Manipulando a Polarização

Tamanho: px
Começar a partir da página:

Download "Manipulando a Polarização"

Transcrição

1 Aula 3 Manipulando a Polarização 3.1 Resumo Nessa aula continuamos o nosso estudo da descrição clássica da polarização da luz, observando como esta pode ser manipulada por dispositivos como ltros e divisores de feixes polarizadores, placas de onda (ou rotacionadores de polarização), e outros. Bibliograa: O material da sec 3. é similar à sec 8.3 do livro do Moysés, vol 4, mas lá o autor já adota o ponto de vista quântico. A maior parte da seção 3.3 pode ser encontrada no livro do Moysés, vol 4, sec Outra referência com bastante material relacionado é French e Taylor, cap Polarizadores É possível medir e manipular a polarização da luz usando polarizadores. Esses dispositivos transmitem apenas uma dada componente de polarização P f, `ltrando' a componente ortogonal. Nos referiremos a um ltro como esse como um polarizador P f. (Note que essas polarizações não são necessariamente lineares). Polarizadores podem ser construídos de diversas maneiras, por exemplo: P f explorando materiais especiais (`dicróicos'), que absorvem preferencialmente a luz com uma polarização, sendo transparentes para a polarização ortogonal. Um exemplo é o `polaróide', mencionado anteriormente, no qual moléculas longas e nas, dispostas lado a lado, absorvem a componente de polarização linear paralela a elas. através de efeitos de reexão em superfícies: p. ex., lembre-se que quando um feixe de luz incide sobre 10

2 3.. POLARIZADORES 11 uma interface plana com certo um ângulo de incidência especíco (chamado ângulo de Brewster), apenas a componente de polarização ortogonal ao plano de incidência é reetida (v. Moysés, seç 5.7, 5.8) explorando materiais `birrefringentes' (ex: cristais de calcita), os quais apresentam índices de refração diferentes para determinados componentes ortogonais da polarização (por exemplo, a componente horizontal pode ser refratada mais fortemente que a vertical). Nesse caso, o feixe incidente pode ser dividido em dois, de polarizações mutuamente ortogonais P f e, praticamente sem qualquer absorção. Chamamos um dispositivo como esse de um `divisor de feixe polarizador' (ou DFP). Este tipo de polarizador é vantajoso quando não queremos desperdiçar nenhuma parte do feixe. P f Por exemplo: se um feixe polarizado linearmente a um ângulo ±θ (eqs. (.1) e (.13)) incide sobre um polarizador horizontal (o qual transmite apenas a componente x), a componente y da polarização é absorvida. Eliminando então essa componente na eq. (.13), vemos que o campo transmitido é (usando notação de Dirac): E f (z, t) = (E cos θ) cos(kz ωt) x. (3.1) Observe que esse campo tem polarização horizontal ( P f = x ) e amplitude E f = E cos θ E. A intensidade é portanto reduzida por um fator cos θ. Se usarmos um DFP ao invés de um polarizador simples, a componente y não é absorvida, mas apenas separada e desviada para outra direção ẑ, gerando um segundo campo com a forma 1 E f (z, t) = (E sen θ) cos(kz ωt + φ y ) y. (3.) Observe que a soma das intensidades dos dois feixes é a mesma do feixe inicial, pois (E cos θ) +(E sen θ) = E. No caso geral, a ação de um polarizador P f pode ser descrita matematicamente pela seguinte regra: usando a eq. (.35), escreva o vetor de polarização P i do campo incidente na base ortonormal formada por { } P f,. Então, suprima a parte proporcional a (a qual é absorvida, ou desviada, dependendo P f do caso). Em outras palavras: P f P i = P f P i P f + P f P i P f Pf P i P f (3.3) Repare que, do ponto de vista geométrico, esta operação corresponde à projeção do vetor polarização inicial P i sobre o vetor polarização transmitida P f. Se você tiver diculdades para enxergar isso, compare 1 Note que, como este segundo feixe se propaga de forma independente do primeiro, convém escrevê-lo em termos de novas coordenadas (x, y, z ), as quais em geral não coincidem com (x, y, z).

3 1 AULA 3. MANIPULANDO A POLARIZAÇÃO com o que ocorre com vetores reais usuais: quando projetamos um dado vetor v sobre a direção de um vetor unitário ŵ, o vetor resultante é ( v ŵ) ŵ = ( v cos α) ŵ, onde α é o ângulo entre v e ŵ. O campo elétrico do feixe transmitido será então: [ E f (z, t) = ERe P f P i P f e i(kz ωt)] (3.4) onde P f P i é o produto escalar obtido da eq. (.31). Observe que, no caso de vetores complexos, em geral este produto escalar é um número complexo, que podemos representar na forma P f P i = P f P i e iγ com γ alguma fase. A eq. (3.4) pode ser reescrita então como [ ] E f (z, t) = E P f P i Re e i(kz ωt+γ) P f (3.5) Vemos assim que o feixe transmitido terá sempre a polarização P f, e sua amplitude passa a ser E f = E P f P i (3.6) Usando a desigualdade de Cauchy-Schwarz (v. exerc. 3, Lista 1) é fácil checar que, mesmo com vetores complexos, o produto escalar de dois vetores unitários, como P f e P i, sempre satisfaz P f P i 1. Assim, a amplitude transmitida é sempre menor que a amplitude inicial (como deveria). Equivalentemente, se usarmos a eq. (.10), vemos que a intensidade do feixe transmitido é reduzida por um fator I f /I i = P f P i 1 (3.7) Exemplo: Um feixe preparado com polarização linear P i = P (θ, 0) passa por um polarizador que transmite somente outra polarização linear P f = P (θ, 0). Nesse caso, o feixe transmitido tem amplitude E f = E P f P i = E cos θ cos θ + sen θ sen θ = E cos(θ θ ) (3.8) Nesse caso, portanto, a intensidade do campo transmitida é reduzida por um fator cos (θ θ ). Esse resultado é conhecido como a Lei de Malus, e é a formulação matematicamente precisa do efeito mencionado no início da aula. Exemplo: Um feixe preparado com polarização circular à direta P passa por um polarizador que transmite somente a polarização linear P f = P (θ, 0). Nesse caso, o feixe transmitido tem amplitude E f = E P f P i = E cos θ + i sen θ = E (3.9) Nesse caso, a intensidade transmitida é metade da inicial. (Note que o resultado é independente do ângulo θ - você consegue pensar em um bom motivo para isso?).

4 3.3. PLACAS DE ONDA Placas de onda Além dos polarizadores existem outros dispositivos, conhecidos como placas de onda, que também são usados para manipular a polarização de feixes luminosos. Ao contrário dos polarizadores, porém, as placas de onda não reduzem a intensidade de um feixe incidente. Ao atravessá-las, o feixe ganha uma nova polarização, a qual depende da inicial Birrefringência Para entender como construir um dispositivo deste tipo, precisamos considerar o fenômeno conhecido como birrefringência. Como você deve recordar, o índice de refração n de um material é denido pela razão entre as velocidades da luz no vácuo e no material: onde k 0 = π λ 0 n = c v = ω vk 0, (3.10) é o número de onda da luz de freqüência angular ω no vácuo. Em geral, n depende de ω (essa dependência é responsável, por exemplo, pelo efeito de um prisma separando diferentes cores). Ocorre que existem materiais especiais, chamados birrefringentes, que possuem dois índices de refração n +, n diferentes, mesmo para feixes de luz monocromáticos (com uma só freqüência). Cada um desses índices está ligado a uma de duas polarizações ortogonais. Assim, num meio birrefringente existem duas velocidades diferentes v ± = c/n ± de propagação da luz de uma dada cor, cada uma associada a uma dessas polarizações selecionadas. Figure 3.1: Birrefringência de um cristal de calcita - os dois índices de refração do material levam a imagem do texto a se dividir em duas. Por exemplo: uma solução de água com açúcar dissolvido apresenta birrefringência circular, pois tem índices de refração distintos para as polarizações circulares P e P (v. exemplo no m da seç 3.3.). Do

5 14 AULA 3. MANIPULANDO A POLARIZAÇÃO mesmo modo, um cristal de carbonato de cálcio (CaCO 3, também chamado de calcita) apresenta birrefringência linear, pois tem índices de refração distintos para um certo par de polarizações lineares ortogonais (g. 3.1). As duas polarizações `selecionadas' não são alteradas ao passarem pelo meio birrefringente. Mas e se um feixe com uma outra polarização P qualquer incide sobre o meio, o que ocorre? Repare que as polarizações `selecionadas' formam uma base ortonormal, de modo que P pode ser decomposta em uma combinação delas (v. eq. (.35)). Cada uma dessas componentes se propaga com velocidades diferentes, o que faz surgir uma defasagem entre elas. Veremos a seguir que isso resulta em uma mudança no vetor de polarização Birrefringência circular: rotacionando polarizações O tipo mais simples de placa de onda é um rotacionador de polarização. Como o nome já diz, trata-se de um dispositivo capaz de rodar o ângulo de polarização de um feixe linearmente polarizado. Vamos mostrar agora que podemos conseguir este efeito utilizando um material com birrefringência circular. Para ver como isso ocorre, considere os campos elétricos relacionados a feixes circularmente polarizados se propagando dentro desse material. Cada um deles tem uma velocidade distinta v ± = c/n ±, portanto, pelas eqs. (.8), (3.10), podemos representá-los respectivamente por [ ] [ ] E (z, t) = E Re e i(k + z ωt) P ; E (z, t) = E Re e i(k z ωt) P (3.11) onde k ± = n ± k 0 são os números de onda de cada polarização. Suponha agora que temos um feixe com outra polarização, por exemplo H = 1 ( P + P ), incidindo sobre o meio birrefringente. Nesse caso, não podemos usar a eq. (.8) para calcular sua propagação - mas podemos escrever esta última como uma combinação das eqs. (3.11) acima. 3 Se tomamos a superfície do meio como o ponto z = 0, e a região birrefringente tiver comprimento L, então essa propagação pode ser descrita como: [ 1 E(z, t) 0 z L = E Re (e i(k + z ωt) P + e i(k z ωt) P ) ] (3.1) Podemos ver com mais clareza a defasagem entre as duas componentes reescrevendo esta equação em termos de uma média e diferença entre os dois índices de refração: n = n + + n ; = n + n (3.13) Supomos aqui incidência normal à superfície do meio birrefringente. Deste modo, não precisaremos nos preocupar com efeitos de refração como o demonstrado na g Observação técnica: isso vale devido à linearidade das equações de Maxwell.

6 3.3. PLACAS DE ONDA 15 Assim: [ e i(nk 0z ωt) ( E(z, t) 0 z L = E Re e i k 0z P + e i k0z P )] (3.14) Comparando essa equação com a eq. (.8), vemos que ela representa um campo se propagando com velocidade v = ω/nk 0 = c/n, e com uma polarização que muda conforme o feixe vai se propagando : P (z) = 1 ( e i k 0z P + e i k0z P ) (3.15) Que polarização é essa? Mudando de volta para a base { H, V } usando a eq. (.15), temos P (z) = 1 [( e i k 0z + e i k0z) H i ( e i k0z e i k0z) V ] = cos( k 0 z) H + sen( k 0 z) V (3.16) Comparando com a eq. (.1), vemos que se trata de uma polarização linear, com ângulo de polarização θ = k 0 z. Em outras palavras, ao passar pelo meio circularmente birrefringente, a polarização inicialmente horizontal vai sendo rodada no sentido anti-horário (se > 0) ou horário (se < 0). O ângulo nal de rotação é proporcional à espessura do meio: θ tot = k 0 L. (3.17) Portanto, após emergir da região birrefringente, o feixe inicialmente horizontal passa a ter polarização P (L) H = cos θ tot H + sen θ tot V (3.18) Realizando um cálculo análogo para o caso em que o campo inicia verticalmente polarizado, obtemos: P (L) V = sen θ tot H + cos θ tot V = cos(π/ + θ tot ) H + sen(π/ + θ tot ) V (3.19) Onde usamos cos(θ) = sen(θ+π/). Note que também neste caso obtemos uma polarização linear rotacionada em relação à inicial, com ângulo total de rotação dado por θ tot. Juntando as eqs. (3.18) e (3.19), podemos deduzir o efeito do meio circularmente birrefringente sobre qualquer polarização incidente P = a H + b V : P a(cos θ tot H + sen θ tot V ) + b( sen θ tot H + cos θ tot ) = (a cos θ tot b sen θ tot ) H + (a sen θ tot + b cos θ tot V R(θ tot ) P. (3.0) onde criamos o nome R(θ tot ) para nos referirmos a essa transformação linear - esta última equação deve ser lida a transformação R(θ tot ) aplicada sobre o vetor P.

7 16 AULA 3. MANIPULANDO A POLARIZAÇÃO Essa equação pode ainda ser reescrita de forma sucinta se representarmos P como um vetor coluna a formado pelas suas componentes na base { H, V }. Nesse caso, a transformação na eq. (3.0) ca: b a cos θ tot b sen θ tot sen θ tot a (3.1) cos θ tot b Vemos assim que a transformação R(θ tot ) pode ser representada por uma matriz de rotação. Assim, o efeito do meio birrefringente é, de fato, rotacionar todas as polarizações lineares (vetores com entradas reais) de um ângulo θ tot. Exemplo: Você talvez se lembre das aulas de química que as moléculas de glicose (a substância que compõe o açúcar) têm dois chamados isômeros, ou seja, duas formas de se enrolar (a primeira correspondendo a uma espiral rodando para a esquerda, e a segunda para a direita). Por razões que não discutiremos aqui, ocorre que essas duas formas interagem de forma distinta com luz circularmente polarizada, o que leva a um efeito birrefringente. Uma dessas duas formas da glicose tem < 0 (roda a polarização no sentido horário, ou para a direita), e por isso é chamada de dextrose (vem da mesma raiz da palavra destro). A outra roda para a esquerda e é chamada levulose. Ocorre que, na natureza, plantas como a cana-deaçúcar produzem apenas dextrose (ninguém sabe ao certo por quê!). Assim, uma solução de açúcar natural dissolvido em água é birrefringente, com um valor de < 0 que é proporcional à concentração do açúcar. Essa propriedade é utilizada na indústria de açúcar para medir a concentração de xaropes, etc Birrefringência linear Outro tipo comum de placa de onda utiliza materiais com birrefringência linear. Neste caso as polarizações `selecionadas' pelo material, que se propagam com velocidades v ± distintas, são ambas lineares (e ortogonais). Costuma-se chamar essas duas direções de polarização de eixo rápido e eixo lento. Vamos assumir no que se segue que os eixos rápido e lento estão orientados a 45 e a 45, correspondendo às polarizações P ±45 = 1 ( H ± V ) (3.) (v. seç...1, exemplo 1). Nesse caso, fazendo um desenvolvimento análogo ao das eqs. (3.11) - (3.19), podese mostrar (v. Lista I, exerc. 6) que as polarizações horizontal e vertical sofrem a seguinte transformação linear após atravessar o meio: H cos θ tot H + i sen θ tot V V i sen θ tot H + cos θ tot V (3.3)

8 3.3. PLACAS DE ONDA 17 onde θ tot é denido como na eq. (3.17). Observe que, ao contrário do que acontecia nas eqs. (3.18) e (3.19), agora H e V são transformadas em polarizações que em geral são elípticas (v. lista I, ex. ). Uma exceção é o caso θ tot = π/4, em cujo caso H P ; V i P. (3.4) Em outras palavras, neste caso a placa de onda transforma as polarizações lineares H e V em polarizações circulares 4. Observe que, para que isso ocorra, é preciso, pela eq. (3.17), que (n + n )L = π/(k 0 ) = λ 0 /4, onde λ 0 é o comprimento deste feixe no vácuo. Por causa disto, uma placa de onda satisfazendo essa condição costuma ser chamada de uma placa de quarto de onda. Outra exceção ocorre quando θ tot = π/. Neste caso, H i V ; V i H, (3.5) ou seja, as polarizações horizontal e vertical são trocadas 4. Neste caso, é preciso que (n + n )L = λ 0 /, de modo que uma placa de onda deste tipo é conhecida como uma placa de meia onda. 4 O fator i representa apenas um acréscimo de π/ na fase ao campo elétrico, a qual não altera o vetor de polarização.

Polarização da luz. Aula Resumo. 2.2 Polarização da luz (tratamento clássico)

Polarização da luz. Aula Resumo. 2.2 Polarização da luz (tratamento clássico) Aula Polarização da luz.1 Resumo Nessa aula relembramos a descrição dada pelo eletromagnetismo `clássico' (i.e., de Maxwell) para a polarização da luz. Ainda, reescrevemos essa descrição usando uma nova

Leia mais

Física Experimental IV Polarização - Lei de Malus. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

Física Experimental IV Polarização - Lei de Malus. Prof. Alexandre Suaide Prof. Manfredo Tabacniks Física Experimental IV - 2008 Polarização - Lei de Malus Prof. Alexandre Suaide Prof. Manfredo Tabacniks Polarização da luz Objetivos Estudar o fenômeno de polarização da luz Aula 1 Métodos de polarização

Leia mais

Física Experimental IV FAP214

Física Experimental IV FAP214 Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal: 6647 Ed. Basílio Jafet, sala 100 Física Experimental IV FAP14 www.dfn.if.usp.br/curso/labflex www.fap.if.usp.br/~hbarbosa Aula, Experiência 3 Placas de

Leia mais

POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.

POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x. POLARIZAÇÃO DA LUZ INTRODUÇÃO Uma onda eletromagnética é formada por campos elétricos e magnéticos que variam no tempo e no espaço, perpendicularmente um ao outro, como representado na Fig. 1. A direção

Leia mais

CF082 - Óptica Moderna. Polarização

CF082 - Óptica Moderna. Polarização CF082 - Óptica Moderna Polarização 1 Plano de polarização Polarização Linear E x z, t = ie 0x cos(kz ωt) E y z, t = je 0y cos(kz ωt + φ) 3 Polarização Circular Polarização Elíptica De um ponto de vista

Leia mais

Física Experimental IV FAP214

Física Experimental IV FAP214 Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal: 6647 Ed. Basílio Jafet, sala 100 Física Experimental IV FAP214 www.dfn.if.usp.br/curso/labflex www.fap.if.usp.br/~hbarbosa Aula 2, Experiência 3 Placas

Leia mais

d = t sen (θ a θ b ). b

d = t sen (θ a θ b ). b Universidade Federal do Rio de Janeiro Instituto de Física Física IV 019/1 Lista de Exercícios do Capítulo Propriedades da Luz Professor Carlos Zarro 1) Três espelhos interceptam-se em ângulos retos. Um

Leia mais

POLARIZAÇÃO-2 CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO. Revisão: Polarização. Prof. André L. C. Conceição DAFIS. Polarização

POLARIZAÇÃO-2 CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO. Revisão: Polarização. Prof. André L. C. Conceição DAFIS. Polarização POLARIZAÇÃO- Prof. André L. C. Conceição DAFIS CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO Polarização Revisão: Polarização Polarização: convencionalmente refere-se à direção do campo elétrico y B E z Plano de

Leia mais

Mecânica Quântica. Estados quânticos: a polarização do fóton. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro

Mecânica Quântica. Estados quânticos: a polarização do fóton. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro Mecânica Quântica Estados quânticos: a polarização do fóton A C Tort 1 1 Departmento de Física Teórica Instituto Física Universidade Federal do Rio de Janeiro 11 de Abril de 2012 A luz é polarizada! (a)

Leia mais

Cap Ondas Eletromagnéticas

Cap Ondas Eletromagnéticas Cap. 33 - Ondas Eletromagnéticas Espectro EM; Descrição de onda EM; Vetor de Poynting e Transferência de energia; Polarização; ; Polarização e Reflexão. Espectro EM Onda: flutuação/oscilação de alguma

Leia mais

POLARIZAÇÃO CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO. Revisão: Propagação da Luz. Princípio de Fermat. Princípio de Huygens

POLARIZAÇÃO CAPÍTULO 31 TIPLER, MOSKA. 6ª EDIÇÃO. Revisão: Propagação da Luz. Princípio de Fermat. Princípio de Huygens POLARIZAÇÃO Prof. André L. C. Conceição DAFIS CAPÍTULO 31 TIPLR, MOSKA. 6ª DIÇÃO Polarização Revisão: Propagação da Luz Princípio de Fermat A trajetória seguida pela luz viajando de um ponto a outro é

Leia mais

PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula:

PUC-RIO CB-CTC G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A Nome Legível: Assinatura: Matrícula: PUC-RIO CB-CTC G1 Gabarito - FIS1061 - FÍSICA MODERNA 20-09-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Capítulo 11 Ondas Eletromagnéticas 11.1 Equação de Onda Mecânica: Corda Considere um pulso de onda que se propaga em uma corda esticada com extremidades fixas. Podemos obter a equação de ondas nesse caso

Leia mais

Física IV. Aula 2 Prof. Helena Malbouisson

Física IV. Aula 2 Prof. Helena Malbouisson Física IV Aula 2 Prof. Helena Malbouisson 1 Normas e Datas Atendimento ao estudante: sala 3018 A professora Helena Malbouisson. Os alunos com menos de 75% de presença serão reprovados por falta. Entretanto,

Leia mais

Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc.

Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc. Comunicações Ópticas Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc. Corpos luminosos e Corpos iluminados O Sol, as estrelas, uma lâmpada ou uma vela, acesas, são objetos que emitem luz própria,

Leia mais

DEPARTAMENTO DE FÍSICA. Ondas e Óptica Trabalho prático n o 6

DEPARTAMENTO DE FÍSICA. Ondas e Óptica Trabalho prático n o 6 v 10: May 14, 2007 1 DEPARTAMENTO DE FÍSICA FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA Nunca olhe directamente para o laser! 1 Objectivo Ondas e Óptica 2007 Trabalho prático n o 6 Estudo

Leia mais

Física VIII Ondas eletromagnéticas e Física Moderna

Física VIII Ondas eletromagnéticas e Física Moderna Física VIII Ondas eletromagnéticas e Física Moderna Aula 2: Pressão de radiação e polarização 1 Baseado no material preparado por Sandro Fonseca de Souza Helena Malbouisson Aula de Hoje Pressão de radiação;

Leia mais

PUC-RIO CB-CTC. G1 FÍSICA MODERNA Turma: 33-A. Nome Legível: Assinatura: Matrícula:

PUC-RIO CB-CTC. G1 FÍSICA MODERNA Turma: 33-A. Nome Legível: Assinatura: Matrícula: PUC-RIO CB-CTC G1 FÍSICA MODERNA 03-10-2012 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar

Leia mais

INCIDÊNCIA DE ONDAS ELETROMAGNÉTICAS EM INTERFACES PLANAS: REFLEXÃO, REFRAÇÃO E LEI DE SNELL

INCIDÊNCIA DE ONDAS ELETROMAGNÉTICAS EM INTERFACES PLANAS: REFLEXÃO, REFRAÇÃO E LEI DE SNELL TE053-Ondas Eletromagnéticas INCIDÊNCIA DE ONDAS ELETROMAGNÉTICAS EM INTERFACES PLANAS: REFLEXÃO, REFRAÇÃO E LEI DE SNELL PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR

Leia mais

ESTUDO DA LUZ POLARIZADA

ESTUDO DA LUZ POLARIZADA ESTUDO DA LUZ POLARIZADA 1. Objectivo Estudar eperimentalmente luz monocromática colimada e polarizada linearmente, em particular a dependência da potência transmitida através de um analisador de polarização

Leia mais

Aula 3 - Ondas Eletromagnéticas

Aula 3 - Ondas Eletromagnéticas Aula 3 - Ondas Eletromagnéticas Física 4 Ref. Halliday Volume4 Sumário - Transporte de Energia e o Vetor de Poynting; Polarização; Reflexão e Refração; Reflexão Interna Total; Situação a ser analisada...

Leia mais

Polarização Linear, Lei de Malus e Atividade Óptica

Polarização Linear, Lei de Malus e Atividade Óptica Polarização Linear, Lei de Malus e Atividade Óptica Nesta prática, iniciaremos o estudo da área da óptica usualmente denominada óptica física. Inicialmente, discutiremos o conceito de polarização da luz

Leia mais

3.3. Física Experimental IV Birrefringência Atividade Ótica. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

3.3. Física Experimental IV Birrefringência Atividade Ótica. Prof. Alexandre Suaide Prof. Manfredo Tabacniks 3.3. Física Experimental IV - 2008 Birrefringência Ativiae Ótica Prof. Alexanre Suaie Prof. Manfreo Tabacniks Polarização a luz Objetivos Estuar o fenômeno e polarização a luz Aula 1 Métoos e polarização

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 3 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Resolver

Leia mais

ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C.

ONDAS ELETROMAGNÉTICAS:3 CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO. Revisão: Campos se criam mutuamente. Prof. André L. C. ONDAS ELETROMAGNÉTICAS:3 Prof. André L. C. Conceição DAFIS CAPÍTULO 33 HALLIDAY, RESNICK. 8ª EDIÇÃO Ondas eletromagnéticas Revisão: Campos se criam mutuamente Lei de indução de Faraday: Lei de indução

Leia mais

Física IV Aula 3 Sandro Fonseca de Souza Helena Malbouisson

Física IV Aula 3 Sandro Fonseca de Souza Helena Malbouisson Física IV uerj-fisica-iv-quimica@googlegroups.com Aula 3 Sandro Fonseca de Souza Helena Malbouisson 1 Aula Anterior Pressão de radiação; Polarização. 2 Aula de Hoje Óptica Geométrica; Reflexão e Refração;

Leia mais

3 Polarização: Lei de Malus, Atividade Óptica e Birrefringência

3 Polarização: Lei de Malus, Atividade Óptica e Birrefringência 3 Polarização: Lei de Malus, Atividade Óptica e Birrefringência Nesta prática, iniciaremos o estudo da área da óptica usualmente denominada óptica física. Inicialmente, discutiremos o conceito de polarização

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Onda Polarizada: Onda que possui apenas uma direção de vibração para uma direção de propagação. Direção de vibração Direção de vibração Direção de propagação Direção

Leia mais

Prova 05/06/2012. Halliday Vol 3-6ª edição Cap 29, 30, 31,32. Halliday Vol 3-8ª edição Cap 28, 29, 30, 32. Aulas 9-15

Prova 05/06/2012. Halliday Vol 3-6ª edição Cap 29, 30, 31,32. Halliday Vol 3-8ª edição Cap 28, 29, 30, 32. Aulas 9-15 7. Campo Magnético 7.1 - Campo magnético de uma corrente elétrica 7.2 - Linhas de força 7.3 - Fluxo magnético e indução magnética 7.4 - Campo magnético de uma espira 7.5 - Lei de Ampère 7.6 - Campo magnético

Leia mais

Experimentos com fótons polarizados - análise formal

Experimentos com fótons polarizados - análise formal Aula 5 Experimentos com fótons polarizados - análise formal 5.1 Resumo Nesta aula analisamos de modo mais formal e geral os experimentos com fótons polarizados vistos na última aula. Em particular, discutimos

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Polarimetria - Polarização

Polarimetria - Polarização Polarimetria - Polarização Antenas de TV: Inglaterra x Estados Unidos (radiação polarizada) Fonte de luz (uma lâmpada): polarizada aleatoriamente ou não polarizada. Filtro polarizador: transforma luz não

Leia mais

PUC-RIO CB-CTC. G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A. Nome Legível: Assinatura: Matrícula:

PUC-RIO CB-CTC. G1 Gabarito - FIS FÍSICA MODERNA Turma: 33-A. Nome Legível: Assinatura: Matrícula: PUC-RIO CB-CTC G1 Gabarito - FIS1061 - FÍSICA MODERNA 19-04-2013 Turma: 33-A Nome Legível: Assinatura: Matrícula: AS RESPOSTAS PRECISAM SER JUSTIFICADAS A PARTIR DE LEIS FÍSICAS E CÁLCULOS EXPLÍCITOS Não

Leia mais

Eletromagnetismo Licenciatura. 17 a aula. Professor Alvaro Vannucci

Eletromagnetismo Licenciatura. 17 a aula. Professor Alvaro Vannucci Eletromagnetismo Licenciatura 17 a aula Professor Alvaro Vannucci Nas últimas aulas temos estudado... Emissão de Radiação Eletromagnética por cargas aceleradas: 1 1 qa sin S E B EB rˆ rˆ 16 c r De forma

Leia mais

Física Experimental IV FAP214

Física Experimental IV FAP214 Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal: 6647 Ed. Basílio Jafet, sala 100 Física Experimental IV FAP214 www.dfn.if.usp.br/curso/labflex www.fap.if.usp.br/~hbarbosa Aula 2 e 3, Experiência 3 Birrefringência

Leia mais

Módulo I Ondas Planas

Módulo I Ondas Planas Módulo I Ondas Planas Vetor de Poynting Transmissão de potência Em algum ponto, distante do ponto de transmissão teremos o ponto de recepção. Vetor de Poynting Em toda aplicação prática, a onda EM é gerada

Leia mais

Faculdade de Tecnologia de Bauru Sistemas Biomédicos

Faculdade de Tecnologia de Bauru Sistemas Biomédicos 1 Faculdade de Tecnologia de Bauru Sistemas Biomédicos Óptica Técnica Aula 3 Refração da Luz O que é Refração? 2 É o fenômeno da passagem da luz de um meio a outro. Com exceção da incidência normal, a

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Aula 28. Continuidade das Amplitudes. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre Preparo: Diego Oliveira

Aula 28. Continuidade das Amplitudes. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - Semestre 014 Preparo: Diego Oliveira Aula 8 Continuidade das Amplitudes Como sabemos os vetores k 1, k 1, k ˆn estão num mesmo plano, o plano de incidência,

Leia mais

Lentes de Bordos Finos

Lentes de Bordos Finos Lentes de Bordos Finos Geralmente convergentes, ou seja, convergentes quando n lente >n meio. -O meio que envolve a lente geralmente é o ar, menos refrigente que o vidro. Lentes de Bordos Grossos Geralmente

Leia mais

GRADUAÇÃO EM ENGENHARIA ELETRÔNICA. FÍSICA IV Óptica e Física Moderna. Prof. Dr. Cesar Vanderlei Deimling

GRADUAÇÃO EM ENGENHARIA ELETRÔNICA. FÍSICA IV Óptica e Física Moderna. Prof. Dr. Cesar Vanderlei Deimling GRADUAÇÃO EM ENGENHARIA ELETRÔNICA FÍSICA IV Óptica e Física Moderna Prof. Dr. Cesar Vanderlei Deimling O plano de ensino Bibliografia: Geração de ondas eletromagnéticas Propriedades das ondas eletromagnéticas

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ulbra 016) Um objeto está à frente de um espelho e tem sua imagem aumentada em quatro vezes e projetada em uma tela que está a,4 m do objeto, na sua horizontal. Que tipo de espelho foi utilizado e

Leia mais

Ondas Eletromagnéticas

Ondas Eletromagnéticas Capítulo 11 Ondas Eletromagnéticas 11.1 Equação de Onda Mecânica: Corda Considere um pulso de onda que se propaga em uma corda esticada com extremidades fixas. Podemos obter a equação de ondas nesse caso

Leia mais

Polarização Linear, Lei de Malus e Atividade Óptica

Polarização Linear, Lei de Malus e Atividade Óptica Polarização Linear, Lei de Malus e Atividade Óptica Nesta prática, iniciaremos o estudo da área da óptica usualmente denominada óptica física. Inicialmente, discutiremos o conceito de polarização da luz

Leia mais

INSTITUTO DE FÍSICA DA UNIVERSIDADE

INSTITUTO DE FÍSICA DA UNIVERSIDADE INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO Laboratório de Eletromagnetismo (4300373) 2 o SEMESTRE DE 2013 Grupo:......... (nome completo) Prof(a).:... Diurno ( ) Noturno ( ) Data : / / Experiência

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Vetor de Poynting Transmissão de Potência Polarização Vetor de Poynting Em toda aplicação prática, a onda EM é gerada em algum ponto de transmissão

Leia mais

3. Polarização da Luz

3. Polarização da Luz 3. Polarização da Luz Sendo uma onda eletromagnética, a luz é caracterizada por vetor um campo elétrico e um campo magnético dependentes do tempo e do espaço. As ondas de luz se propagam em ondas transversais

Leia mais

Aula 38. Continuidade das Amplitudes. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira

Aula 38. Continuidade das Amplitudes. Eletromagnetismo I. Prof. Ricardo Galvão - 2 Semestre Preparo: Diego Oliveira Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 38 Continuidade das Amplitudes Como sabemos que os vetores k 1, k 1, k e ˆn estão num mesmo plano, o plano de incidência,

Leia mais

Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio 3º ano classe: Prof.Evandro Nome: nº

Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio 3º ano classe: Prof.Evandro Nome: nº Sala de Estudos FÍSICA Evandro 1 trimestre Ensino Médio º ano classe: Prof.Evandro Nome: nº Sala de Estudos: Refração, dioptro plano, lâminas de faces paralelas e prismas. 1. (Unicamp) Uma lente de Fresnel

Leia mais

Óptica 2/2007. Propagação da luz por diversos meios. Fowles Cap. 6, Saleh & Teich Cap. 5 e 6

Óptica 2/2007. Propagação da luz por diversos meios. Fowles Cap. 6, Saleh & Teich Cap. 5 e 6 Óptica 2/2007 Propagação da luz por diversos meios Fowles Cap. 6, Saleh & Teich Cap. 5 e 6 Sumário Equações de Maxwell Tipos de meios Equação de onda Absorpção e dispersão Propagação por meios anisotrópicos

Leia mais

Olimpíada Brasileira de Física a Fase Gabarito Comentado para a prova de 3º ano

Olimpíada Brasileira de Física a Fase Gabarito Comentado para a prova de 3º ano Olimpíada Brasileira de Física 2003-2 a Fase Gabarito Comentado para a prova de 3º ano Observações: 1 A prova tem valor total de 44 pontos. Cada questão tem valor total de 6 pontos. A questão 7 tem valor

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo

Leia mais

TEM 2010 Lista de Problemas 5 As equações de Maxwell. Vetor de Poynting. Ondas eletromagnéticas. Polarização

TEM 2010 Lista de Problemas 5 As equações de Maxwell. Vetor de Poynting. Ondas eletromagnéticas. Polarização TEM 2010 Lista de Problemas 5 As equações de Maxwell. Vetor de Poynting. Ondas eletromagnéticas. Polarização A C Tort 27 de Outubro de 2010 Problema 1 Densidade de corrente de deslocamento Eis um modo

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019. (c) I 1 = I 2.

Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019. (c) I 1 = I 2. Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física IV-A Data: 03/07/2019 Prova Final 1 Um material não magnético possui a permeabilidade magnética igual à do vácuo µ = µ 0 Um

Leia mais

Física IV - Laboratório REFLEXÃO E REFRAÇÃO

Física IV - Laboratório REFLEXÃO E REFRAÇÃO Física IV - Laboratório REFLEXÃO E REFRAÇÃO Relembrando - Avaliação A nota de laboratório será dada por NL = P 1 + P 2 F, 2 com F = 1 N N i=1 p i r i onde, P 1 e P 2 são as provas e p i e r i são a presença

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 22

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 22 Eletromagnetismo II Prof. Luís R. W. Abramo - 1 Semestre 015 Preparo: Diego Oliveira Aula Mais Fenômenos de Interferência: Princípio de Huygens e Experimento de Young Como vimos anteriormente, o espalhamento

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!! Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

No sistema internacional de unidades (SI) esta é medida como Joule por segundo (J/s). Onde 1J/s é igual a 1 Watt (W).

No sistema internacional de unidades (SI) esta é medida como Joule por segundo (J/s). Onde 1J/s é igual a 1 Watt (W). 81 Experimento 4: Irradiância Luminosa e Polarização da Luz 2.4.1 Objetivos Compreender o conceito de irradiância Luminosa. Medir a irradiância luminosa em função da distância à fonte. Estudar a polarização

Leia mais

Álgebra Linear I - Aula 2. Roteiro

Álgebra Linear I - Aula 2. Roteiro Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,

Leia mais

Professora Bruna CADERNO 1. Capítulo 4. Fenômenos Ópticos: Refração, Absorção e Dispersão da Luz

Professora Bruna CADERNO 1. Capítulo 4. Fenômenos Ópticos: Refração, Absorção e Dispersão da Luz CADERNO 1 Capítulo 4 Fenômenos Ópticos: Refração, Absorção e Dispersão da Luz FENÔMENOS ÓPTICOS No capítulo anterior demos início ao estudo dos fenômenos ópticos. Um fenômeno óptico ocorre quando a luz

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

Aula 3 Ondas Eletromagnéticas

Aula 3 Ondas Eletromagnéticas Aula 3 Ondas letromagnéticas - Luz visível (nos permitem ver - Infravermelhos (aquecem a Terra - Ondas de radiofrequencia (transmissão de rádio - Microondas (cozinhar -Transporte de momento linear - Polarização

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

Prática 7: Interferência I: Anéis de Newton

Prática 7: Interferência I: Anéis de Newton Prática 7: Interferência I: Anéis de Newton I - Introdução Nesta prática, vamos estudar os fenômenos de interferência que ocorrem com fontes de luz, verificando as leis físicas que governam tais processos.

Leia mais

Curvas Planas em Coordenadas Polares

Curvas Planas em Coordenadas Polares Curvas Planas em Coordenadas Polares Sumário. Coordenadas Polares.................... Relações entre coordenadas polares e coordenadas cartesianas...................... 6. Exercícios........................

Leia mais

EXPERIMENTO 4 POLARIZAÇÃO

EXPERIMENTO 4 POLARIZAÇÃO EXPERIMENTO 4 POLARIZAÇÃO Nesta atividade de laboratório você irá estudar a polarização da luz. Por ser uma onda eletromagnética transversal, a luz pode apresentar o efeito de polarização. Polarizar a

Leia mais

Bilineares do Campo de Dirac. Analogamente:

Bilineares do Campo de Dirac. Analogamente: Teoria Quântica de Campos I 133 ( eq. 133.1 ) Analogamente: ( eq. 133.2 ) Bilineares do Campo de Dirac Claramente, qualquer grandeza observável vai ter que ser composta do produto de um número par de campos

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 6 Revisão Equação de onda Solução de onda plana 2 E μϵ E =0 2 t 2 2 H μϵ H =0 2 t 2

Leia mais

Física Experimental IV FAP214

Física Experimental IV FAP214 Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal: 6647 Ed. Basílio Jafet, sala 100 Física Experimental IV FAP214 www.dfn.if.usp.br/curso/labflex www.fap.if.usp.br/~hbarbosa Aula 1, Experiência 3 Leis de

Leia mais

Física IV P1-1 de setembro de 2016

Física IV P1-1 de setembro de 2016 Questão 1 Física IV - 4323204 P1-1 de setembro de 2016 (I) Considere um conjunto de duas fendas de largura l, espaçadas por uma distância de 5l. Sobre estas duas fendas incide uma onda plana monocromática,

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica Vetores ECT2102 Prof. Ronaldo Carlotto Batista 28 de março de 2016 Sistema de coordenadas e distâncias Nesse curso usaremos o sistema de coordenadas cartesiano destro em três

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

LEI de SNELL - DESCARTES

LEI de SNELL - DESCARTES Prof.Silveira Jr LEI de SNELL - DESCARTES 1. (Pucrj 017) Um feixe luminoso proveniente de um laser se propaga no ar e incide sobre a superfície horizontal da água fazendo um ângulo de 45 com a vertical.

Leia mais

Física Geral Grandezas

Física Geral Grandezas Física Geral Grandezas Grandezas físicas possuem um valor numérico e significado físico. O valor numérico é um múltiplo de um padrão tomado como unidade. Comprimento (m) Massa (kg) Tempo (s) Corrente elétrica

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i

Eletromagnetismo I. Preparo: Diego Oliveira. Aula c 2 2 A i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 214 Preparo: Diego Oliveira Aula 26 Transformada de Fourier da Equação de Onda Nós vimos que, em uma dimensão, a equação de onda é dada por 2 A i

Leia mais

Teoria Escalar da Difração

Teoria Escalar da Difração Teoria Escalar da Difração Em óptica geométrica, o comprimento de onda da luz é desprezível e os raios de luz não contornam obstáculos, mas propagam-se sempre em linha reta. A difração acontece quando

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

Física IV-A: Segunda Chamada (12/07/2018)

Física IV-A: Segunda Chamada (12/07/2018) Física IV-A: Segunda Chamada 1/07/018 NOME: DRE Prova 1 ASSINATURA: CONSTANTES NUMÉRICAS µ 0 = 4π 10 7 H/m; ε 0 = 8,8 10 1 F/m; c = 3 10 8 m/s; h = 6,6 10 34 J s = 4,1 10 15 ev s; = 1,0 10 34 J s = 0,66

Leia mais

Lista 17 Revisão de Refração e Reflexão Total

Lista 17 Revisão de Refração e Reflexão Total Lista 17 Revisão de Refração e Reflexão Total 1. (Espcex (Aman) 017) Um raio de luz monocromática propagando-se no ar incide no ponto O, na superfície de um espelho, plano e horizontal, formando um ângulo

Leia mais

Física. Leonardo Gomes (Arthur Vieira) 27 e Refração da Luz

Física. Leonardo Gomes (Arthur Vieira) 27 e Refração da Luz Refração da Luz Refração da Luz 1. Um raio de luz monocromática passa do meio 1 para o meio 2 e deste para o meio 3. Sua velocidade de propagação relativa aos meios citados é v 1, v 2 e v 3, respectivamente.

Leia mais

Álgebra Linear I - Aula 3. Roteiro

Álgebra Linear I - Aula 3. Roteiro Álgebra Linear I - Aula 3 1. Produto escalar. Ângulos. 2. Desigualdade triangular. Roteiro 1 Produto escalar Considere dois vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3. O produto escalar

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude

8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência f = 5 Hz que provoca uma onda de amplitude Constantes Velocidade do som no ar: v som = 344 m /s Velocidade da luz no vácuo c = 3 10 8 m/s 8.1. Considere uma corda de comprimento L e densidade linear µ = m/l, onde m é a massa da corda. Partindo

Leia mais

Física 4. Guia de Estudos P1

Física 4. Guia de Estudos P1 Física 4 Guia de Estudos P1 1. Introdução O curso de física IV visa introduzir aos alunos os conceitos de física moderna através de uma visão conceitual dos fenômenos e uma abordagem simplificada das demonstrações.

Leia mais

Capítulo 7. Capítulo 7. Equações de Maxwell e ondas electromagnéticas. F.Barão, L.F.Mendes Electromagnetismo e Óptica (MEEC-IST) 109

Capítulo 7. Capítulo 7. Equações de Maxwell e ondas electromagnéticas. F.Barão, L.F.Mendes Electromagnetismo e Óptica (MEEC-IST) 109 Capítulo 7 Equações de Maxwell e ondas electromagnéticas F.Barão, L.F.Mendes Electromagnetismo e Óptica (MEEC-IST) 109 7.1 Exercícios Propostos Exercício 7.1 : Um condensador plano de placas circulares

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 015 Preparo: Diego Oliveira Aula 3 Equação da Onda e Meios Condutores Vamos considerar a equação de onda para casos em que existam correntes de condução

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

Unidade Senador Canedo Professor (a): Dhanyella Aluno (a): Série:3ª Data: / / LISTA DE FÍSICA I

Unidade Senador Canedo Professor (a): Dhanyella Aluno (a): Série:3ª Data: / / LISTA DE FÍSICA I Unidade Senador Canedo Professor (a): Dhanyella Aluno (a): Série:3ª Data: / / 2017. LISTA DE FÍSICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

Se um feixe de luz laser incidir em uma direção que passa pela borda da caixa, fazendo um ângulo θ com a vertical, ele só poderá iluminar a moeda se

Se um feixe de luz laser incidir em uma direção que passa pela borda da caixa, fazendo um ângulo θ com a vertical, ele só poderá iluminar a moeda se 1. (Udesc 2011) Considere uma lâmina de vidro de faces paralelas imersa no ar. Um raio luminoso propaga-se no ar e incide em uma das faces da lâmina, segundo um ângulo θ em relação à direção normal ao

Leia mais