Óleo (1) Densidade do Gás Grau API do Óleo FVF (2) a 212 F Solução total de gás Stock tank (@60 F) Vsat/Vst Separação Flash Separação Diferencial Tabela 3.6- Comparação dos testes das liberações Flash e Diferencial (1) A Razão Gás / Óleo é calculada como scf de gás a 15,025 psia e 60 ºF por barril de óleo a 60 ºF. (2) Vsat / Vst é o volume de fluido de reservatório na pressão de saturação e temperatura de reservatório (Vsat )dividido por volume de óleo do tanque de armazenamento a 60 ºF ( Vst ). 41

43 4 MÉTODOS DE PREDIÇÃO DE PROPRIEDADES Estão apresentados nessa seção os métodos de predição das propriedades que são objetivo do nosso estudo. São essas: o ponto de bolha (Pb), a viscosidade do óleo saturado (μob), o fator volume formação de óleo para pressões abaixo do ponto de bolha (Bob), a razão de solubilidade para pressões abaixo do ponto de bolha (Rs), propriedades pseudo-reduzidas, fator de compressibilidade e compressibilidade Isotérmica (Co). 4.1 PONTO DE BOLHA (Pb) Os métodos usados para calcularmos o Pb são Standing, Lasaster, Glaso, Marhoun, Petrosky-Farshad, Vazquez e Beggs, Kartoatmodjo e Schmidt e Valko e McCain. Para o efetivo cálculo do Pb, assim como as demais propriedades, foi estabelecida a Tabela 4.1 onde se destaca as propriedades utilizada em cada correlação. Correlação RS g T o Standing X X X X Lasaster X X X X Glaso X X X X Marhoun X X X X Petrosky-Farshad X X X X Vazquez e Beggs X X X X Kartoatmodjo X X X X Valko e McCain X X X X Tabela Propriedades usadas em cada método para predição de Pb

44 4.1.1 Standing (1977) P b = 18.2 [( R 0.83 sb ) T API 1.4] ɣ g (5) Onde: P b - Ponto de bolha (psia) R sb - Razão de solubilidade do gás (scf/stb) ɣ g - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) Lasaster(1958) Pb = pf (T ) ɣ g (6) pf = ɣ g ɣ g 2 (7) ɣ g = R sb R sb ɣ o Mo (8) 43

45 Mo = API API 2 (9) Onde: Pb - Ponto de bolha (psia) R sb - Razão de solubilidade do gás (scf/stb) ɣ g - Densidade do gás ɣ o - Densidade do óleo API - Grau API (ºAPI) - Temperatura (ºF) Mo - Peso molecular Pf Variável dependente Glaso(1990) P b = Log(PBI) [Log(PBI)]2 (10) Onde: P b - Ponto de bolha (psia) PBI = ( R sb ) ( T0.172 (11) ɣ g API 0.989) R sb - Razão de solubilidade do gás (scf/stb) ɣ g - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) 44

46 4.1.4 Marhoun (1988) P b = R sb ɣ g ɣ o (T ) (12) Onde: P b = ponto de bolha (psia) R sb = Razão de solubilidade do gás (scf/stb) ɣ g = densidade do gás ɣ o = densidade do óleo = temperatura (ºF) Petrosky-Farshad (1993) P b = [( R sb ɣ ) 10X 12.34] g (13) X = T API (14) Onde: P b - Ponto de bolha (psia) R sb - Razão de solubilidade do gás (scf/stb) ɣ g - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) 45

47 4.1.6 Vazquez e Beggs (1980) C1 = 27.64; C2 = ; C3 = (15) PbV&B1 = ( C1 R sb ɣ g 10 1 C3 API C2 T ) (16) C1 = ; C2 = 1.187; C3 = (17) PbV&B2 = ( C1 R sb ɣ g 10 1 C3 API C2 T ) (18) Se API 30 P b = PbV&B1 Se API > 30 P b = PbV&B2 Onde: P b - Ponto de bolha (psia) R sb - Razão de solubilidade do gás (scf/stb) ɣ g - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) 46

48 4.1.7 Kartoamodjo e Schmidt (1994) R sb PbKartoamodjo1 = ( ɣ g API ) T (19) R sb PbKartoamodjo2 = ( ɣ g API ) T (20) Se API 30 P b = PbKartoamodjo1 Se API > 30 P b = PbKartoamodjo2 Onde: P b - Ponto de bolha (psia) R sb - Razão de solubilidade do gás (scf/stb) ɣ - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) 47

49 4.1.8 Valko e McCain (2003) P b = exp( ZPb ZPb 2 ) (21) Zpb = Z1Pb + Z2Pb + Z3Pb + Z4Pb (22) Z1Pb = ln(r sp ) [ln(r sp )] (23) [ln(r sp )] 3 Z2Pb = API API API3 (24) Z3Pb = ɣ gsp (ɣ gsp ) (ɣ gsp ) 3 (25) Z4Pb = T T T3 (26) Onde: P b - Ponto de bolha (psia) R sp - Razão de solubilidade do gás (scf/stb) ɣ gsp - Densidade do gás API - Grau API (ºAPI) - Temperatura (ºF) 48

50 4.2 VISCOSIDADE PARA ÓLEO SATURADO (μob) Existem diversos métodos na literatura para calcularmos a Viscosidade do Óleo Saturado (μob), na nossa planilha utilizamos os métodos de Standing, Beggs e Robinson, Petrosky e Farshad e Kartoatmodjo e Schmidt. Correlação API T Rs Standing X X X Beggs e Robinson X X X Petosky e Farshad X X X Kartoatmodjo e Schimidt X X X Tabela Propriedades usadas em cada método para predição de Viscosidade para óleo saturado (μob) Standing (1977) μ odstanding = ( K ) ( API4.53 T ) (27) K = API (28) μ ob = A1 μ odstanding B1 (29) A1 = 10 ( Rs ) Rs (30) 49

51 B1 = ( ) + ( ) + ( ) R s R s R s (31) Onde: μ od - Viscosidade do óleo morto (cp) R s Razão de solubilidade do gás (scf/stb) API - Grau API (ºAPI) - Temperatura (ºF) Beggs e Robinson (1975) μ odbeggsrobinson = 10 C 1 (32) C = API T (33) μ od = A2 μ odbeggsrobinson B2 (34) A2 = (R s + 100) (35) B2 = 5.44 (R s + 150) (36) Onde: μ od - Viscosidade do óleo morto (cp) R s - Razão de solubilidade do gás (scf/stb) - Temperatura (ºF) 50

52 4.2.3 Petrosky e Farshad (1993) μ odpetroskyfarshad = T log(api) J (37) J = log(t) (38) μ ob = A2 μ odpetroskyfarshad B3 (39) A3 = R s (40) B3 = R s (41) Onde: μ od - Viscosidade do óleo morto (cp) R s - Razão de solubilidade do gás (scf/stb) API - Grau API (ºAPI) - Temperatura (ºF) 51

53 4.2.4 Kartoatmodjo e Schmidt (1994) μ odkartoatmodjo = T [log(api)] log(t) (42) μob = H H 2 (43) H = ( R s) μ odkartoatmodjo E (44) E = R s (45) Onde: μ od - Viscosidade do óleo morto (cp) R s - Razão de solubilidade do gás (scf/stb) API - Grau API (ºAPI) - Temperatura (ºF) 52

54 4.3 FATOR VOLUME FORMAÇÃO DE ÓLEO PARA PRESSÕES ABAIXO DO PONTO DE BOLHA (BOB) Em nossa planilha, utilizamos os métodos de Standing, Glaso, Marhoun, Petrosky- Farshad, Vazquez e Beggs e Kartoatmodjo e Schmidt. Cada um desses métodos utiliza variáveis distintas um dos outros, por isso, foi criada uma tabela que explicitam quais variáveis são utilizadas em cada um destes métodos a fim de deixar claro o que foi utilizado em cada metodologia de cálculo. Correlação RS g T o API Standing X X X X Glaso X X X X Marhoun X X X X Petrosky-Farshad X X X X Vazquez e Beggs X X X X X Kartoatmodjo X X X X Tabela Propriedades usadas em cada método para predição de fator volume formação do óleo para pressões abaixo do ponto de Bolha (Bob) 53

55 4.3.1 Standing (1977) B ob = [R sb ( ɣ (46) g ) T] ɣ o Onde: B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) Glaso (1990) B ob1 = R sb ( ɣ g ) T ɣ o (47) B ob = [ Log(B ob1 ) {Log(B ob1 )}2 ] (48) Onde: B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) 54

56 4.3.3 Marhoun (1988) B ob = (T ) Y Y 2 (49) Y = (R sb ɣ g ɣ o ) (50) Onde: B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) Petrosky and Farshad (1993) B ob = [R sb ( ɣ g (51) ɣ ) T ] o Onde: B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) 55

57 4.3.5 Kartoatmodjo e Schmidt (1994) Onde: B ob = (R sb ɣ 0.25 g ɣ 1.5 o T) 1.5 (52) B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) Vazquez and Beggs (1980) C1 = ; C2 = ; C3 = (53) B obvb1 = 1 + C1 R sb + C2 (T 60) ( API ɣ g ) + C3 R sb (T 60) (54) ( API ɣ g ) C1 = ; C2 = ; C3 = (55) B obvb2 = 1 + C1 R sb + C2 (T 60) ( API ɣ g ) + C3 R sb (T 60) (56) ( API ɣ g ) 56

58 Se API 30 B ob = B obvb1 Se API > 30 B ob = B obvb2 Onde: B ob - Fator volume de formação abaixo do ponto de bolha (bbl/stb) T - Temperatura ( F) ɣ g - Densidade do gás ɣ 0 - Densidade do óleo R sb - Razão de solubilidade do gás (scf/stb) API - Grau API ( API) 4.4 RAZÃO DE SOLUBILIDADE PARA PRESSÕES ABAIXO DO PONTO DE BOLHA (RS) Razão de solubilidade é a quantidade de gás presente no líquido em certa temperatura e pressão. Existem diversos métodos na literatura para calcularmos a Razão de Solubilidade Gás-Óleo para Pressões Abaixo do Ponto de Bolha (Rs), na nossa planilha utilizamos os métodos de Standing, Lasaster, Vazquez e Beggs, Glaso, Petrosky, Al-Marhoun, Kartoatmodjo e Schmidt e Velarde, Blasingame e Mc Cain. Cada um desses métodos utiliza variáveis distintas um dos outros, por isso, foi criada uma tabela que explicitam quais variáveis são utilizadas em cada um destes métodos a fim de deixar claro o que foi utilizado em cada metodologia de cálculo. 57

59 Correlação P g T o API Standing X X X Lasaster X X X X X Glaso X X X X Marhoun X X X X Petrosky X X X X Vazquez e Beggs X X X X Kartoatmodjo e Schmidt X X X X Velarde, Blasingame e McCain X X X Tabela Propriedades usadas em cada método para predição de Razão de solubilidade para pressões abaixo de Pb (Rs) Standing (1977) R s = ɣ g [( P b ) (57) API T ] Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás API - Grau API ( API) 58

60 4.4.2 Lasaster (1958) R s = ɣ o Yg Mo (1 ɣg) (58) Mo = API (59) API 40 pf = Pb ɣg T (60) pf ln ( ) Yg = (61) Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás ɣ o - Densidade do óleo API - Grau API ( API) 59

61 4.4.3 Vazquez e Beggs (1980) R s = ɣg P b c2 c1 10 c3 API T (62) Se API 30 c1 = 27.64; c2 = ; c3 = (63) Se API > 30 c1 = 56.06; c2 = 1.187; c3 = (64) Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás API - Grau API ( API) Glaso (1990) R s = ɣ g (Npb API (65) T ) Npb = [ log(p b )]0.5 (66) 60

62 Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás API - Grau API ( API) Petrosky (1993) P b R s = [( ) ɣ g X ] (67) X = API T (68) Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás API - Grau API ( API) Al-Marhoun (1988) P b ɣ g R s = [ ɣ o (T ) ] (69) 61

63 Onde: R s - Razão de solubilidade do gás (scf/stb) P b -Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás ɣ o - Densidade do óleo Kartoatmodjo e Schmidt (1994) Se API 30 R s = ɣ g P b API T (70) Se API > 30 (71) R s = ɣ g P b API T Onde: R s - Razão de solubilidade do gás (scf/stb) P b - Ponto de bolha (psia) T - Temperatura ( F) ɣ g - Densidade do gás API - Densidade API ( API) 62

64 4.4.8 Velarde, Blasingame e McCain (1997) R s = Rsp + Rst (72) Rst = exp ( ZRsb ZRsb ZRsb 3 ) (73) ZRsb = Z1Rsb + Z2Rsb + Z3Rsb (74) Z1Rsb = ln(psp) [ln(psp)] 2 (75) Z2Rsb = ln(tsp) (76) Z3Rsb = API API2 (77) Onde: R s - Razão de solubilidade do gás (scf/stb) Psp - (psia) Tsp - Temperatura (ºF) API - Grau API ( API) 63

65 4.5 TEMPERATURA E PRESSÃO REDUZIDAS T pr = T T pc (78) Onde: T - Temperatura (ºR) T pr - Temperatura reduzida T pc - Temperatura pseudocrítica (ºR) P - Pressão (psia) P pr - Pressão reduzida P pc - Pressão pseudocrítica (psia) P pr = P P pc (79) (T pc, P pc ) Brown (1948) Limitação: Máx (5% N2, 2% CO2, 2% H2S) Se ɣ g < 0.75 T pc (R) = ɣ g 12.5 ɣ g 2 (80) P pc (psia) = ɣ g 37.5 ɣ g 2 (81) Se ɣ g 0.75 T pc (R) = ɣ g 71.5 ɣ g 2 (82) 64

66 P pc (psia) = ɣ g 11.1 ɣ g 2 (83) Onde: T pc (R) - Temperatura pseudocrítica (ºR) P pc (psia) - Pressão pseudocrítica (psia) ɣ g - Densidade do gás (T pc, P pc ) Wichert-Aziz (1972) T pc = T pc ɛ (84) P pc T pc P pc = T pc + B (1 B) ɛ (85) ɛ = 120 (A 0.9 A 1.6 ) + 15 (B 0.5 B 4.0 ) (86) A = y H2S + y CO2 (87) B = y H2S (88) Onde: T pc - Temperatura pseudocrítica corrigida (ºR) P pc - Pressão pseudocrítica corrigida (psia) T pc - Temperatura pseudocrítica (ºR) P pc - Pressão pseudocrítica (psia) 65

67 y H2S - Fração molar de H 2 S na mistura de gás y CO2 - Fração molar de CO 2 na mistura de gás (T pc, P pc ) Whitson and Brule (2000) ɣg HC = ɣ g (y N2 M N2 + y CO2 M CO2 + y H2S M H2S ) (1 y N2 y CO2 y H2S ) (89) 2 (T pc ) HC = ɣg HC 12.5 ɣg HC (90) 2 (P pc ) HC = ɣg HC 37.5 ɣg HC (91) P pc = (1 y N2 y CO2 y H2S )(P pc ) HC + y N2 (P c ) N2 + y CO2 (P c ) CO2 (92) + y H2S (P c ) H2S P pc = (1 y N2 y CO2 y H2S )(T pc ) HC + y N2 (T c ) N2 + y CO2 (T c ) CO2 (93) + y H2S (T c ) H2S Onde: T pc - Temperatura pseudocrítica (ºR) P pc - Pressão pseudocrítica (psia) ɣ g - Densidade do gás y N2 - fração molar de N 2 na mistura de gás y H2S - fração molar de H 2 S na mistura de gás y CO2 - fração molar de CO 2 na mistura de gás M N2 - Peso molecular de N 2 66

68 M CO2 - Peso molecular de CO 2 M H2S -Peso molecular de H 2 S (T pc, P pc ) Carr-kobayashi (1954) T pc = T pc 80 y CO y H2S 250 y N2 (94) P pc = P pc y CO y H2S 170 y N2 (95) Onde: T pc -Temperatura pseudocrítica corrigida (ºR) P pc - Pressão pseudocrítica corrigida (psia) T pc - Temperatura pseudocrítica (ºR) P pc - Pressão pseudocrítica (psia) y N2 - Fração molar de N 2 na mistura de gás y H2S - Fração molar de H 2 S na mistura de gás y CO2 - Fração molar de CO 2 na mistura de gás 4.6 FATOR DE COMPRESSIBILIDADE PaPay (1985) Z = P r T P 2 r r T r (96) Onde: 67

69 - Fator de compressibilidade T pr - Temperatura reduzida P pr - Pressão reduzida 4.7 COMPRESSIBILIDADE ISOTÉRMICA (CO) c o = ( 1 V ) ( V P ) T (97) Onde: c o - Compressibilidade isotérmica (1/psi) V - Volume - Temperatura (ºR) P - Pressão (psi) 68

70 5 SOFTWARE Nesse capítulo, será apresentada as funcionalidades do software Excel desenvolvido, os dados de entrada, os cálculos realizados em cada planilha e a avaliação dos resultados em cada etapa. O software é constituído de seis planilhas: Dados Obrigatórios, Dados Complementares, Resultados, cálculo detalhado, valores utilizados no cálculo e faixa de validade. Cada seção será descrita a seguir. Figura 5.1- Menu principal

PROPRIEDADES DOS FLUIDOS DE RESERVATÓRIO

PROPRIEDADES DOS FLUIDOS DE RESERVATÓRIO Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo PROPRIEDADES DOS FLUIDOS DE RESERVATÓRIO PMI 1673 - Mecânica de Fluidos Aplicada a Reservatórios Prof.

Leia mais

FLUIDOS DE RESERVATÓRIO

FLUIDOS DE RESERVATÓRIO Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo FLUIDOS DE RESERVATÓRIO PMI 1673 - Mecânica de Fluidos Aplicada a Reservatórios Prof. Eduardo César Sansone

Leia mais

Propriedades dos fluidos Aula 2

Propriedades dos fluidos Aula 2 Propriedades dos fluidos Aula 2 PMI-1712 Engenharia de Reservatórios I Ricardo Cabral de Azevedo Sumário da Aula Relação com aulas anteriores Introdução Propriedades dos fluidos Exercício 2 Conclusões

Leia mais

ANÁLISE DE PVT UTILIZANDO DADOS REAIS DE UM RESERVATÓRIO DE ÓLEO SUBSATURADO

ANÁLISE DE PVT UTILIZANDO DADOS REAIS DE UM RESERVATÓRIO DE ÓLEO SUBSATURADO ANÁLISE DE PVT UTILIZANDO DADOS REAIS DE UM RESERVATÓRIO DE ÓLEO SUBSATURADO Paloma dos Santos 1, Ana Paula de Santana Alves 2, Ronice da Paixão Silva do Prado 3. Universidade Federal de Sergipe 1, email:

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ 27 UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ IMPLEMENTAÇÃO DE UMA FERRAMENTA COMPUTACIONAL PARA CÁLCULO DAS PROPRIEDADES DOS FLUIDOS DE RESERVATÓRIO

Leia mais

TÍTULO: CALCULADORA DE PROPRIEDADES DE FLUIDOS A PARTIR DE CORRELAÇÕES BLACK OIL

TÍTULO: CALCULADORA DE PROPRIEDADES DE FLUIDOS A PARTIR DE CORRELAÇÕES BLACK OIL 16 TÍTULO: CALCULADORA DE PROPRIEDADES DE FLUIDOS A PARTIR DE CORRELAÇÕES BLACK OIL CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS INSTITUIÇÃO: UNIVERSIDADE SANTA CECÍLIA AUTOR(ES):

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO ANÁLISE DOS PERFIS DE PRESSÕES EM VASOS SEPARADORES GÁS-ÓLEO MONOGRAFIA

Leia mais

Figura 6-1: Ilustração do modelo utilizado no trabalho através do software PipeSim.

Figura 6-1: Ilustração do modelo utilizado no trabalho através do software PipeSim. 41 6 Simulação 6.1 Introdução ara a comparação dos dois sistemas de produção submarina, um utilizando separador e outro com bomba multifásica, será utilizado o software de simulação de escoamento ipesim

Leia mais

Capítulo 3: Propriedades de uma Substância Pura

Capítulo 3: Propriedades de uma Substância Pura Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 3) Substâncias Puras 1 v. 2.0 Diagramas de propriedades Vamos elaborar um experimento para relacionar temperatura e volume específico a pressão constante. Pressão no fluido

Leia mais

7 Resultados. 7.1 Validação modelo simplificado

7 Resultados. 7.1 Validação modelo simplificado 55 7 Resultados 7.1 Validação modelo simplificado De acordo com os dados de entrada e da metodologia de cálculo alguns resultados foram extraídos das análises. Primeiramente um comparativo entre o modelo

Leia mais

Viscosimetria. Anselmo E. de Oliveira. Instituto de Química, UFG, , Goiânia, GO

Viscosimetria. Anselmo E. de Oliveira. Instituto de Química, UFG, , Goiânia, GO Viscosimetria Anselmo E. de Oliveira Instituto de Química, UFG, 74690-900, Goiânia, GO Resumo Essa aula prática tem como objetivo avaliar as variações da viscosidade de soluções hidroalcoólicas. 1. Viscosidade

Leia mais

Conceitos Fundamentais. Viscosidade e Escoamentos

Conceitos Fundamentais. Viscosidade e Escoamentos Conceitos Fundamentais Viscosidade e Escoamentos Multiplicação de pressão Multiplicação de pressão Vazão X Velocidade Vazão X Velocidade VISCOSIDADE DE LÍQUIDOS Fluido perfeito Considere-se um volume

Leia mais

4. Simulação do modelo de reservatório

4. Simulação do modelo de reservatório 4. Simulação do modelo de reservatório 4.1. Descrição do simulador Para conduzir um estudo de simulação e para criar um modelo geológico, foi necessário escolher um simulador. Para este estudo, um software

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO TEQ ESTIMATIVA DE PROPRIEDADES DE RESERVATÓRIOS DE GÁS NATURAL RELEVANTES ÀS ANÁLISES DE VIABILIDADE

Leia mais

Rogério José Ramos de Oliveira Magalhães

Rogério José Ramos de Oliveira Magalhães Rogério José Ramos de Oliveira Magalhães Avaliação do Impacto Econômico do Desenvolvimento da Produção Offshore Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do título

Leia mais

Sumário. Apresentação... Prefácio... Lista de Variáveis...

Sumário. Apresentação... Prefácio... Lista de Variáveis... Sumário Apresentação... Prefácio... Lista de Variáveis... IX XI XV Capítulo 1 Introdução... 1 1.1 Etapas do Escoamento... 4 1.1.1 Recuperação... 4 1.1.2 Elevação... 10 1.1.3 Coleta... 10 1.1.4 Exportação...

Leia mais

S M E Comissão de Energia 28/04/2010

S M E Comissão de Energia 28/04/2010 Oportunidades e Desafios do Pré-Sal S M E Comissão de Energia 28/04/2010 HIDROCARBONETOS Definição Compostos orgânicos constituídos de átomos de carbono e hidrogênio. PETRÓLEO INDÚSTRIA DE PETRÓLEO E GÁS

Leia mais

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds

Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Disciplina: Fenômeno de AULA 01 unidade 2 Transporte Introdução a Cinemática Escoamento Laminar e Turbulento Número de Reinalds Prof. Ednei Pires Definição: Cinemática dos fluidos É a ramificação da mecânica

Leia mais

AVALIAÇÃO DAS CORRELAÇÕES UTILIZADAS PARA O CÁLCULO DA VISCOSIDADE DOS FLUIDOS EM SISTEMAS BCS

AVALIAÇÃO DAS CORRELAÇÕES UTILIZADAS PARA O CÁLCULO DA VISCOSIDADE DOS FLUIDOS EM SISTEMAS BCS AVALIAÇÃO DAS CORRELAÇÕES UTILIZADAS PARA O CÁLCULO DA VISCOSIDADE DOS FLUIDOS EM SISTEMAS BCS Micaela de Freitas Andrade 1 ; Carla Wilza Souza de Paula Maitelli 2 1 Universidade Federal do Rio Grande

Leia mais

Propriedades do equilíbrio líquido-vapor de misturas de não-eletrólitos

Propriedades do equilíbrio líquido-vapor de misturas de não-eletrólitos Propriedades do equilíbrio líquido-vapor de misturas de não-eletrólitos Capítulo 9 Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth. (Uma vez que você elimina

Leia mais

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos

FENÔMENOS DOS TRANSPORTES. Definição e Conceitos Fundamentais dos Fluidos Definição e Conceitos Fundamentais dos Fluidos Matéria Sólidos Fluidos possuem forma própria (rigidez) não possuem forma própria; tomam a forma do recipiente que os contém Fluidos Líquidos Gases fluidos

Leia mais

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL

LOQ Fenômenos de Transporte I. FT I 03 Tensão e viscosidade. Prof. Lucrécio Fábio dos Santos. Departamento de Engenharia Química LOQ/EEL LOQ 4083 - Fenômenos de Transporte I FT I 03 Tensão e viscosidade Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a servir como

Leia mais

Conceitos de Engenharia de Reservatório

Conceitos de Engenharia de Reservatório Conceitos de Engenharia de Reservatório Rodrigo Iglesias Café com Ciência e Sapiência CEPAC - 04/09/2009 22/9/2009 Rodrigo Iglesias 1 Engenharia de reservatório: ramificação da engenharia de petróleo aplicada

Leia mais

3 Balanço de Materiais em Reservatório

3 Balanço de Materiais em Reservatório alanço de Materiais em Reservatório 25 3 alanço de Materiais em Reservatório 3.1. Mecanismos Primários de Recuperação O Cálculo de balanço de materiais em reservatórios permite que se obtenham estimativas

Leia mais

ESTUDO DA INFLUÊNCIA DA TEMPERATURA NA INJEÇÃO DE ÁGUA EM UM RESERVATÓRIO DE PETRÓLEO SEGUNDO O MODELO FIVE SPOT INVERTIDO

ESTUDO DA INFLUÊNCIA DA TEMPERATURA NA INJEÇÃO DE ÁGUA EM UM RESERVATÓRIO DE PETRÓLEO SEGUNDO O MODELO FIVE SPOT INVERTIDO ESTUDO DA INFLUÊNCIA DA TEMPERATURA NA INJEÇÃO DE ÁGUA EM UM RESERVATÓRIO DE PETRÓLEO SEGUNDO O MODELO FIVE SPOT INVERTIDO Ana Carolina Firmino de Jesus (1); Cosme José de Oliveira Júnior (2); Hariel Udi

Leia mais

4 Modelos de viscosidade

4 Modelos de viscosidade 4 Modelos de viscosidade Há diversos modelos de viscosidade de petróleo e hidrocarbonetos líquidos na literatura ([8], [22], [38], [16], [33], [30], [11] e [35]). Estes modelos podem ser divididos em grupos:

Leia mais

Cálculo Flash de Fluidos Representativos de Reservatórios do Pré- Sal Visando Posterior Medidas PVT

Cálculo Flash de Fluidos Representativos de Reservatórios do Pré- Sal Visando Posterior Medidas PVT Cálculo Flash de Fluidos Representativos de Reservatórios do Pré- Sal Visando Posterior Medidas PVT T. C. S. BARBALHO 1, V. R. C. M. BARBALHO 1, F. VAQUERO 1, K. SUELDO 1 e O. CHIAVONE- FILHO 1 1 Universidade

Leia mais

OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO

OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO OTIMIZAÇÃO DOS PARÂMETROS OPERACIONAIS PARA AUMENTAR A RENTABILIDADE DE PROJETOS DE INJEÇÃO DE ÁGUA APÓS O VAPOR EM RESERVATÓRIOS DE ÓLEO PESADO M. A. F. RODRIGUES 1, E. R. V. P. GALVÃO 1 1 Universidade

Leia mais

3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp)

3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp) 3 Influência da Distribuição do Fluido na Variação da Velocidade Compressional (Vp) 3.1. Introdução Com base nos modelos de saturação homogêneo e heterogêneo (patchy), é realizada uma análise do efeito

Leia mais

ABSORÇÃO DE PESADOS DO GÁS NATURAL UTILIZANDO SIMULAÇÃO COMPUTACIONAL

ABSORÇÃO DE PESADOS DO GÁS NATURAL UTILIZANDO SIMULAÇÃO COMPUTACIONAL ABSORÇÃO DE PESADOS DO GÁS NATURAL UTILIZANDO SIMULAÇÃO OMPUTAIONAL D. N. N. da SILVA 1, O. HIAVONE FILHO 1 1 Universidade Federal do Rio Grande do Norte, Departamento de Engenharia Química E-mail para

Leia mais

2 Gerenciamento do Campo de Petróleo

2 Gerenciamento do Campo de Petróleo 2 Gerenciamento do Campo de Petróleo O gerenciamento de reservatórios, algumas vezes referido como gerenciamento de ativos, dentro do contexto de reservatórios de petróleo, tem sido reconhecido nos últimos

Leia mais

ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO

ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO ESTUDO DA INJEÇÃO DE VAPOR E SOLVENTE EM RESERVATÓRIOS COM CARACTERÍSTICAS SEMELHANTE AO DO NORDESTE BRASILEIRO D. A. R. Silva 1 e J. L. M. Barillas 2 12 Universidade Federal do Rio Grande do Norte, Centro

Leia mais

ESTUDO E ANÁLISE DA MISTURA DE ÁGUA E ETANOL ATRAVÉS DE EQUAÇÕES DE ESTADO.

ESTUDO E ANÁLISE DA MISTURA DE ÁGUA E ETANOL ATRAVÉS DE EQUAÇÕES DE ESTADO. ESTUDO E ANÁLISE DA MISTURA DE ÁGUA E ETANOL ATRAVÉS DE EQUAÇÕES DE ESTADO. S. F. VASCONCELOS 1, F. J. F. CHAVES 1, C. V. FERNANDES 1, N. SILVA 1, H. BISPO 1 1 Universidade Federal de Campina Grande, Unidade

Leia mais

Capítulo 3: Propriedades de uma Substância Pura

Capítulo 3: Propriedades de uma Substância Pura Capítulo 3: Propriedades de uma Substância Pura Equação de estado do gás ideal Outras equações de estado Outras propriedades termodinâmicas Princípio de estado O número de propriedades independentes requerido

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO INGRID BERTIN CARNEIRO SIMULAÇÃO NUMÉRICA DA INJEÇÃO CÍCLICA DE VAPOR

Leia mais

Capítulo 3: Propriedades de uma Substância Pura

Capítulo 3: Propriedades de uma Substância Pura Capítulo 3: Propriedades de uma Substância Pura Substância pura Princípio de estado Equilíbrio de fases Diagramas de fases Substância Pura Substância pura é a aquela que tem composição química invariável

Leia mais

Propriedades das rochas Aula 3

Propriedades das rochas Aula 3 Propriedades das rochas Aula 3 PMI-1712 Engenharia de Reservatórios I Ricardo Cabral de Azevedo Sumário da Aula Relação com aulas anteriores Introdução Propriedades das rochas Conclusões Referências sobre

Leia mais

ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO.

ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO. ANÁLISE DA INJEÇÃO DE CO2 EM RESERVATÓRIOS DE ÓLEOS LEVES COM CARACTERÍSTICAS DO NORDESTE BRASILEIRO. C. S. do N. GARCIA 1, J. L M. BARILLAS 2 1 Universidade Federal do Rio Grande do Norte, Departamento

Leia mais

2 Exploração e Produção de Petróleo

2 Exploração e Produção de Petróleo 2 Exploração e Produção de Petróleo 2.1 Engenharia de Reservatórios Segundo [5], a Engenharia de Reservatórios é um ramo da atividade petrolífera responsável por apresentar soluções eficientes para a retirada

Leia mais

2 Comportamento Termodinâmico de Fluidos no Reservatório

2 Comportamento Termodinâmico de Fluidos no Reservatório Comportamento Termodinâmico de Fluidos no Reservatório 39 2 Comportamento Termodinâmico de Fluidos no Reservatório 2.1 Introdução Apresenta-se neste capítulo uma breve análise dos princípios básicos do

Leia mais

Disciplina: Sistemas Térmicos

Disciplina: Sistemas Térmicos Disciplina: Sistemas Térmicos Definição de Substância Pura Equilíbrio de Fases Líquido-Vapor de uma Substância Pura Diagrama de Temperatura versus Volume Específico Título de uma Substância com Fases Líquida

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

17/08/ /08/2011 Prof. Dr. Ricardo A. Mazza 3

17/08/ /08/2011 Prof. Dr. Ricardo A. Mazza 3 Propriedades de Uma Substância Pura Prof. Dr. Ricardo A. Mazza DE/FEM/UNICAMP 17/08/2011 Prof. Dr. Ricardo A. Mazza 1 Substância Pura Substância pura é a aquela que tem composição química invariável e

Leia mais

5 Resultados de Campo

5 Resultados de Campo 5 Resultados de Campo O modelo desenvolvido e testado no capítulo anterior foi utilizado para realizar a previsão de depósito de parafina em um poço produtor da Petrobras. Utilizando informações de geometria,

Leia mais

Escoamento Interno Viscoso

Escoamento Interno Viscoso Escoamento Interno Viscoso Escoamento Laminar e Turbulento Número de Reynolds Re VD ρ --> massa específica ou densidade V --> velocidade D --> comprimento característico μ --> viscosidade numero de Reynolds

Leia mais

ilustramos os dois mecanismos previamente descritos e associados ao aumento da fração volumétrica de água nas emulsões durante a produção de petróleo.

ilustramos os dois mecanismos previamente descritos e associados ao aumento da fração volumétrica de água nas emulsões durante a produção de petróleo. 1 Introdução Projeta-se que o consumo mundial de energia aumentará em grande medida nas próximas décadas. A fim de satisfazer esse incremento, a demanda por petróleo deve continuar crescendo [1]. Estatísticas

Leia mais

Capítulo 2 Propriedades de uma Substância Pura

Capítulo 2 Propriedades de uma Substância Pura Capítulo 2 Propriedades de uma Substância Pura 2.1 - Definição Uma substância pura é aquela que tem composição química invariável e homogênea. Pode existir em mais de uma fase Composição química é igual

Leia mais

6 Viscosidade de frações pesadas de petróleo

6 Viscosidade de frações pesadas de petróleo 6 Viscosidade de frações pesadas de petróleo No capítulo 4 a viscosidade das sete amostras de resíduos foi calculada por modelos disponíveis na literatura. Os modelos preditivos se mostraram inadequados.

Leia mais

ESTUDO DO ESCOAMENTO DE GÁS NATURAL E FORMAÇÃO DE ENXOFRE ELEMENTAR EM UMA VÁLVULA REDUTORA DE PRESSÃO

ESTUDO DO ESCOAMENTO DE GÁS NATURAL E FORMAÇÃO DE ENXOFRE ELEMENTAR EM UMA VÁLVULA REDUTORA DE PRESSÃO ESTUDO DO ESCOAMENTO DE GÁS NATURAL E FORMAÇÃO DE ENXOFRE ELEMENTAR EM UMA VÁLVULA REDUTORA DE PRESSÃO E.R. BRAGA 1, C. MORAES 1 e R. A. MEDRONHO 1 1 Universidade Federal do Rio de Janeiro, Departamento

Leia mais

ESTUDO DA INFLUÊNCIA DA VAZÃO DE INJEÇÃO DE VAPOR NO PROCESSO ES-SAGD SEM E COM PERDA DE CARGA E CALOR NO POÇO INJETOR

ESTUDO DA INFLUÊNCIA DA VAZÃO DE INJEÇÃO DE VAPOR NO PROCESSO ES-SAGD SEM E COM PERDA DE CARGA E CALOR NO POÇO INJETOR ESTUDO DA INFLUÊNCIA DA VAZÃO DE INJEÇÃO DE VAPOR NO PROCESSO ES-SAGD SEM E COM PERDA DE CARGA E CALOR NO POÇO INJETOR T. S. PRAXEDES 1, J. L. M. BARILLAS 2 1 Universidade Federal do Rio Grande do Norte,

Leia mais

Faculdade de Engenharia Química (FEQUI) Operações Unitárias 2 2ª Lista de Exercícios (parte A) Profº Carlos Henrique Ataíde (julho de 2013)

Faculdade de Engenharia Química (FEQUI) Operações Unitárias 2 2ª Lista de Exercícios (parte A) Profº Carlos Henrique Ataíde (julho de 2013) Faculdade de Engenharia Química (FEQUI) Operações Unitárias 2 2ª Lista de Exercícios (parte A) Profº Carlos Henrique Ataíde (julho de 2013) 1) Concurso Petrobras: Engenheiro de Processamento Junior (questão

Leia mais

X Congresso Brasileiro de Engenharia Química Iniciação Científica

X Congresso Brasileiro de Engenharia Química Iniciação Científica Blucher Chemical Engineering Proceedings Dezembro de 2014, Volume 1, Número 1 X Congresso Brasileiro de Engenharia Química Iniciação Científica Influência da pesquisa em Engenharia Química no desenvolvimento

Leia mais

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies

As forças que atuam em um meio contínuo: Forças de massa ou de corpo: todo o corpo peso e centrífuga Forças de superfície: sobre certas superfícies Hidráulica Revisão de alguns conceitos Propriedades Físicas dos Fluidos Forças, esforços e pressão (tensão) As forças que atuam em um meio contínuo: Forças de massa ou de corpo: distribuídas de maneira

Leia mais

ANÁLISE DO FATOR DE COMPRESSIBILIDADE NO EQUILÍBRIO LÍQUIDO-VAPOR DE FLUIDOS DE PETRÓLEO UTILIZANDO O SIMULADOR PVTpetro

ANÁLISE DO FATOR DE COMPRESSIBILIDADE NO EQUILÍBRIO LÍQUIDO-VAPOR DE FLUIDOS DE PETRÓLEO UTILIZANDO O SIMULADOR PVTpetro ANÁLISE DO FATOR DE COMPRESSIBILIDADE NO EQUILÍBRIO LÍQUIDO-VAPOR DE FLUIDOS DE PETRÓLEO UTILIZANDO O SIMULADOR PVTpetro A. M. BARBOSA NETO 1,2, L. A. A. P. FONSECA 2, E. C. RYLO 2 e A. C. BANNWART 1 1

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE BAURU

UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE BAURU UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE BAURU TRABALHO DE MANUTENÇÃO E LUBRIFICAÇÃO DE EQUIPAMENTOS Professor Dr. João Candido Fernandes Tema: Viscosidade e índice

Leia mais

Profª. Drª. Marivone Nunho Sousa Laboratório de Catálise 1 Departamento de Engenharia Química Escola de Engenharia de Lorena EEL/USP

Profª. Drª. Marivone Nunho Sousa Laboratório de Catálise 1 Departamento de Engenharia Química Escola de Engenharia de Lorena EEL/USP TERMODINÂMICA QUÍMICA APLICADA 2 CAPÍTULO 1 TERMODINÂMICA DE SOLUÇÕES Parte 1 Profª. Drª. Marivone Nunho Sousa Laboratório de Catálise 1 Departamento de Engenharia Química Escola de Engenharia de Lorena

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CURSOS DE ENGENHARIA DE ENERGIA E MECÂNICA MEDIÇÕES TÉRMICAS Prof. Paulo Smith Schneider

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CURSOS DE ENGENHARIA DE ENERGIA E MECÂNICA MEDIÇÕES TÉRMICAS Prof. Paulo Smith Schneider UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL CURSOS DE ENGENHARIA DE ENERGIA E MECÂNICA MEDIÇÕES TÉRMICAS Prof. Paulo Smith Schneider Exercícios sobre medição de vazão Considere um grande reservatório (figura

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 4) Trabalho e calor 1 v. 1.1 Trabalho e calor Energia pode atravessar a fronteira de um sistema fechado apenas através de duas formas distintas: trabalho ou calor. Ambas

Leia mais

TERMODINÂMICA. Propriedades Independentes de uma Substância Pura

TERMODINÂMICA. Propriedades Independentes de uma Substância Pura UNIVERSIDADE FEDERAL RURAL DO SEMI - ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS TERMODINÂMICA Um motivo importante para a introdução do conceito de substância pura é que o estado de uma substância pura

Leia mais

P01. 1 [10] Se a pressão de uma substância sofre aumento durante um processo de vaporização, a temperatura irá aumentar,

P01. 1 [10] Se a pressão de uma substância sofre aumento durante um processo de vaporização, a temperatura irá aumentar, TEA007 - TERMODINÂMICA AMBIENTAL Curso de Graduação em Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01, 18 Agosto 2017 Prof. Michael Mannich NOME: GABARITO Assinatura: P01 1 [10] Se

Leia mais

MODELAGEM TERMODINÂMICA DE SISTEMAS NO PRÉ-SAL CONTENDO CO2, N-HEXADECANO E ÁGUA

MODELAGEM TERMODINÂMICA DE SISTEMAS NO PRÉ-SAL CONTENDO CO2, N-HEXADECANO E ÁGUA MODELAGEM TERMODINÂMICA DE SISTEMAS NO PRÉ-SAL CONTENDO CO2, N-HEXADECANO E ÁGUA F. M. CAVALCANTI 1, F. L. P. PESSOA 2 e L. DANIELSKI 1 1 Universidade Federal de Pernambuco, Departamento de Engenharia

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA LEONARDO DE QUEIROZ MOREIRA Propriedades de uma substância pura GOIÂNIA, 29 DE AGOSTO DE 2016. Objetivo Apresentar como algumas propriedades termodinâmicas se correlacionam: Temperatura;

Leia mais

Modelos de Fonte. Líquido Gás Outros. Introdução. Versão: Abril de 2017

Modelos de Fonte. Líquido Gás Outros. Introdução. Versão: Abril de 2017 Modelos de Fonte Introdução Líquido Gás Outros Versão: Abril de 2017 Modelo de Fonte Modelo de Dispersão Consequências Modelos de Efeito Toxicologia Modelo de Incêndio e Explosão Modelos de Fonte Modelos

Leia mais

Fluidos Conceitos fundamentais PROFª. PRISCILA ALVES

Fluidos Conceitos fundamentais PROFª. PRISCILA ALVES Fluidos Conceitos fundamentais PROFª. PRISCILA ALVES PRISCILA@DEMAR.EEL.USP.BR Reologia e Reometria Reologia e Reometria A palavra reologia vem do grego rheo (fluxo) e logos (ciência), foi um termo sugerido

Leia mais

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos)

ENGENHARIA FÍSICA. Fenômenos de Transporte A (Mecânica dos Fluidos) ENGENHARIA FÍSICA Fenômenos de Transporte A (Mecânica dos Fluidos) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br MECÂNICA DOS FLUIDOS ENGENHARIA FÍSICA AULA 2...CONTINUAÇÃO...

Leia mais

AVALIAÇÃO DA EdE MATTEDI-TAVARES-CASTIER (MTC) PARA A DESCRIÇÃO DE DENSIDADE, PRESSÃO DE VAPOR E VELOCIDADE DO SOM DE HIDROCARBONETOS

AVALIAÇÃO DA EdE MATTEDI-TAVARES-CASTIER (MTC) PARA A DESCRIÇÃO DE DENSIDADE, PRESSÃO DE VAPOR E VELOCIDADE DO SOM DE HIDROCARBONETOS AVALIAÇÃO DA EdE MATTEDI-TAVARES-CASTIER (MTC) PARA A DESCRIÇÃO DE DENSIDADE, PRESSÃO DE VAPOR E VELOCIDADE DO SOM DE HIDROCARBONETOS D. HOFFMANN 1, S. MATTEDI 1, CASTIER, M. 2 e M. PAREDES 3 1 Programa

Leia mais

INFLUÊNCIA DA PERMEABILIDADE NO FLUXO RADIAL EM MEIO POROSO EM REGIME PSEUDOPERMANENTE

INFLUÊNCIA DA PERMEABILIDADE NO FLUXO RADIAL EM MEIO POROSO EM REGIME PSEUDOPERMANENTE INFLUÊNCIA DA PERMEABILIDADE NO FLUXO RADIAL EM MEIO POROSO EM REGIME PSEUDOPERMANENTE Analu Gonçalves da Silva Araújo 1, Hosana Oliveira Ávila Neta 2, Leonardo de Araújo Lisboa 3, Cláudio Borba 4. 1,2,3,4

Leia mais

) (8.20) Equipamentos de Troca Térmica - 221

) (8.20) Equipamentos de Troca Térmica - 221 onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura

Leia mais

UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas

UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas UTFPR Termodinâmica 1 Avaliando Propriedades Termodinâmicas Princípios de Termodinâmica para Engenharia Capítulo 3 Parte 2 Tabelas de Saturação As Tabelas A-2 e A-3 listam os valores de propriedades para

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES

DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES DETERMINAÇÃO EXPERIMENTAL DA VISCOSIDADE CINEMÁTICA E DINÂMICA ATRAVÉS DO VISCOSÍMETRO DE STOKES Rodrigo Ernesto Andrade Silva; Arthur Vinicius Ribeiro de Freitas Azevedo; Allan Giuseppe de Araújo Caldas;

Leia mais

FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais

FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais FENÔMENOS DE TRANSPORTE Definições e Conceitos Fundamentais CAPÍTULO 1. DEFINIÇÕES E CONCEITOS FUNDAMENTAIS 1 FENÔMENOS DE TRANSPORTE A expressão Fenômenos de transporte refere-se ao estudo sistemático

Leia mais

Curso de Engenharia Química. Prof. Rodolfo Rodrigues

Curso de Engenharia Química. Prof. Rodolfo Rodrigues Curso de Engenharia Química Operações Unitárias II 26/2 Prof. Rodolfo Rodrigues Lista 5: Absorção e Regeneração Exercício * (Geankoplis, 23, Exemplo.3-2) Deseja-se absorver 9% da acetona de uma corrente

Leia mais

7 Metodologia da Pesquisa 7.1. Descrição

7 Metodologia da Pesquisa 7.1. Descrição 7 Metodologia da Pesquisa 7.1. Descrição Este trabalho objetiva comparar o desempenho hidráulico e termodinâmico de um sistema de produção com um poço de petróleo, aplicando o conceito de completação seca,

Leia mais

INTRODUÇÃO. Exemplos de cavitação: 1. Bomba centrífuga. 2. Bomba de lóbulos. 3. Bomba de engrenagem

INTRODUÇÃO. Exemplos de cavitação: 1. Bomba centrífuga. 2. Bomba de lóbulos. 3. Bomba de engrenagem CÁLCULO DO NPSH INTRODUÇÃO NET POSITIVE SUCTION HEAD (NPSH) é o termo geralmente usado para avaliar a pressão absoluta de um fluido na entrada de uma bomba, menos a pressão de vapor do líquido. O NPSH

Leia mais

ANÁLISE INTEGRADA ENTRE RESERVATÓRIO, POÇO, ELEVAÇÃO E ESCOAMENTO: UMA PRIMEIRA ABORDAGEM COM ENFÂSE NA MODELAGEM TERMODINÂMICA

ANÁLISE INTEGRADA ENTRE RESERVATÓRIO, POÇO, ELEVAÇÃO E ESCOAMENTO: UMA PRIMEIRA ABORDAGEM COM ENFÂSE NA MODELAGEM TERMODINÂMICA ANÁLISE INTEGRADA ENTRE RESERVATÓRIO, POÇO, ELEVAÇÃO E ESCOAMENTO: UMA PRIMEIRA ABORDAGEM COM ENFÂSE NA MODELAGEM TERMODINÂMICA 1, Antonio M. B. Neto, 1 Tiago L. D. Forti, Antonio C. Bannwart, e 1 Edimar

Leia mais

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 4 Capítulo 3 Propriedades de uma Substância Pura 24/10/2013

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 4 Capítulo 3 Propriedades de uma Substância Pura 24/10/2013 DISCIPLINA AMB30093 TERMODINÂMICA - Aula 4 Capítulo 3 Propriedades de uma Substância Pura 24/10/2013 Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir.br Ji-Paraná - 2013

Leia mais

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO DO GAS LIFT CONTÍNUO

DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO DO GAS LIFT CONTÍNUO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA CT DEPARTAMENTO DE ENGENHARIA DE PETRÓLEO DPET TRABALHO DE CONCLUSÃO DE CURSO DESENVOLVIMENTO DE UMA FERRAMENTA COMPUTACIONAL PARA DIMENSIONAMENTO

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO

UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E DE PETRÓLEO CURSO DE ENGENHARIA DE PETRÓLEO DESENVOLVIMENTO E IMPLEMENTAÇÃO DE UMA FERRAMENTA COMPUTACIONAL PARA

Leia mais

MOTORES TÉRMICOS AULA MISTURAS REAGENTES E COMBUSTÃO

MOTORES TÉRMICOS AULA MISTURAS REAGENTES E COMBUSTÃO MOTORES TÉRMICOS AULA 13-17 MISTURAS REAGENTES E COMBUSTÃO PROF.: KAIO DUTRA Nas reações de combustão, a rápida oxidação dos elementos combustíveis do combustível resulta em uma liberação de energia à

Leia mais

PERMEABILIDADE DAS ROCHAS

PERMEABILIDADE DAS ROCHAS Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Minas e de Petróleo PERMEABILIDADE DAS ROCHAS PMI 1673 - Mecânica de Fluidos Aplicada a Reservatórios Prof. Eduardo César Sansone

Leia mais

Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo

Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo Funcionamento de um reservatório de petróleo visando introduzir a criação de uma maquete funcional de óleo Elaborado por: Arthur Faerman Arthurfaerman@hotmail.com Paula Camargos Paulacamargos@id.uff.br

Leia mais

4 Simulação de Fluxo em Reservatório Sintético

4 Simulação de Fluxo em Reservatório Sintético 4 Simulação de Fluxo em Reservatório Sintético Um aspecto importante da simulação de reservatórios associado ao estudo de viabilidade de sísmica time-lapse é que o objetivo é criar cenários de produção

Leia mais

Equilíbrio Físico. Equilíbrio físico estado no qual duas ou mais fases de uma substância coexistem sem uma tendência a mudança.

Equilíbrio Físico. Equilíbrio físico estado no qual duas ou mais fases de uma substância coexistem sem uma tendência a mudança. Equilíbrio Físico Equilíbrio físico estado no qual duas ou mais fases de uma substância coexistem sem uma tendência a mudança. FASES E TRANSIÇÕES DE FASES SOLUBILIDADE PROPRIEDADES COLIGATIVAS MISTURAS

Leia mais

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido

FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS. Prof. MSc. Danilo Cândido FÍSICO-QUÍMICA GASES IDEAIS E GASES REAIS Prof. MSc. Danilo Cândido CONCEITOS DE GASES Um gás representa a forma mais simples da matéria, de baixa densidade e que ocupa o volume total de qualquer recipiente

Leia mais

INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO

INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO INJEÇÃO DE SOLVENTE PARA REMOÇÃO DE DANO ORGÂNICO Rafael Ruan Serrão Miranda 1 ; Rebeca do Nascimento Pinto Lima 1 ; Cláudio Regis dos Santos lucas 2, Yanne Katiussy Pereira Gurgel Aum 3, Pedro Tupã Pandava

Leia mais

Campus de Ilha Solteira. Disciplina: Fenômenos de Transporte

Campus de Ilha Solteira. Disciplina: Fenômenos de Transporte Campus de Ilha Solteira CONCEITOS BÁSICOS B E VISCOSIDADE Disciplina: Fenômenos de Transporte Professor: Dr. Tsunao Matsumoto INTRODUÇÃO A matéria de Fenômenos de Transporte busca as explicações de como

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4017 OPERAÇÕES UNITÁRIAS EXPERIMENTAL II

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4017 OPERAÇÕES UNITÁRIAS EXPERIMENTAL II UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4017 OPERAÇÕES UNITÁRIAS EXPERIMENTAL II Profa. Lívia Chaguri E-mail: lchaguri@usp.br DESTILAÇÃO 1 Semestre de 2015 Introdução Destilação: método utilizado

Leia mais

Aula 2 Termodinâmica de substâncias puras: diagramas de fase

Aula 2 Termodinâmica de substâncias puras: diagramas de fase Uniersidade Federal do ABC P O S M E C Aula 2 Termodinâmica de substâncias puras: diagramas de fase MEC202 Susbtância Pura Uma substancia que tem uma única composição. Exemplo: N 2, álcool, CO 2. Pode

Leia mais

Motores Térmicos. 9º Semestre 5º ano

Motores Térmicos. 9º Semestre 5º ano Motores Térmicos 9º Semestre 5º ano Aula 26 Temperatura Adiabatica de Chama Calor de Reacção Combustão completa nos sistemas C/H/N/O Combustão completa de sistema H/N/O Temperatura Adiabática Da Chama

Leia mais

ANÁLISE DA INJEÇÃO DE ÁGUA QUENTE EM RESERVATÓRIOS DE ÓLEO LEVE COM CONFIGURAÇÕES EM LINHAS DIRETAS E LINHAS ESCONSAS

ANÁLISE DA INJEÇÃO DE ÁGUA QUENTE EM RESERVATÓRIOS DE ÓLEO LEVE COM CONFIGURAÇÕES EM LINHAS DIRETAS E LINHAS ESCONSAS ANÁLISE DA INJEÇÃO DE ÁGUA QUENTE EM RESERVATÓRIOS DE ÓLEO LEVE COM CONFIGURAÇÕES EM LINHAS DIRETAS E LINHAS ESCONSAS Geovanna Cruz Fernandes 1 ; Bianca Gabriel de Souza 2; Douglas Bitencourt Vidal 3 ;

Leia mais

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016 Caderno de Questões Avaliação Experimental Instruções 1. Este caderno de questões contém DEZ folhas, incluindo esta com as instruções e rascunhos. Confira antes de começar a resolver a prova. 2. A prova

Leia mais

Disciplina : Máquinas Térmicas e de Fluxo. Aula 2 Propriedades Termodinâmicas

Disciplina : Máquinas Térmicas e de Fluxo. Aula 2 Propriedades Termodinâmicas Disciplina : Máquinas Térmicas e de Fluxo Aula 2 Propriedades Termodinâmicas Prof. Evandro Rodrigo Dário, Dr. Eng. Líquido comprimido Considere-se um dispositivo de cilindropistão contendo água na fase

Leia mais

Termodinâmica - 2. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica - 2. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica - 2 Alexandre Diehl Departamento de Física - UFPel Caracterizado por estados de equilíbrio termodinâmico. Num estado de equilíbrio todas as propriedades macroscópicas físicas do sistema (definem

Leia mais

Equações do estado Termodinâmica Aula [22/ ]

Equações do estado Termodinâmica Aula [22/ ] Equações do estado Termodinâmica Aula [22/03-2017] Tuong-Van Nguyen tungu@mek.dtu.dk Escola Politécnica Universidade de São Paulo 1 / 27 Plano Modelos termodinâmicos Equações do estado cúbicas 2 / 27 Plano

Leia mais

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR

ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR ESTUDO DA TRANSIÇÃO ENTRE ESCOAMENTO LAMINAR E TURBULENTO EM TUBO CAPILAR M. H. MARTINS 1, A. KNESEBECK 1 1 Universidade Federal do Paraná, Departamento de Engenharia Química E-mail para contato: marcellohmartins@gmail.com

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial nº. 3 (1ª. parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

Unidade Curricular: Física Aplicada

Unidade Curricular: Física Aplicada Mestrado Integrado em Ciências Farmacêuticas Unidade Curricular: Física Aplicada Aulas Laboratoriais Trabalho laboratorial n.º 3 (1.ª parte) Viscosidade de Líquidos DETERMINAÇÃO DO COEFICIENTE DE VISCOSIDADE

Leia mais

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 1 o semestre de 2014

Laboratório de Física I. Experiência 3 Determinação do coeficiente de viscosidade de líquidos. 1 o semestre de 2014 4310256 Laboratório de Física I Experiência 3 Determinação do coeficiente de viscosidade de líquidos 1 o semestre de 2014 5 de fevereiro de 2014 3. Determinação do coeficiente de viscosidade de líquidos

Leia mais