ANDRÉ LUIZ PINTO CBPF
|
|
|
- Kátia Rico Aranha
- 8 Há anos
- Visualizações:
Transcrição
1 1
2 MICROSCOPIA ELETRÔNICA ANDRÉ LUIZ PINTO CBPF
3 Roteiro Introdução Fundamentos Fontes de elétrons Lentes de elétrons Interação elétron-matéria Microscópio Eletrônico de Varredura Microscópio Eletrônico de Transmissão Aplicações à Nanotecnologia Comentários Finais LabNano
4 O que desejamos observar? Morfologia da matéria Materiais amorfos Morfologia Composição química Composição atômica Estado de ionização Estrutura molecular Presença de ordenamento de curto alcance Materiais cristalinos Morfologia Composição química Composição atômica Estado de ionização Estrutura molecular Estrutura cristalina Defeitos Classificação Quantificação Natureza das interfaces entre os domínios cristalinos Textura cristalográfica
5 Nosso Arsenal Aumento x Resolução (lateral) Olho humano 0,1 mm Microscopia Ótica 0,5 µm Microscópio Eletrônico de Varredura (MEV) 1-4 ηm Microscópio Eletrônico de Transmissão (MET) 1-0,8 Å Microscópio de Ponta de Prova (SPM) 0,3 Å
6 O que desejamos em um canhão? Alto brilho Fonte de dimensões reduzidas Estabilidade Energia Controlável Coerência
7 Brilho Definimos o brilho como a densidade de corrente (corrente, i e, por unidade de área) emitido em um ângulo sólido α o. Unidade: A/m 2 sr Jeol
8 Energia dos Elétrons Através do Princípio da Dualidade Onda-Partícula de de Broglie podemos associar o momento da partícula ao seu comprimento de onda Energia cinética do elétron a partir do seu potencial de aceleração
9 Energia dos Elétrons Comprimento de onda Correção relativística
10 Energia dos Elétrons
11 Fontes Termiônicas Lei de Richardson para a densidade de corrente A- Cte de Richardson Φ - Função Trabalho K Cte de Boltzmann
12 Filamento de W Baixo custo (~ US$ 90) Baixa vida (~ 100 h) Baixo brilho Williams e Carter
13 Filamento de LaB 6 Maior custo (~US$ 1-3k) Maior vida (~500 h) Maior brilho Monocristal <100> Suporte resistivo de grafite ou rênio Sujeito a choque térmico Altamente reativo Podem ter efeito Schottky (ponta com r~1-10µm dobra o brilho) Williams e Carter Goldstein
14 Canhão de Elétrons - Wehnelt Williams e Carter
15 Problemas das Fontes Termiônicas Evaporação do catodo Thermal drift Baixo brilho Brilho máximo
16 Canhão de Emissão por Campo (FEG) Monocristal <310> com ponta afiada (r < 100 ηm) Menor raio concentra o campo elétrico e diminui a necessidade de T V1 voltagem de extração (3-5 kv) V2 voltagem de aceleração Williams e Carter Brilho máximo
17 Canhão de Emissão por Campo (FEG) Goldstein et all 3 tipos básicos Frio Térmico Schottky Crossover Frio - < 5 ηm Térmico - < 5 ηm Schottky - < ηm Variação da Energia (ΔE) Frio 0,3 ev Térmico 1 ev Schottky 0,3-1 ev Estabilidade de Corrente Frio 5%/h Térmico 5%/h Schottky 2%/h
18 Goldstein et all Williams e Carter
19 Degradação da Fonte Goldstein et all
20 Diagramas de Raios Ângulos reais são pequenos ~ 0,57 o Williams e Carter
21 Williams e Carter Lentes Variáveis
22 Plano Focal e Plano Imagem Williams e Carter
23 Como funcionam? Jeol
24 Lentes Magnéticas Aspecto interno e externo de uma lente magnética Williams e Carter
25 Força de Lorentz Goldstein et all
26 Equações Paraxiais As imagens giram em microscopia eletrônica Para maior V é necessário maior B Williams e Carter
27 Tipos de Lentes Magnéticas Williams e Carter
28 Aberrações - Esférica Williams e Carter
29 Aberturas Material: Pt ou Mo Williams e Carter
30 Espalhamento por fenda Se a abertura for muito pequena este efeito pode ser significativo
31 Aberrações - Cromática Williams e Carter ΔE é a perda de energia na amostra ~ ev para amostra de espessura ηm
32 Aberrações - Astigmatismo Jeol
33 Resolução Teórica Critério de Rayleigh Williams e Carter
34 Resolução Prática Ângulo de coleta ótimo: Resolução do Microscópio
35 Aberturas
36 Profundidade de Campo Profundidade de Foco Profundidade de Campo d ob ~ 2 Å β ob ~ 10 mrad D ob ~ 20 ηm d ob ~ 2 ηm β ob ~ 10mrad D ob ~ 200 ηm Profundidade de Foco Williams e Carter d ob ~ 2 Å β ob ~ 10 mrad M T ~ x D im ~ 5 km d ob ~ 2 ηm β ob ~ 10 mrad M T ~ x D im ~ 5 m
37 Características gerais do feixe Quase paralelo (0,05-1º) Diâmetro (1 ηm 1 µm) Corrente (1 ρa 1 µa) Energia MEV 1-40 kev MET kev (exige correção relativística) Coerência depende da fonte
38 Interação Elétron-Amostra Feixe coerente incidente Elétrons retroespalhados Elétrons Auger Elétrons secundários Raios-X Característicos Raios-X Contínuos Luz Elétrons absorvidos Amostra Pares elétron-buraco Elétrons espalhados elasticamente Elétrons espalhados inelasticamente Feixe direto
39 Espalhamento Elástico Elétrons espalhados elasticamente ( foward ) Elétrons Retroespalhados elasticamente Inelástico Elétrons espalhados inelasticamente ( foward ) Elétrons Retroespalhados inelasticamente Elétrons Secundários Elétrons Auger Raios-X Luz Fónons Plásmons
40 Seção de Choque Avalia a probabilidade de espalhamento por um átomo isolado: Pode-se tomar também a seção de choque com a área efetiva para a ocorrência de um determinado evento
41 Seção de Choque Probabilidade de ocorrência de um evento: N número de eventos n i número de partículas incidentes n t número de alvos
42 Livre Caminho Médio Distância entre eventos de espalhamento: (cm) A massa atômica N 0 número de Avogrado ρ densidade
43 Espalhamento Elástico Espalhamento elástico de Rutherford para um ângulo maior do que θ: E é a energia do feixe Z é o número atômico
44 Espalhamento Elástico
45 Raios-X Contínuos (Bremsstrahlung) Fruto da desaceleração dos elétrons do feixe devido à interação coulômbica com os átomos da amostra Qualquer quantidade de energia pode ser perdida Williams e Carter Jeol
46 Geração de Raios-X Goodhew et all
47 Emissão de Raios-X Característicos Williams e Carter
48 Raio X Williams e Carter
49
50 Emissão de Elétrons Elétrons emitidos Auger (300eV-3keV) Possuem energia característica das transições de decaimento Secundários Lentos (E 50eV) provenientes das bandas de condução e valência Rápidos (E< E 0 /2) provenientes de camadas mais internas Williams e Carter
51 Energia dos Elétrons Emitidos I BSE II FSE III - SE
52 Volume de Interação em Amostras Massivas
53 Volume de Interação em Amostras Massivas
54 Volume de Interação em Amostras Massivas Williams e Carter
55 Volume de Interação em Amostras Massivas C Fe Ag U
56 Resolução e Origem em Amostras Massivas e- Secundários ~ 1-5 ηm e- Retroespalhados ~ 0,1 µm Raios-X ~1-5 µm
57 Efeito da Inclinação em Amostras Masssivas 0 o 45 o 60 o
58 Volume de Interação em Folha Fina Williams e Carter
59 Emissão de Luz A luz emitida pode ser utilizada para caracterizar alterações na banda de gap como fruto de dopagens, segregações em interfaces... Williams e Carter
60 Plásmons Podem ocorrer em qualquer material com elétrons fracamente ligados ou livres a 0 é o raio de Bohr θ E = E P /2E 0 (E P ~15-25eV) Podem ser utilizados para avaliar a espessura de amostras em MET Williams e Carter
61 Fónons Vibrações na rede (mesmo em materiais amorfos) Ângulo de espalhamento ~ 5-15 mrad Perda de energia ~ 0,1 ev Espalhamento ~ Z 3/2 Aumenta com a temperatura Gera um ruído de fundo sem informação sobre a amostra Williams e Carter
62 Referências Goldstein, J. I. et alli., Scanning Electron Microscopy and X-Ray Analysis, Ed. Plenum, New York, Goodhew, P. J. et all, Electron Microscopy and Analysis, Ed. Taylor & Francis, London, Williams, D. B. e Carter, C. B., Transmission Electron Microscopy, Ed. Plenum, New York, Apostila da Jeol MET
63 63 André L. Pinto Bem vindos ao mundo da microscopia eletrônica!
CENTRO BRASILEIRO DE PESQUISAS FÍSICASF. 1
CENTRO BRASILEIRO DE PESQUISAS FÍSICASF 1 http://www.cbpf.br MICROSCOPIA ELETRÔNICA DE VARREDURA ANDRÉ LUIZ PINTO CBPF Roteiro Aplicações da Microscopia à Nanotecnologia Introdução O que é Nanotecnologia?
TÉCNICAS DE MICROSCOPIA ELETRÔNICA DE VARREDURA PARA CARACTERIZAÇÃO DE MATERIAIS PMT-5858
TÉCNICAS DE MICROSCOPIA ELETRÔNICA DE VARREDURA PARA CARACTERIZAÇÃO PMT-5858 3ª AULA Interação entre elétrons e amostra Prof. Dr. André Paulo Tschiptschin (PMT-EPUSP) 1. INTERAÇÃO ELÉTRONS AMOSTRA O QUE
interação feixe de elétrons-amostra [3] Propriedades do elétron:
[3] Propriedades do elétron: 1> Comprimento de onda do feixe de elétrons (λ): V [kv] λ [pm] 1 38,7 5 17,3 10 12,2 15 9,9 20 8,6 25 30 120 200 7,6 6,9 3,3 2,5 λ = λ = 2 e V m 1,5 h e 2 + ( ) 6 2 V + 10
Técnicas de Caracterização de Materiais
Técnicas de Caracterização de Materiais 4302504 2º Semestre de 2016 Instituto de Física Universidade de São Paulo Professores: Antonio Domingues dos Santos Manfredo H. Tabacniks 23 e 25 de agosto Energia
Técnicas de Caracterização de Materiais
Técnicas de Caracterização de Materiais 4302504 2º Semestre de 2016 Instituto de Física Universidade de São Paulo Professores: Antonio Domingues dos Santos Manfredo H. Tabacniks 25 e 30 de agosto Microscopia
Microscopia para Microeletrônica
QuickTime and a Photo - JPEG decompressor are needed to see this picture. Microscopia para Microeletrônica Prof. Dr. Antonio Carlos Seabra [email protected] Microscopia Tipos de análise Morfológica (espessura,
Descoberta dos Raios-X
Descoberta dos Raios-X 1895 - Wilhelm Conrad Roentgen Experimentos com tubo de raios catódicos brilho em um cristal fluorescente perto do tubo mesmo mantendo o tubo coberto Raios invisíveis, natureza desconhecida:
1º ETAPA PROVA DE MÚLTIPLA ESCOLHA (ELIMINATÓRIA)
CONCURSO PÚBLICO DE ESPECIALISTA EM LABORATÓRIO EDITAL EP - 006/2012 1º ETAPA PROVA DE MÚLTIPLA ESCOLHA (ELIMINATÓRIA) NOME: Assinatura DATA: 11/04/2012 INSTRUÇÕES: 1. Somente iniciar a prova quando for
Interação da Radiação Eletromagnética com a Matéria Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Interação da Radiação Eletromagnética com a Matéria Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa RADIAÇÃO ELETROMAGNÉTICA E < 1,4 ev - UV A, B e C - Visível - Infra-vermelho - Microondas - Ondas de
Métodos Experimentais em Física dos Materiais FMT2501
Métodos Experimentais em Física dos Materiais FMT2501 2º Semestre de 2009 Instituto de Física Universidade de São Paulo Professor: Antonio Dominguesdos Santos E-mail: [email protected] Fone: 3091.6886
Introdução [1] MICROSCOPIA ELETRÔNICA DE VARREDURA
[1] Universidade Estadual Paulista UNESP Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica MICROSCOPIA ELETRÔNICA DE VARREDURA Carga didática: 4 horas/semana (teóricas/práticas)
Dosimetria e Proteção Radiológica
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Introdução às interações de partículas carregadas Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Introdução Radiação diretamente ionizante Partículas carregadas rápidas pesadas Partículas carregadas
Técnicas de microscopia eletrônica de varredura para caracterização de materiais PMT-5858
Técnicas de microscopia eletrônica de varredura para caracterização de materiais PMT-5858 Prática Laboratorial Prof. Dr. André Paulo Tschiptschin (PMT-EPUSP) DEPENDÊNCIA ENTRE OS CONCEITOS BÁSICOS DE OPERAÇÃO
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
RAIOS-X (RAIOS RÖNTGEN)
RAIOS-X (RAIOS RÖNTGEN) Descobertos por Wilhelm Röntgen (1895) Primeiro prêmio Nobel em física (1901) Radiação extremamente penetrante (
SEL FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel (Sub-área de Imagens Médicas)
SEL 5705 - FUNDAMENTOS FÍSICOS DOS PROCESSOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel (Sub-área de Imagens Médicas) 5. INTERAÇÃO DOS RAIOS X COM A MATÉRIA 5.1. Atenuação e Absorção ATENUAÇÃO:
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de novembro de 2011 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
4. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO, TÉCNICAS ESPECTROSCÓPICAS, NANOINDENTAÇÃO.
Nanoidentação. 49 4. MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO, TÉCNICAS ESPECTROSCÓPICAS, NANOINDENTAÇÃO. 4.1 Microscopia Eletrônica de Transmissão (TEM) A microscopia eletrônica de transmissão é uma ferramenta
PRODUÇÃO DE RAIOS X. Produção de raios X Tubo de raios X. Produção de raio x Tubo de raios X
PRODUÇÃO DE RAIOS X Prof. André L. C. Conceição DAFIS Curitiba, 17 de abril de 2015 Produção de raios X Tubo de raios X Os raios X são uma das maiores ferramentas médicas de diagnóstico desde sua descoberta
Microscopia eletrônica de Transmissão: Aspectos básicos e aplicações. Douglas Rodrigues Miquita Centro de Microscopia da UFMG
Microscopia eletrônica de Transmissão: Aspectos básicos e aplicações. Douglas Rodrigues Miquita Centro de Microscopia da UFMG Parte I Introdução aos aspectos básicos Por que precisamos de TEM 2 Prólogo
Efeito Fotoelétrico. Dosimetria e Proteção Radiológica. Efeito Fotoelétrico
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
MicroscopiaElectrónica SEM, TEM
12 MicroscopiaElectrónica SEM, TEM http://en.wikipedia.org/wiki/scanning_electron_microscope http://www.mos.org/sln/sem/ http://mse.iastate.edu/microscopy/choice.html http://en.wikipedia.org/wiki/transmission_electron_microscope
PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS
UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS Introdução Propriedades
O Elétron como Onda. Difração de Bragg
O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 MODELOS ATÔMICOS Primeira Edição junho de 2005 CAPÍTULO 4 MODELOS ATÔMICOS ÍNDICE 4.1- Modelo de Thomson 4.2- Modelo de Rutherford 4.2.1-
CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento)
CF373-Mecânica Quântica II (Uma Abordagem Elementar à Teoria Quântica do Espalhamento) Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná [email protected] Espalhamento por
Laboratório de Sistemas de Detecção Seminários do LSD. Rio de Janeiro, Brasil 11 de Outubro de Detectores a Gás
Laboratório de Sistemas de Detecção Seminários do LSD Rio de Janeiro, Brasil 11 de Outubro de 2016 Detectores a Gás Parte 1: Princípio de Funcionamento Paulo Marinho, DSc. Coordenação de Instalações Nucleares
Interação de partículas carregadas rápidas com a matéria parte 3. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Interação de partículas carregadas rápidas com a matéria parte 3 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Partículas carregadas leves Poder de freamento por colisão para elétrons e pósitrons Poder
Estrutura física da matéria Difração de elétrons
O que você pode aprender sobre este assunto... - Reflexão de Bragg - Método de Debye-Scherer - Planos de rede - Estrutura do grafite - Ondas de matéria - Equação de De Broglie Princípio: Elétrons acelerados
TÉCNICAS DE MICROSCOPIA ELETRONICA PARA CARCATERIZAÇÃO DE MATERIAIS PMT-5858
TÉCNICAS DE MICROSCOPIA ELETRONICA PARA CARCATERIZAÇÃO DE MATERIAIS PMT-5858 5ª AULA Detectores de Raios-X Prof. Dr. Antonio Ramirez Londoño (LNLS) Prof. Dr. André Paulo Tschiptschin (PMT) 1. REVISÃO --
Difração de Elétrons
UNIVERSIDADE DE SÃO PAULO Licenciatura em Ciências Exatas SLC-567 Práticas de Ensino de Ciências do Primeiro Grau Profº Euclydes Marega Jr. Difração de Elétrons Carlos Alberto de Souza Claudio Bonse Bretas
INTERAÇÃO DA RADIAÇÃO COM A MATERIA
INTERAÇÃO DA RADIAÇÃO COM A MATERIA Prof. André L. C. Conceição DAFIS Curitiba, 4 de abril de 015 Interação de Radiação Eletromagnética com a matéria Interação da radiação com a matéria Radiação incide
O espectro eletromagnético
Difração de Raios X O espectro eletromagnético luz visível raios-x microondas raios gama UV infravermelho ondas de rádio Comprimento de onda (nm) Raios Absorção, um fóton de energia é absorvido promovendo
Produção e qualidade dos raios X - Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Produção e qualidade dos raios X - Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa FÍSICA MÉDICA NA HISTÓRIA FÍSICA MÉDICA NA HISTÓRIA E como os raios X podem ser gerados? Radiação diretamente ionizante
LISTA 1 PARA ENTREGAR. Raios ultravioletas
LISTA 1 PARA ENTREGAR 1) a) Radiação é energia em trânsito. É uma forma de energia emitida por uma fonte e transmitida por meio do vácuo, do ar ou de meios materiais. b) Radiações ionizantes são partículas
QUESTÕES DE FÍSICA MODERNA
QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de raios X PRINCÍPIO E OBJETIVOS Feixes de raios X são analisados através de difração por monocristais, para
Dosimetria e Proteção Radiológica
Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade
Física Experimental C. Coeficiente de Atenuação dos Raios Gama
Carlos Ramos (Poli USP)-2016/Andrius Poškus (Vilnius University) - 2012 4323301 Física Experimental C Coeficiente de Atenuação dos Raios Gama Grupo: Nome No. USP No. Turma OBJETIVOS - Medir curvas de atenuação
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA Edição de junho de 2014 CAPÍTULO 3 MODELOS ATÔMICOS E A VELHA TEORIA QUÂNTICA ÍNDICE 3.1-
SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO
FÍSICA IV PROF. DR. DURVAL RODRIGUES JUNIOR SUGESTÕES DE EXERCÍCIOS PARA A SEGUNDA AVALIAÇÃO Como na Biblioteca do Campus I e do Campus II temos bom número de cópias do Halliday e poucas do Serway, os
Introdução à FIB Focused Ion Beam. Henrique Limborço Microscopista CM-UFMG Prof. Departamento de Física UFMG
Introdução à FIB Focused Ion Beam Henrique Limborço Microscopista CM-UFMG Prof. Departamento de Física UFMG Resumo Origem da técnica Exemplos de aplicação Fonte de Íons Formação de imagens em MEV Sputtering
Electron Energy-Loss Spectroscopy (EELS) Erico T. F. Freitas Centro de Microscopia da UFMG
Electron Energy-Loss Spectroscopy (EELS) Erico T. F. Freitas Centro de Microscopia da UFMG 1 Tópicos Visão geral Alguns princípios Instrumentação Aplicações e exemplos 2 Possibilidades Mais do que composição
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker
Capítulo 38 Fótons e Ondas de Matéria Questões Múltipla escolha cap. 38 Fundamentos de Física Halliday Resnick Walker 1) Qual é o nome das partículas associadas ao campo eletromagnético? a) Fônons. b)
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de junho de 2014 CAPÍTULO 4 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 4.1- Postulados de
CAPÍTULO 41 HALLIDAY, RESNICK. 8ª EDIÇÃO
FÍSICA QUÂNTICA: CONDUÇÃO M SÓLIDOS Prof. André L. C. Conceição DAFIS CAPÍTULO 41 HALLIDAY, RSNICK. 8ª DIÇÃO Condução em sólidos Revisão 1) Átomos podem ser agrupados em famílias 1 Revisão 2) Momento angular
Introdução. Carlos Alexandre Wuensche Processos Radiativos I
Introdução Carlos Alexandre Wuensche Processos Radiativos I 1 1 GERAÇÃO E EMISSÃO DE ENERGIA NAS ESTRELAS CONSIDERAÇÕES DE CARÁTER GERAL: ENERGIA E COMPOSIÇÃO ESPECTRAL determinadas a partir do estudo
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de janeiro de 2009 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
Laboratório de Estrutura da Matéria II
Roteiro: Prof. Dr. Jair Freitas UFES - Vitória Laboratório de Estrutura da Matéria II Difração de elétrons PRINCÍPIO E OBJETIVOS Feixes eletrônicos de alta energia são difratados por um alvo de grafite
O Efeito Fotoelétrico
O Efeito Fotoelétrico O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) suficientemente energética, ou seja,
Lista de Exercícios - Física Quântica - UNIDADE 1
Lista de Exercícios - Física Quântica - UNIDADE 1 Problemas e questões baseados no D. Halliday, R. Resnick e J. Walker, Fundamentos de Física, 6ª ed. - Capítulos 39, 40 e 41. Questões 1. Como pode a energia
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA Edição de janeiro de 2009 CAPÍTULO 5 PROPRIEDADES ONDULATÓRIAS DA MATÉRIA ÍNDICE 5.1- Postulados
Tecnicas analiticas para Joias
Tecnicas analiticas para Joias Técnicas avançadas de analise A caracterização de gemas e metais da área de gemologia exige a utilização de técnicas analíticas sofisticadas. Estas técnicas devem ser capazes
Propriedades Elétricas
Propriedades Elétricas Lei de Ohm V RI J E V - voltagem entre terminais separados por distância l R - resistência elétrica I - corrente elétrica que atravessa uma seção transversal de área A R onde l
AES/XPS ESPECTROSCOPIA DE ELECTRÕES AUGER ESPECTROSCOPIA DE FOTOELECTRÕES X. Doutora M. F. Montemor Instituto Superior Técnico Julho de 2002
ESPECTROSCOPIA DE ELECTRÕES AUGER ESPECTROSCOPIA DE FOTOELECTRÕES X Doutora M. F. Montemor Instituto Superior Técnico Julho de 2002 ESPECTROSCOPIA DE ELECTRÕES AUGER (AES) ESPECTROSCOPIA DE FOTOELECTRÕES
Aula anterior. Equação de Schrödinger a 3 dimensões. d x 2m - E -U. 2m - E -U x, y, z. x y z x py pz cin cin. E E ( x, y,z ) - 2m 2m x y z
6/Maio/2013 Aula 21 Efeito de túnel quântico: decaimento alfa. Aplicações: nanotecnologias; microscópio por efeito de túnel. Equação de Schrödinger a 3 dimensões. Átomo de hidrogénio Modelo de Bohr 8/Maio/2013
ANDRÉ LUIZ PINTO CBPF
1 MICROSCOPIA ELETRÔNICA ANDRÉ LUIZ PINTO CBPF Roteiro Introdução Fundamentos Fontes de elétrons Lentes de elétrons Interação elétron-matéria Microscópio Eletrônico de Varredura Microscópio Eletrônico
Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA
Raios-x Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Materiais Radioativos 1896 o físico Francês Becquerel descobriu que sais de Urânio emitia radiação capaz de produzir sombras de
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Primeira Edição junho de 2005 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
Introdução à Nanotecnologia
Introdução à Nanotecnologia Ele 1060 Aula 6 2010-01 Microscopia Importância Visualizar objetos muitos pequenos Caracterizar materiais; Estudar propriedades; Observar defeitos; Investigar comportamentos.
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS
CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes DIVISÃO DE HIGIENE, SEGURANÇA E MEDICINA DO TRABALHO SETOR DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO
Capítulo 9 Colisões. Num processo de colisão de 2 partículas muitas coisas podem acontecer:
Capítulo 9 Colisões Num processo de colisão de 2 partículas muitas coisas podem acontecer: O processo de colisão pode ocorrer tanto por forças de contacto como no jogo de bilhar como por interação à distância
Técnicas de Caracterização de Materiais
Técnicas de Caracterização de Materiais 4302504 2º Semestre de 2016 Instituto de Física Universidade de São Paulo Professores: Antonio Domingues dos Santos Manfredo H. Tabacniks 20 de setembro Caracterização
FÍSICA MODERNA I AULA 06
Universidade de São Paulo Instituto de Física FÍSICA MODERNA I AULA 06 Profa. Márcia de Almeida Rizzutto Pelletron sala 220 [email protected] 1o. Semestre de 2015 Monitor: Gabriel M. de Souza Santos Página
SEL PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel
SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel Max Planck (1901): teoria dos quanta E depende da freqüência de radiação (ou de λ): E = h ν ν = c / λ E = h c / λ 4. PRODUÇÃO
Decaimento radioativo
Decaimento radioativo Processo pelo qual um nuclídeo instável transforma-se em outro, tendendo a uma configuração energeticamente mais favorável. Tipos de decaimento: (Z, A) * (Z, A) (Z, A) (Z, A)! γ!
PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica
Universidade Federal do Rio de Janeiro Instituto de Física Física IV 2019/1 Lista de Exercícios do Capítulo 5 Origens da Teoria Quântica 1) Calcule a energia de um quantum de luz de comprimento de onda
4 Técnicas de Caracterização
4 Técnicas de Caracterização 4.1. Espectroscopia Raman A espectroscopia Raman é uma ferramenta experimental muito poderosa no estudo das propriedades dos nanotubos de carbono, uma vez que através dela
Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta:
23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 1 Expansão
Microscopia de transmissão de elétrons - TEM TEM. NP de Magnetita. Microscópio de Alta-resolução - HRTEM. Nanocristais Ni 03/04/2014
CQ135 FUNDAMENTOS DE QUÍMICA INORGÂNICA IV Microscopia de transmissão de elétrons - TEM Prof. Dr. Herbert Winnischofer [email protected] Técnicas de caracterização Microscopia e difração de raio X TEM NP de
Introdução a cristalografia de Raios-X
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE QUÍMICA - DQMC Introdução a cristalografia de Raios-X Prof Karine P. Naidek Introdução a cristalografia de Raios-X
Capítulo 7 Interação da Radiação gama e X com a matéria
Física das Radiações e Dosimetria Capítulo 7 Interação da Radiação gama e X com a matéria Dra. Luciana Tourinho Campos Programa Nacional de Formação em Radioterapia Introdução Há cinco tipos de interação
Cap. 38 Fótons e ondas de matéria
Cap. 38 Fótons e ondas de matéria Problemas com a mecânica clássica: Radiação de corpo negro; Efeito fotoelétrico; O fóton; Efeito fotoelétrico explicado; Exemplo prático: fotoemissão de raios-x; Efeito
Aplicações da Mecânica Quântica
Aplicações da Mecânica Quântica LASER I Amplificação da luz por emissão estimulada da radiação As bases teóricas para o laser foram estabelecidas por Einstein em 1917. O primeiro laser foi construído em
2. Propriedades Corpusculares das Ondas
2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas
Ligação metálica corrente elétrica
Ligações Metálicas Ligação metálica É o tipo de ligação que ocorre entre os átomos de metais. Quando muitos destes átomos estão juntos num cristal metálico, estes perdem seus elétrons da última camada.
Física Experimental V Experimentos com raios X
4300313 Raios X EMY -2 Física Experimental V 4300313 Experimentos com raios X Os objetivos principais dos experimentos se relacionam à produção de raios X (por Bremsstrahlung e por fluorescência), à atenuação
Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote
Aula 1 Conceitos Básicos sobre Radiação Introdução O que vamos discutir? Tipos e características das radiações Teoria dos quanta Dualidade onda-partícula Microscópio eletrônico A radiação é a propagação
Monografia. VII Mostra da Pós-Graduação do Instituto de Física da UFRGS PORTO ALEGRE, AGOSTO DE 2008
Monografia Crescimento de Nanofios de ZnO Emissão de Campo JOÃO W. L. DE OLIVEIRA Daniel L. Baptista (Orientador) José R. Galvão André L. F. Cauduro Henri I. Boudinov VII Mostra da Pós-Graduação do Instituto
