Lógica Computacional
|
|
|
- Maria Laura Franca Macedo
- 8 Há anos
- Visualizações:
Transcrição
1 Aula Teórica 22: Departamento de Informática 16 de Maio de 2011
2 Introdução Revisão do procedimento Exemplo em Primeira Ordem Considere-se o seguinte conjunto de cláusulas, assumindo as variáveis universalmente quantificadas. {{ Q(x, y), P(f (x), y)}, { P(f (x), y), R(x, y, z)}} Um resolvente das duas cláusulas em cima é a cláusula R 1 = { Q(x, y), R(x, y, z)}. Considere-se agora a cláusula { P(z, y), R(x, y, z)}. Não se consegue resolve-la directamente com a primeira cláusula do conjunto acima, mas substituindo f (x) em z obtém-se a cláusula { P(f (x), y), R(x, y, f (x))} que já permite encontrar um resolvente: R 2 = { Q(x, y), R(x, y, f (x))}. Note-se que R 2 é consequência de R 1 : se esta é satisfeita (para qualquer z), então é satisfeita para z = f (x).
3 Cláusulas Cláusulas de Primeira Ordem Definição Considere-se uma fórmula ϕ F X Σ tal que FNS(ϕ), i.e., ϕ = x 1... x n ψ sendo ψ uma fórmula de primeira ordem sem quantificadores tal que FNC(ψ). Como todas as variáveis estão universalmente quantificadas (as livres estão-o implicitamente), ϕ pode ser escrita como um conjunto de cláusulas. Seja C(ψ) o conjunto de cláusulas que se obtém de ψ (que está em FNC). Define-se C(ϕ) = C(ψ).
4 Cláusulas Cláusulas de Primeira Ordem Lema Para qualquer ϕ FΣ X tal que FNS(ϕ), existe um único C(ϕ) Para quaisquer ϕ, ψ FΣ X, se C(ϕ) = C(ψ) então ϕ ψ. Estes resultados derivam dos respectivos da Lógica Proposicional. Literais Na Lógica de Primeira Ordem chamam-se literais às fórmulas atómicas ( ou predicados) ou à sua negação ( ou negação de predicados).
5 Introdução Motivação Substituição Exemplo No exemplo atrás, encontrámos uma substituição (z por f (x)) que converteu { P(z, y), R(x, y, z)} em { P(f (x), y), R(x, y, f (x))}, permitindo encontrar um resolvente de duas cláusulas. Dado um conjunto de literais ocorrendo em duas cláusulas, para encontrar um resolvente é necessário encontrar substituições que façam iguais literais envolvendo o mesmo predicado. Sejam L = {P(f (x), y), P(z, w)} e sub = {f (x)/z}{w/y}. Então Lsub = {P(f (x), y), P(f (x), w)}{w/y} = {P(f (x), w)}
6 Definições Definição Um conjunto de literais L é unificável se existe uma substituição sub que aplicada a L torna o conjunto singular (i.e., os vários literais convertem-se num só). Unificações não são necessariamente únicas Seja L = {P(f (x), y), P(z, w)}. Vimos que se sub 1 = {f (x)/z}{w/y} então Lsub 1 = {P(f (x), w)}. Claro que se sub 2 = {w/y}{f (x)/z} também Lsub 2 = {P(f (x), w)}. Mas se sub 3 = {f (x)/z}{a/x}{b/y} então Lsub 3 = {P(f (x), y), P(f (x), b)}{a/x}{b/y} = {P(f (a), y), P(f (a), b)}{b/y} = {P(f (a), b)}.
7 Definições Unificador mais geral Definição Dado um conjunto de literais L, a substituição sub é o unificador mais geral de L (e escreve-se umg(l)), se é um unificador de L e se qualquer outro unificador sub de L é tal que subsub = sub. Proposição Um conjunto finito de literais é unificável se e só se tem um unificador mais geral. Prova-se a proposição apresentando um algoritmo que, dado um conjunto finito de literais, ou retorna a mensagem não unificável ou retorna o seu unificador mais geral.
8 Algoritmo Algoritmo de unificação Seja L um conjunto finito de literais e faça-se (L 0, sub 0 ) = (L, ). Para dado k 0, se L k é singular então existem sub i para 1 i k tal que sub 0 sub 1 sub k é o unificador mais geral de L k. Caso contrário, existem L i, L j L tal que para P SP n L i = P(a 1,..., a m 1, a m,..., a n ) e L j = P(a 1,..., a m 1, a m,..., a n). Suponha-se que o l-ésimo símbolo de a m é a variável x e o de a m é o termo t (que não contém x). Então, e itera-se este processo. sub k+1 = {t/x} e L k+1 = L k sub k+1 Se nenhuma das condições anteriores se verifica, o algoritmo retorna L não é unificável.
9 Algoritmo Exemplo de aplicação do algoritmo de unificação Seja L = {R(f (g(x)), a, x), R(f (g(b)), a, b), R(f (y), z, b)} e (L 0, sub 0 ) = (L, ). Fazendo sub 1 = {g(b)/y} obtém-se L 1 = L 0 sub 1 = {R(f (g(x)), a, x), R(f (g(b)), a, b), R(f (g(b)), z, b)} Como L 1 não é singular, procura-se nova substituição. Fazendo sub 2 = {b/x} obtém-se L 2 = L 1 sub 2 = {R(f (g(b)), a, b), R(f (g(b)), z, b)} Como L 2 não é singular, procura-se nova substituição. Fazendo sub 3 = {a/z} obtém-se L 3 = L 2 sub 3 = {R(f (g(b)), a, b)} Como L 3 é singular, o unificador mais geral de L é sub = sub 0 sub 1 sub 2 sub 3.
10 Algoritmo Outro exemplo de aplicação do algoritmo de unificação Seja L = {R(f (g(x)), a, x), R(f (g(a)), a, b), R(f (y), a, b)} e (L 0, sub 0 ) = (L, ). Fazendo sub 1 = {g(a)/y} obtém-se L 1 = L 0 sub 1 = {R(f (g(x)), a, x), R(f (g(a)), a, b)} Como L 1 não é singular, procura-se nova substituição. Fazendo sub 2 = {a/x} obtém-se L 2 = L 1 sub 2 = {R(f (g(a)), a, a), R(f (g(a)), a, b)} Como L 2 não é singular, procura-se nova substituição. Como não há mais variáveis, não há nenhuma substituição que unifique os literais. Logo, o algoritmo retorna L não unificável.
11 Algoritmo Outro exemplo de aplicação do algoritmo de unificação Seja L = {R(f (g(x)), a, b), R(f (g(a)), a, b), R(f (x), a, b)} e (L 0, sub 0 ) = (L, ). Fazendo sub 1 = {g(a)/x} obtém-se L 1 = L 0 sub 1 = {R(f (g(g(a))), a, b), R(f (g(a)), a, b)} Como L 1 não é singular, procura-se nova substituição. Como não há mais variáveis, não há nenhuma substituição que unifique os literais. Logo, o algoritmo retorna L não unificável. Em geral, se L contém um literal como P(x) e outro como P(f (x)), não será unificável.
12 Algoritmo Correcção do algoritmo de unificação Prova Note-se que como o conjunto de literais L é finito, o número de variáveis que ocorrem em L também o é. Logo, o algoritmo termina sempre após um número finito de passos. Caso o algoritmo retorne L não unificável, pelos casos analisados atrás vê-se que L o é de facto. Assuma-se então que o algoritmo retorna como unificador mais geral sub = sub 0 sub 1 sub k, com k 0. Falta mostrar que sub é de facto o unificador mais geral. Seja sub outro unificador de L. Como sub 0 = tem-se que sub 0 sub = sub. Suponha-se que sub 0 sub n sub = sub, para algum 0 n k; então L n sub = Lsub 0 sub n sub = Lsub, que é singular, ou seja, se sub unifica L também unifica L n.
13 Algoritmo Correcção do algoritmo de unificação Conclusão da prova A prova termina por indução natural em n: considere-se que 1 sub n+1 = {t/x} (onde x não ocorre em t); e que 2 para L i, L j L se tem que para P SP n L i = P(a 1,..., a m 1, x,..., a n ) e L j = P(a 1,..., a m 1, t,..., a n). Como por hipótese sub é unificador de L n, tem-se que xsub = tsub, logo sub n+1 sub = {t/x}sub = sub. Por hipótese de indução, para qualquer n < k tem-se que sub 0 sub n+1 sub = sub, logo também sub 0 sub k sub = sub e portanto sub 0 sub k é o unf (L).
Lógica Computacional
Aula Teórica 20: Forma Normal de Skolem e António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
Lógica Computacional
Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios
Lógica Computacional
Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
Lógica Computacional
Aula Teórica 21: resolução em Primeira Ordem António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
Lógica Matemática - Quantificadores
Lógica Matemática - Quantificadores Prof. Elias T. Galante - 2017 Quantificador Universal Seja p(x) uma sentença aberta em um conjunto não-vazio A e seja V p o seu conjunto verdade: V p = {x x A p(x)}.
Lógica Computacional (CC2003)
Lógica Computacional (CC2003) Nelma Moreira Lógica Computacional 24 Conteúdo 1 Introdução à Programação em Lógica 1 1.1 Resolução SLD............................ 1 1 Introdução à Programação em Lógica
Lógica Computacional DCC/FCUP 2017/18
2017/18 1 Lógica de primeira ordem Linguagens da lógica de primeira ordem Termos Fórmulas Semântica de Lógica de primeira ordem Lógica de primeira ordem Na lógica proposicional não é possível representar
DIM Resolução e método tableaux DIM / 37
DIM0436 21. Resolução e método tableaux 20141014 DIM0436 20141014 1 / 37 Sumário 1 Demostração automática de fórmulas 2 Resolução 3 O método tableaux DIM0436 20141014 2 / 37 1 Demostração automática de
Lógica para computação - Linguagem da Lógica de Predicados
DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem
Fundamentos de Lógica Matemática
Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução
Lógica Computacional
Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 3 Novembro 2016 Lógica Computacional
Lógica Computacional
Aula Teórica 15: António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade Engenharia, LISP
Lógica Computacional
Aula Teórica 5: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)
Capítulo 3 Lógica de Primeira Ordem
Capítulo 3 Lógica de Primeira Ordem Lógica para Programação LEIC - Tagus Park 1 o Semestre, Ano Lectivo 2007/08 c Inês Lynce and Luísa Coheur Bibliografia Martins J.P., Lógica para Programação, Capítulo
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS
MÓDULO II - PARTE II LÓGICA DOS PREDICADOS Quantificadores Professora Dr. a Donizete Ritter 26 de julho de 2017 Ritter, D. (UNEMAT/DEAD/SI) LÓGICA 26 de julho de 2017 1 / 18 Sumário 1 INTRODUÇÃO 2 TIPOS
Lógica Computacional Aulas 8 e 9
Lógica Computacional Aulas 8 e 9 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 11 Integridade e completude dum sistema dedutivo D 1 111 Integridade do sistema de dedução natural DN 1 112 3 12 Decidibilidade
SCC Capítulo 2 Lógica de Predicados
SCC-630 - Capítulo 2 Lógica de Predicados João Luís Garcia Rosa 1 1 Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - São Carlos http://www.icmc.usp.br/~joaoluis
Os Fundamentos: Lógica de Predicados
Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG - 2019/01
Programação em Lógica. UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010
Programação em Lógica UCPEL/CPOLI/BCC Lógica para Ciência da Computação Luiz A M Palazzo Maio de 2010 Roteiro Introdução Conceitos Básicos Linguagens Lógicas Semântica de Modelos Semântica de Prova Programação
. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.
Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira
1 Lógica de primeira ordem
1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
Lógica Computacional
Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na
Fundamentos 1. Lógica de Predicados
Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional
Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais
DAINF - Departamento de Informática Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais Prof. Alex Kutzke (http://alex.kutzke.com.br/courses)
Conteúdo. Correção de Exercício Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42)
Conteúdo Correção de Exercício Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Correção exercicios 11) P(x) = x = x 2 P(0) P(1) P(2) 12) Q(x) = x + 1 = 2x Q(0) Q(-1) Q(1) Correção
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Lógica Computacional
Aula Teórica 4: Semântica da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
Lógica Computacional
Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 24 Outubro 2017 Lógica Computacional
Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017
Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4
Lógica para Computação
Aula 19 - Lógica de Predicados 1 Faculdade de Informática - PUCRS October 6, 2015 1 Este material não pode ser reproduzido ou utilizado de forma parcial sem a permissão dos autores. Sinopse Lógica de Predicados
Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.
Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.
FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES
FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número
Cálculo de Predicados
Cálculo de Predicados (Lógica da Primeira Ordem) Prof. Tiago Semprebom, Dr. Eng. Instituto Federal de Educação, Ciência e Tecnologia Santa Catarina - Campus São José [email protected] 18 de maio de 2013
1 a Lista de Exercícios Matemática Discreta
1 a Lista de Exercícios Matemática Discreta Exercício 1. Faça a tabela verdade para as fórmulas a seguir: a) P Q. b) (S G) ( S G). c) [P (Q P )]. d) (P Q) ( P R). Exercício 2. Com o uso de símbolos predicados
obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.
Lista 1 - Teoria de Anéis - 2013 Professor: Marcelo M.S. Alves Data: 03/09/2013 obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero. 1. Os conjuntos
Predicados e Quantificadores
Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando
Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:
Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento
Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de
Quantificadores, Predicados e Validade
Quantificadores, Predicados e Validade Quantificadores e Predicados Fbfs proposicionais tem uma possibilidade limitada de expressão. Exemplo: Para todo x, x > 0 Ela não pode ser simbolizada adequadamente
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro [email protected] http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
Noções de Lógica Matemática. Domingos Moreira Cardoso Maria Paula Carvalho
Noções de Lógica Matemática Domingos Moreira Cardoso Maria Paula Carvalho Janeiro, 2007 Índice 1 Introdução................................. 2 2 Noções Fundamentais de Lógica Matemática.............. 3
Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009
Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2
Cálculo de Predicados
Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)
Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial
Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por
Descrição do Mundo de Wumpus. Inteligência Artificial
Descrição do Mundo de Wumpus Mundo de Wumpus Mundo de Wumpus -1 Mundo de Wumpus - 2 Mundo de Wumpus - 3 Mundo de Wumpus - 4 Wumpus Outros Pontos Críticos Descrição Lógica do Mundo de Wumpus Identidades
assim são válidas devido à sua estrutura e ao significado dos quantificadores universal e existencial
LÓGICA DE PREDICADOS Na ló predicados uma wff verdadeira significa uma wff vá lida, isto é, uma wff que seja válida em qualquer interpretação possível. AXIOMAS E REGRAS DE INFERêNCIA: wffs predicativas
RACIOCÍNIO LÓGICO. Quantificadores. Prof. Renato Oliveira
RACIOCÍNIO LÓGICO. Prof. Renato Oliveira Os quantificadores são proposições categóricas que transformam sentenças abertas em proposições lógicas, pela quantificação das variáveis. Exemplo: x + 2 > 4 não
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Exercícios Use lógica proposicional para provar os seguintes argumentos: a) A B C B A C b) A B C B C A c) A B B A C C Exercícios Use lógica
Sistema dedutivo. Sistema dedutivo
Sistema dedutivo Estudaremos um sistema dedutivo axiomático axiomas lógicos e axiomas não lógicos (ou esquemas de axiomas) e regras de inferência (ou esquemas de regra) do tipo de Hilbert para a lógica
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO
Definição 3.1: Seja x um número real. O módulo de x, denotado por x, é definido como: { x se x 0 x se x < 0
Capítulo 3 Módulo e Função Módular A função modular é uma função que apresenta o módulo na sua lei de formação. No entanto, antes de falarmos sobre funções modulares devemos definir o conceito de módulo,
Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 12
Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 12 Nelma Moreira (DCC-FC) Fundamentos de Linguagens
Lógica de Predicados
Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores
Primeiro Desao Mestre Kame
Primeiro Desao Mestre Kame Alan Anderson 8 de julho de 2017 O propósito dessa lista é gerar uma intuição numérica das demonstrações abstratas do teoremas famosos de Teoria dos números, de modo que alguns
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Algoritmo da divisão em k[x] 2
AULA Algoritmo da divisão em k[x] 2 META: Introduzir um algoritmo de divisão para anéis de polinômios definidos sobre corpos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar o algoritmo
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Um polinômio com coeficientes racionais é uma escrita formal
Polinômios. Um polinômio com coeficientes racionais é uma escrita formal P (X) = a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n onde a i Q para todo i {0, 1,..., n}. Isso nos dá uma função f : N Q definida
m 1 Grupo A é 3, então ( P + Q R) Como o maior expoente da variável x do polinômio P + Q R Analogamente ao item a, (PQ) = 3.
Grupo A. Seja x o grau do divisor, então p x + q x p q. Sendo r o grau do resto, então r
4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.
4 ÁLGEBRA ELEMENTAR 4.1 Monômios e polinômios: valor numérico e operações. 4.1.1 - Introdução: As expressões algébricas que equacionam os problemas conduzem logicamente à sua solução são denominados polinômios
A Ideia de Continuidade. Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem interrupção.
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 5 A Ideia de Continuidade Quando dizemos que um processo funciona de forma contínua, estamos dizendo que ele ocorre sem
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando
Lógica Computacional. Normalização e Formas Normais. Literais, Cláusulas e Monómios; Formas Normais NNF, CNF e DNF. Algoritmos de Conversão
Lógica Computacional Normalização e Formas Normais Literais, Cláusulas e Monómios; Formas Normais NNF, CNF e DNF Algoritmos de Conversão 2 Outubro 2014 Lógica Computacional 1 Forma Normal Negativa - NNF
Lógica de Primeira Ordem. Capítulo 9
Lógica de Primeira Ordem Capítulo 9 Inferência proposicional Prova semântica: através da enumeração de interpretações e verificação de modelos Prova sintática: uso de regras de inferência Inferência Proposicional
DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de
O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO
Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema
