Complexidade de Algoritmos. Edson Prestes
|
|
|
- Ester Fidalgo Back
- 10 Há anos
- Visualizações:
Transcrição
1 Edson Prestes
2 Caminhos de custo mínimo em grafo orientado Este problema consiste em determinar um caminho de custo mínimo a partir de um vértice fonte a cada vértice do grafo. Considere um grafo orientado G = < V, E > com 5 vértices: V = {a, b, c, d, e} e 6 arestas com a seguinte matriz de custos:
3 Algoritmo: Custo mínimo de caminhos a partir de fonte em grafo orientado Inicialização [v 0,v i ] Iteração Finalização
4 O algoritmo recebe como entrada Um grafo orientado valorado G com fonte v 0 e uma matriz de custos fornece como saída Um vetor dist (com os custos dos melhores caminhos a partir de v 0 ). Consideremos um grafo orientado G com conjunto V = { v 0, v 1,, v n } de vértices. As operações fundamentais do algoritmo são as manipulações com conjuntos (de vértices) e matrizes; e para o tamanho da entrada o número n de vértices não fonte.
5 O desempenho do Algoritmo tem contribuições dadas por suas componentes: inicialização, iteração e finalização. Inicialização A inicialização fornece valores iniciais às variáveis. Portanto, temos Logo,
6 A iteração executa n vezes a seleção, remoção e inclusão de um elemento na resposta parcial se viável. } As variáveis p e dist variam da seguinte maneira Iteração
7 No ínicio da i-ésima iteração, p i = n - i + 1 O desempenho da iteração é dado pela soma das contribuições das linhas de 4 a 5 e das linhas de 6 a 9. As cotas superiores para as linhas 4 e 5 são Iteração Logo,
8 As cotas superiores para o desempenho das linhas 7 e 8 são Logo, temos Iteração O desempenho do corpo da iteração na i-ésima iteração é
9 A iteração repete n vezes o corpo da iteração, logo o seu desempenho é
10 O desempenho do algoritmo é dado predominantemente pelo desempenho da inicialização e da iteração. Assim, temos A complexidade pessimista do algoritmo é
11 A complexidade pessimista de um algoritmo guloso é A complexidade pessimista da iteração é dada por
12 Programação Dinâmica A programação dinâmica costuma ser aplicada a problemas de otimização resultando, em geral, em algoritmos mais eficientes que os mais diretos. Esse método é útil quando não é fácil chegar a uma seqüência ótima de decisões sem testar todas as seqüências possíveis para então escolher a melhor. A cada passo são eliminadas subsoluções que certamente não farão parte da solução ótima do problema. Ele reduz drasticamente o número total de seqüências viáveis através de um mecanismo que evita aquelas seqüências que sabidamente não podem resultar em seqüências ótimas.
13 Em alguns casos, o algoritmo direto tem complexidade exponencial, enquanto que o algoritmo desenvolvido por programação dinâmica é polinomial. Outras vezes, a complexidade continua exponencial, mas de ordem mais baixa. A programação dinâmica pode ser aplicada em diversos problemas : - multiplicação de várias matrizes; - caminhos de custo mínimo em grafos orientados; - projeto de sistemas confiáveis; - casamento de strings; - problema do caixeiro viajante; - problema de linha de montagem; - extração de eixo de rodovias em processamento de imagens aéreas, entre outros
14 Problema de Multiplicação de Matrizes Consiste em determinar a seqüência ótima de multiplicações de n matrizes Sabemos que Este cálculo exige p.q.r multiplicações. Considere o seguinte exemplo
15 1a. Maneira A quantidade de operações é dada por = operações 2a. Maneira A quantidade de operações é dada por = operações
16 Para este caso, o algoritmo direto tem complexidade exponencial no número de matrizes Usando a programação dinâmica encontramos um algoritmo de complexidade polinomial. Multiplicação de Matrizes Série de Fibonacci
17 Multiplicação de Matrizes
18 Como minimizar ou reduzir a redundância de trabalho? Devemos resolver os problemas menores e utilizá-los para resolver os maiores
19 Dado o problema Considere o subproblema (ou subseqüência) Com 1 i <j n e custo mínimo dado por i m j.. Considere i m i =0, para i=1,, n
20 A matriz 2 M 3 é uma matriz 3 x 40, ou seja, b 1 x b 3 Portanto, uma matriz i M j é uma matriz b i-1 x b j
21 O cálculo de i M j com custo mínimo i m j pode ser decomposto em dois subproblemas. Considere i k<j, logo Onde i M k tem custo mínimo i m k e dimensões b i-1 x b k (k+1) M j tem custo mínimo (k+1) m j e dimensões b k x b j O custo associado ao cálculo de i M k x (k+1) M j, é dado por ( i m k + (k+1) m j ) + ( b i-1 x b k x b j ). O custo mínimo é dado por
22 Considere o produto das seguintes matrizes Inicialmente temos, i m i =0, para i=1,2 e 3. O produto de 2 matrizes pode ser feito das seguintes maneiras 1 m 2 =2 x 30 x 20 = m 3 =30 x 20 x 5=3000
23 O produto de 3 matrizes pode ser feito das seguintes maneiras Vimos que o custo mínimo é dado por Temos 2 valores possíveis para k, k=1 e k=2. Para k=1 temos 1 m 3 = 1 m m x 30 x 5 = = 3300 Para k=2 temos 1 m 3 = 1 m m 3 +2 x 20 x 5 = =1400
24 Este processo assemelha-se ao preenchimento de uma matriz =3300 =1400
Complexidade de Algoritmos. Edson Prestes
Edson Prestes Idéias básicas Um algoritmo guloso seleciona, a cada passo, o melhor elemento pertencente a entrada. Verifica se ele é viável - vindo a fazer parte da solução ou não. Após uma seqüência de
Complexidade de Algoritmos. Edson Prestes
Edson Prestes Programação Dinâmica A programação dinâmica costuma ser aplicada a problemas de otimização resultando, em geral, em algoritmos mais eficientes que os mais diretos. Esse método é útil quando
Teoria dos Grafos. Edson Prestes
Edson Prestes Grafos Cliques Maximais Para determinar os cliques maximais de um grafo G podemos usar o método de Maghout em Dado o grafo abaixo, calcule Determine os conjuntos independentes maximais em
Softwares Aplicativos Banco de Dados
Softwares Aplicativos Banco de Dados INTRODUÇÃO À ENGENHARIA DA COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Serviços 3. Usuários 4. Evolução 5. Exemplos 03 Banco
Análise e Complexidade de Algoritmos
Análise e Complexidade de Algoritmos Uma visão de Intratabilidade, Classes P e NP - redução polinomial - NP-completos e NP-difíceis Prof. Rodrigo Rocha [email protected] http://www.bolinhabolinha.com
Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global. 15.053 Quinta-feira, 25 de abril
15.053 Quinta-feira, 25 de abril Teoria de Programação Não-Linear Programação Separável Dificuldades de Modelos de PNL Programa Linear: Apostilas: Notas de Aula Programas Não-Lineares 1 2 Análise gráfica
Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução. Prof. Humberto Brandão [email protected]
Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução Prof. Humberto Brandão [email protected] aula disponível no site: http://www.bcc.unifal-mg.edu.br/~humberto/ Universidade Federal de
Teoria dos Grafos. Edson Prestes
Edson Prestes Complemento de Grafos Mostre que para qualquer Grafo G com 6 pontos, G ou possui um triângulo Considere um vértice v de V(G). Sem perda de generalidade, podemos assumir v é adjacente a outros
Complexidade de Algoritmos. Edson Prestes
Edson Prestes Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática. Na maioria das vezes, a escolha
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
2 Problema das p-medianas
2 Problema das p-medianas 2.1 Definição O PMNC é definido da seguinte forma: determinar quais p facilidades (p m, onde m é o número de pontos onde podem ser abertas facilidades) devem obrigatoriamente
1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira
Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto
IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI [email protected]
IA Colônia de Formigas Prof. Ricardo Britto DIE-UFPI [email protected] Sumário Introdução O Experimento da Ponte Binária. Ant System Aplicado ao PCV. Elitist Ant System. Introdução Otimização colônia
Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.
Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Problemas de de otimização Conceitos ásicos O Problema da da Mochila Fracionária Template Genérico xemplos: Código de de Huffman Algoritmos Gulosos
Pointer Jumping. odg(v) e idg(v): graus de saída e entrada do vértice v V. um vértice r tal que. O vértice r é dita raíz de T
Pointer Jumping T = (V,E) : árvore direcionada odg(v) e idg(v): graus de saída e entrada do vértice v V um vértice r tal que v V-{r}, odg(v) = 1, odg(r)=0 v V-{r}, um caminho de v a r O vértice r é dita
Uma Heurística para o Problema de Redução de Padrões de Corte
Uma Heurística para o Problema de Redução de Padrões de Corte Marcelo Saraiva Limeira INPE/LAC e-mail: [email protected] Horacio Hideki Yanasse INPE/LAC e-mail: [email protected] Resumo Propõe-se um
Resolução de sistemas lineares
Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)
Dadas a base e a altura de um triangulo, determinar sua área.
Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação [email protected] Conceitos Preliminares
Pesquisa em Memória Primária. Prof. Jonas Potros
Pesquisa em Memória Primária Prof. Jonas Potros Pesquisa em Memoria Primária Estudo de como recuperar informação a partir de uma grande massa de informação previamente armazenada. A informação é dividida
Inteligência de Enxame: ACO
Inteligência de Enxame: ACO! Otimização colônia de formigas é uma meta-heurística: «baseada em população «inspirada no comportamento forrageiro das formigas.! Muitas espécies de formigas são quase cegas.!
A Otimização Colônia de Formigas
A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado
Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho.
Computação Paralela Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho Outubro 2005 Desenvolvimento de Aplicações Paralelas Uma Metodologia
Inteligência Computacional Aplicada a Engenharia de Software
Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto [email protected] Introdução Em alguns ambientes industriais, pode ser necessário priorizar
Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.
Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações
Figura 1 Busca Linear
----- Evidentemente, possuir os dados não ajuda o programador ou o usuário se eles não souberem onde os dados estão. Imagine, por exemplo, uma festa de casamento com cem convidados na qual não se sabe
5COP096 TeoriadaComputação
Sylvio 1 Barbon Jr [email protected] 5COP096 TeoriadaComputação Aula 14 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas Exponenciais - Algoritmos Exponenciais usando Tentativa e Erro - Heurísticas para
Projeto e Análise de Algoritmos. Profa. Juliana Kaizer Vizzotto. Projeto e Análise de Algoritmos - Aula 1
Projeto e Análise de Algoritmos Profa. Juliana Kaizer Vizzotto Projeto e Análise de Algoritmos - Aula 1 Roteiro Introdução Exemplo: ordenação Introdução Análise de Algoritmos Estudo teórico da performance
5. EXPERIÊNCIAS E ANÁLISE DOS RESULTADOS. 5.1 - Os Programas de Avaliação
36 5. EXPERIÊNCIAS E ANÁLISE DOS RESULTADOS 5.1 - Os Programas de Avaliação Programas de avaliação convencionais foram utilizados para análise de diversas configurações da arquitetura. Estes programas
Representação de Dados
Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema
Programação Dinâmica. Programa do PA. Técnicas Avançadas de Projeto. Aulas Anteriores. Introdução. Plano de Aula. Técnicas de Projeto de Algoritmos
Programação Dinâmica Técnicas de Projeto de Algoritmos Aula 13 Alessandro L. Koerich Pontifícia Universidade Católica do Paraná (PUCPR) Ciência da Computação 7 o Período Engenharia de Computação 5 o Período
Programação de Computadores I Fluxogramas PROFESSORA CINTIA CAETANO
Programação de Computadores I Fluxogramas PROFESSORA CINTIA CAETANO Problemas & Algoritmos Para resolver um problema através dum computador é necessário encontrar em primeiro lugar uma maneira de descrevê-lo
ESTRUTURAS DE DADOS II
ESTRUTURAS DE DADOS II Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF Conteúdo Programático 1. Introdução
APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS
APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS Bianca G. Giordani (UTFPR/MD ) [email protected] Lucas Augusto Bau (UTFPR/MD ) [email protected] A busca pela minimização
Sistemas Operacionais e Introdução à Programação. Vetores e matrizes
Sistemas Operacionais e Introdução à Programação Vetores e matrizes 1 Matrizes Cada elemento de uma matriz é referenciado indicando-se sua posição dentro da matriz. Na Matemática, matrizes são arranjos
15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula
15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura
6. Geometria, Primitivas e Transformações 3D
6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também
Introdução Paradigmas
Introdução Paradigmas Recursividade Algoritmos tentativa e erro Divisão e conquista Programação dinâmica Algoritmos gulosos Algoritmos aproximados 1 Introdução O projeto de algoritmos requer abordagens
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 10 Distâncias Mínimas Edirlei Soares de Lima Distâncias Mínimas Dado um grafo ponderado G = (V, E), um vértice s e um vértice g, obter o caminho
Respostas dos Exercícios Cap. 2 Russell & Norvig
Respostas dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Uma medida de desempenho e utilizada por um observador externo para avaliar o sucesso de um agente. Uma função de utilidade e utilizada por um
Estrutura de Dados Básica
Estrutura de Dados Básica Professor: Osvaldo Kotaro Takai. Aula 7: Recursividade O objetivo desta aula é apresentar o conceito de recursão para solução de problemas. A recursão é uma técnica de programação
Algoritmos Genéticos
UNIVERSIDADE PRESBITERIANA MACKENZIE Laboratório de Computação Natural LCoN I ESCOLA DE COMPUTAÇÃO NATURAL Algoritmos Genéticos Rafael Xavier e Willyan Abilhoa Outubro/2012 www.computacaonatural.com.br
OTIMIZAÇÃO VETORIAL. Formulação do Problema
OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis
ALGORITMOS E FLUXOGRAMAS
ALGORITMOS E FLUXOGRAMAS Prof. André Backes INTRODUÇÃO Computadores = cérebros eletrônicos? Computadores são máquinas e, por si sós, não podem ser inteligentes. Alguém as projetou e deu a ela todas as
FATEC Zona Leste. Teoria dos Gráfos. Métodos Quantitativos de Gestão MQG
Teoria dos Gráfos Métodos Quantitativos de Gestão MQG Conceitualmente, um grafo consiste em um conjunto de vértices (pontos ou nós) e um conjunto de arestas (pontes ou arcos), ou seja, é uma noção simples,
Métodos de Pesquisa em Memória Primária
Algoritmos e Estrutura de Dados II Métodos de Pesquisa em Memória Primária Prof Márcio Bueno [email protected] / [email protected] Pesquisa Por pesquisa (procura ou busca) entende-se o ato
Análise e Projeto de Algoritmos
Análise e Projeto de Algoritmos Prof. Eduardo Barrére www.ufjf.br/pgcc www.dcc.ufjf.br [email protected] www.barrere.ufjf.br Complexidade de Algoritmos Computabilidade: Um problema é computável
Sistemas Distribuídos: Princípios e Algoritmos Introdução à Análise de Complexidade de Algoritmos
Sistemas Distribuídos: Princípios e Algoritmos Introdução à Análise de Complexidade de Algoritmos Francisco José da Silva e Silva Laboratório de Sistemas Distribuídos (LSD) Departamento de Informática
Teoria dos Grafos. Edson Prestes
Edson Prestes Dígrafos Dado um dígrafo G, podemos definir uma função multívoca vértices de G entre os Se G possui os arcos (x,y) e (x,w), então sabemos que G possui duas arestas que saem de x e alcançam
A memória é um recurso fundamental e de extrema importância para a operação de qualquer Sistema Computacional; A memória trata-se de uma grande
A memória é um recurso fundamental e de extrema importância para a operação de qualquer Sistema Computacional; A memória trata-se de uma grande região de armazenamento formada por bytes ou palavras, cada
Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos
Técnicas de Computação Paralela Capítulo III Design de Algoritmos Paralelos José Rogado [email protected] Universidade Lusófona Mestrado Eng.ª Informática e Sistemas de Informação 2013/14 Resumo
computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:
1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia
Figura 1: Exemplo de arredondamento com arestas retas.
1 Arredondamentos Um dos detalhes de peças mais simples é o arredondamento. Este detalhe é necessário, numa maneira geral para quebrar cantos vivos. Cantos vivos podem ser perigosos em peças que vão ser
BCC202 - Estrutura de Dados I
BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes
Estruturas de Dados Pilhas, Filas e Deques
Estruturas de Dados Pilhas, Filas e Deques Prof. Eduardo Alchieri Estruturas de Dados Pilhas Pilhas Lista LIFO (Last In, First Out) Os elementos são colocados na estrutura (pilha) e retirados em ordem
CT-234. Análise de Algoritmos e Complexidade Estrutural. Carlos Alberto Alonso Sanches
CT-234 Estruturas de Dados, Análise de Algoritmos e Complexidade Estrutural Carlos Alberto Alonso Sanches CT-234 4) Árvores balanceadas AVL, Rubro-Negras, B-Trees Operações em árvores binárias de busca
Orientação a Objetos
Orientação a Objetos 1. Sobrecarga (Overloading) Os clientes dos bancos costumam consultar periodicamente informações relativas às suas contas. Geralmente, essas informações são obtidas através de extratos.
BUSCA LOCAL ITERADA (ILS ITERATED LOCAL SEARCH)
BUSCA LOCAL ITERADA (ILS ITERATED LOCAL SEARCH) Francisco A. M. Gomes 1º sem/2009 MT852 Tópicos em pesquisa operacional Iterated local search (ILS) Método que gera uma sequência de soluções obtidas por
Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu.
Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Camila Leles de Rezende, Denis P. Pinheiro, Rodrigo G. Ribeiro [email protected], [email protected],
Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.
genda nálise e Técnicas de lgoritmos Jorge Figueiredo onceitos ásicos O Problema das Rainhas Template Genérico Mochila inária acktracking and ranch-and-ound Jogo da Troca de olas Jogo da Troca de olas
Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão [email protected]
Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão [email protected] Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão
Método de Eliminação de Gauss. Eduardo Camponogara
Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação
Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores
Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores Aula passada: Discussão sobre situações de conflito Exemplos de jogos Jogo em aula Aula de hoje: Introdução
As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:
1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico
Introdução a Algoritmos Parte 04
Universidade Federal do Vale do São Francisco Curso de Engenharia de Computação Introdução a Algoritmos Parte 04 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti
Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu
1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)
UFSM Prof. Ghendy Cardoso Junior 2012 1
UFSM Prof. Ghendy Cardoso Junior 2012 1 2 Faltas Balanceadas 2.1 Introdução O problema consiste em determinar as tensões de barra e as correntes nas linhas de transmissão para diferentes tipos de faltas.
Arquitetura de Rede de Computadores
TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador
Técnicas para Programação Inteira e Aplicações em Problemas de Roteamento de Veículos 14
1 Introdução O termo "roteamento de veículos" está relacionado a um grande conjunto de problemas de fundamental importância para a área de logística de transportes, em especial no que diz respeito ao uso
Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha
Filtragem As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem
Vetores Lidando com grandezas vetoriais
Vetores Lidando com grandezas vetoriais matéria de vetores é de extrema importância para o ensino médio basta levar em consideração que a maioria das matérias de física envolve mecânica (movimento, dinâmica,
Aprendizagem de Máquina
Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,
Pesquisa Operacional Programação em Redes
Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação
Árvores Binárias e Busca. Jeane Melo
Árvores Binárias e Busca Jeane Melo Roteiro Parte 1 Árvores Relação hierárquica Definição Formal Terminologia Caminhamento em Árvores Binárias Exemplos Parte 2 Busca seqüencial Busca Binária Grafos Conjunto
Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados
GA em Otimização Combinatorial Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados Problem a do Caixeiro Viajante Problem as de Planejamento
Morfologia Matemática Binária
Morfologia Matemática Binária Conceitos fundamentais: (Você precisa entender bem esses Pontos básicos para dominar a área! Esse será nosso game do dia!!! E nossa nota 2!!) Morfologia Matemática Binária
Ciclos hamiltonianos e o problema do caixeiro viajante
Ciclos hamiltonianos e o problema do caixeiro viajante Algoritmos em Grafos Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional.
MÓDULO 9 METODOLOGIAS DE DESENVOLVIMENTO DE SISTEMAS
MÓDULO 9 METODOLOGIAS DE DESENVOLVIMENTO DE SISTEMAS O termo metodologia não possui uma definição amplamente aceita, sendo entendido na maioria das vezes como um conjunto de passos e procedimentos que
Deadlocks. Prof. Marcos Ribeiro Quinet de Andrade Universidade Federal Fluminense - UFF Pólo Universitário de Rio das Ostras - PURO
Prof. Marcos Ribeiro Quinet de Andrade Universidade Federal Fluminense - UFF Pólo Universitário de Rio das Ostras - PURO Dispositivos e recursos são compartilhados a todo momento: impressora, disco, arquivos,
3 Método de Monte Carlo
25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07
DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira
MLP (Multi Layer Perceptron)
MLP (Multi Layer Perceptron) André Tavares da Silva [email protected] Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -
Pedro Ribeiro 2014/2015
Programação Dinâmica Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Programação Dinâmica 2014/2015 1 / 56 Números de Fibonacci Sequência de números muito famosa definida por Leonardo Fibonacci
SISTEMAS OPERACIONAIS CAPÍTULO 3 CONCORRÊNCIA
SISTEMAS OPERACIONAIS CAPÍTULO 3 CONCORRÊNCIA 1. INTRODUÇÃO O conceito de concorrência é o princípio básico para o projeto e a implementação dos sistemas operacionais multiprogramáveis. O sistemas multiprogramáveis
Prof. Rafael Gross. [email protected]
Prof. Rafael Gross [email protected] Todo protocolo define um tipo de endereçamento para identificar o computador e a rede. O IP tem um endereço de 32 bits, este endereço traz o ID (identificador)
3 Sistemas de Numeração:
3 Sistemas de Numeração: Os computadores eletrônicos têm como base para seu funcionamento a utilização de eletricidade. Diferente de outras máquinas que a presença ou ausência de eletricidade apenas significam
CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro [email protected]
CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro [email protected] www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de
REVISÃO E AVALIAÇÃO DA MATEMÁTICA
2 Aula 45 REVISÃO E AVALIAÇÃO DA 3 Vídeo Arredondamento de números. 4 Arredondamento de números Muitas situações cotidianas envolvendo valores destinados à contagem, podem ser facilitadas utilizando o
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares
Teste de Software. Ricardo Argenton Ramos [email protected]. Engenharia de Software I 2012.2
Teste de Software Ricardo Argenton Ramos [email protected] Engenharia de Software I 2012.2 O que diferencia teste de software OO de testes Convencionais? Técnicas e abordagens são normalmente
O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48
Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração
Algoritmos em Javascript
Algoritmos em Javascript Sumário Algoritmos 1 O que é um programa? 1 Entrada e Saída de Dados 3 Programando 4 O que é necessário para programar 4 em JavaScript? Variáveis 5 Tipos de Variáveis 6 Arrays
Faculdade de Computação
UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra Aparecida de Amo Lista de Exercícios n o 2 Exercícios sobre Modelos de Máquinas de Turing
2. Representação Numérica
2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos
Algoritmos Genéticos (GA s)
Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de
Acumuladores. Paradigma de Programação Funcional. Marco A L Barbosa
Acumuladores Paradigma de Programação Funcional Marco A L Barbosa cba Este trabalho está licenciado com uma Licença Creative Commons - Atribuição-CompartilhaIgual 4.0 Internacional. http://github.com/malbarbo/na-func
