Radiação térmica e a constante de Planck
|
|
|
- Ilda Branco Aveiro
- 8 Há anos
- Visualizações:
Transcrição
1 Material complementar de física 4 Professores: Márcia e Fabris Radiação térmica e a constante de Planck Em 14 de dezembro de 19, Max Planck apresentou a Sociedade Alemã de Física o seu artigo sobre a eoria da lei de distribuição de energia do espectro normal. Neste artigo Plank tentava explicar as propriedades observadas da radiação térmica que é a radiação eletromagnética emitida pelos corpos aquecidos. O trabalho de Planck foi o início de uma revolução na física, e a data da sua apresentação marca o nascimento da Física Quântica. Este trabalho juntamente com a explicação de uma série de resultados experimentais observados no final do século XIX e início do século XX, levou a concepção das idéias fundamentais da eoria Quântica. ais observações mostraram que as leis da física clássica não se aplicavam a sistemas microscópicos e, portanto surgiu a necessidade de uma nova teoria. A teoria quântica foi o resultado do trabalho de vários cientistas na busca pela explicação de fatos que inicialmente pareciam não ter relação uns com os outros. Só quase em 193 surgiu uma teoria coerente formulada por Schrödinger e outros. Assim como acontece com a eoria da Relatividade, a eoria Quântica é uma generalização da eoria Clássica, ou seja, nos limites de baixas velocidades e corpos macroscópicos estas duas recaem num caso especial que é a eoria Clássica. Dentre as observações experimentais e suas explicações que contribuiram para o desenvolvimento da antiga teoria quântica iremos estudar: Radiação de corpo negro Efeito fotoelétrico Espectros de rais dos átomos em descargas de gás Radiação de corpo negro A temperaturas usuais, a maioria dos corpos é visível para nós não pela luz que emitem mas pela luz que refletem, ou seja, se nenhuma luz incidir sobre eles, não os podemos ver. No entanto, quando estes corpos são aquecidos eles passam a er uma luminosidade própria resultante da radiação térmica do corpo. De toda a radiação térmica emitida pelos corpos aquecidos cerca de 9% se encontra na região do infravermelho e, portanto para que os corpos aquecidos possam ser vistos pelo ser humano eles precisam estar muito quentes. Podemos usar como exemplo o carvão usado nas churrasqueiras, ou um pedaço de ferro que esteja sendo aquecido. No início do aquecimento podemos sentir facilmente a radiação térmica emitida colocando a mão perto do corpo, porém ainda não é possível ver nenhuma luz emitida. Estes corpos só passam a ser visíveis quando a sua temperatura aumenta ainda mais. É possível observar que a cor da luz emitida depende da temperatura do corpo, sendo inicialmente vermelho-escuro passando pelo vermelho-claro, amarelo até que a temperaturas muito elevadas a luz é branco-azulada. No início de século XX os cientistas se interessaram pelo estudo da distribuição espectral desta radiação em função da temperatura. No entanto, esta distribuição depende não só da temperatura mas também da constituição do material do qual o corpo é formado o que torna o seu estudo difícil. Este problema foi resolvido por meio da concepção de um irradiador ideal conhecido como corpo negro. Definição: Sistema ideal capaz de absorver toda a radiação incidente sobre ele. No equilíbrio térmico as taxas de emissão e absorção de energia de um corpo são iguais, ou seja: Se um corpo tem uma absortividade de 1%, e portanto absorve toda a radiação incidente sobre ele independentemente do comprimento de onda desta radiação, a sua emissividade também será de 1% independentemente do comprimento de onda. Assim, a emitância radiante de um corpo negro é função só da temperatura, enquanto que, a emitância radiante de um corpo não-negro depende tanto da temperatura quanto da sua constituição. A emitância radiante é a potência radiante total emitida por unidade de superfície do corpo. Aproximação experimental de um corpo negro Um corpo negro pode ser aproximado experimentalmente por uma cavidade cujas paredes são mantidas a uma temperatura uniforme, que se comunica com o exterior por meio de um orifício de diâmetro pequeno em comparação com as dimensões da cavidade. Podemos
2 entender porque esta cavidade pode ser considerada um corpo negro se imaginarmos o que acontece com a radiação que entra através do orifício. Qualquer que seja o comprimento de onda desta radiação, ela será parte absorvida e parte refletida inúmeras vezes difusamente pelas paredes da cavidade. Desta forma, a radiação que eventualmente venha a sair da cavidade pelo orifício corresponde somente a uma fração desprezível da radiação incidente, e portanto a cavidade se comporta como um absorvedor ideal. Como um absorvedor ideal também é um irradiador ideal, se a cavidade for aquecida e as suas paredes mantidas a uma temperatura uniforme, esta emitirá uma radiação térmica cuja distribuição térmica dependerá somente da temperatura. É importante salientar que esta é uma característica exclusiva da radiação que é emitida pelas paredes internas da cavidade e que pode ser analisada detetando a fração que sai pelo orifício. As paredes externas continuam emitindo uma radiação térmica cuja distribuição espectral depende da temperatura e da constituição do material. Distribuição espectral da radiação de um corpo negro Nota-se que a frequência na qual a radiância é máxima aumenta com a temperatura, e que a área sob a curva que corresponde a potência total emitida por metro quadrado também aumenta com a temperatura. As primeiras medidas de radiância espectral de corpo negro foram realizadas por Lummer e Pringsheim em Da análise do gráfico é possível ver porque a cor dos objetos aquecidos muda com a variação da temperatura. Quanto maior a temperatura do corpo mais deslocada para maiores frequências (menores comprimentos de onda) está a distribuição.
3 R (ν) dν energia emitida por unidade de tempo, entre ν e ν+dν, por unidade de área da superfície a temperatura. R R ( ν ) dν energia total emitida por unidade de tempo e por unidade de área do corpo a temperatura. A radiação dentro da cavidade cujas paredes estão a temperatura tem o mesmo caráter que a radiação emitida pelo orifício. Sendo assim, a densidade de energia ρ (ν) dentro da cavidade é proporcional a radiância R (ν). Onde a densidade de energia ρ (ν) é a energia contida em um volume unitário da cavidade a temperatura no intervalo de freqüências de ν a ν+dν. eoria Clássica da radiação de corpo negro Foi feito o cálculo da densidade de energia da radiação da cavidade usando argumentos clássicos, o qual divergiu dos dados obtidos experimentalmente por meio das medidas de radiância espectral. O cálculo levou em conta as seguintes considerações: A radiação eletromagnética na faixa térmica de freqüências é resultado do movimento acelerado dos elétrons da cavidade. Estas ondas existirão dentro da cavidade na forma de ondas estacionárias com nós nas paredes (modos de oscilação). Conhecendo-se a forma da cavidade é possível fazer um cálculo do número de ondas estacionárias com freqüências entre ν e ν+dν. A energia média total de cada uma destas ondas no equilíbrio térmico é encontrada com base na teoria cinética clássica dos gases. Pelo teorema da equipartição de energia E. Assim, a densidade de energia ρ (ν) pode ser facilmente calculada: o 2 n mod osx 8πν ρ ( ν ) (1) 3 volume c sendo esta expressão conhecida como a lei de Rayleigh-Jeans. Comparação entre a lei de Rayleigh-Jeans os resultados experimentais Resultado clássico 15K Curva experimental
4 A teoria diverge do resultado experimental para altas freqüências (pequenos comprimentos de onda), discrepância conhecida como catástrofe do ultravioleta. Planck notou que para baixas freqüências a energia média se aproximava do valor clássico, mas que para altasfreqüências esta energia deveria diminuir, ou seja: E, ν λ (2) Eν, λ Sendo assim, a energia média deveria ser dependente da freqüência das ondas. Voltando a lei da equipartição da energia que surge da distribuição de Boltzmann, temos que: E e P( E ) (3) onde P(E) é a probabilidade de encontrar um ente do sistema em equilibrio térmico a temperatura em um estado com energia E. O valor médio das energias E dos entes do sistema pode ser obtido: E EP( E )de P( E )de 1 (4) A integral no numerador representa a probabilidade de encontrar um dado ente com energia E multiplicada pela energia E, e a integral do denominador representa a soma das probabilidades de encontrar e ente com qualquer energia E que é 1%. O resultado desta expressão pode ser mostrado por meio de um gráfico. Nota-se que a integral do numerador na expressão (4) é igual a área sob a curva no gráfico da figura acima, e que desta forma tal área representa a energia média K. Planck verificou que as duas situações (A) poderiam ser satisfeitas se a energia fosse uma variável discreta e não contínua como era previsto classicamente. Ou seja, se a integral fosse substituída por um somatório onde as energias pudessem assumir os valores: E, E,2 E,3 E,...n E onde n é um número inteiro (5) Usando novamente um gráfico podemos analisar o resultado desta consideração. Vamos inicialmente supor que E é pequeno, ou seja, que E<< (figura (a)).
5 (a) (b) (c) A área de cada retângulo representa a energia E vezes a probabilidade de que um ente tenha esta energia. Sendo assim, a soma das áreas de todos os retângulos fornece a energia média. Neste caso tal soma não difere muito do resultado da integral, e a energia média é aproximadamente. Vamos agora supor que E é grande, ou seja, E>> (figura (c)). Neste caso, a soma das áreas dos retângulos será muito diferente daquela obtida pela integral e a energia média será muito menor. Para satisfazer as duas condições (2), Planck propôs que a energia emitida pelas paredes da cavidade era uma grandeza discreta e não contínua, e que esta energia dependia da freqüência da radiação. Assim, com E ν tem-se: E quando ν E E quando ν E Com estas considerações Planck encontrou um valor para a energia média dado por: E( ν ) (6) e 1 onde h é uma constante de proporcionalidade de tal forma que E. Fazendo as mesmas considerações de Rayleigh-Jeans mas substituindo a energia média pela relação acima, Planck encontrou a expressão para a densidade de energia da cavidade: 2 8πν ρ( ν )dν dν (7) 3 c e 1 Por meio do ajuste desta equação a curva experimental, Planck obteve o valor da constante de proporcionalidade conhecida como constante de Planck. h6,63x1-34 J.s
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva A radiação do corpo negro e as hipóteses de Planck Um corpo, em qualquer temperatura emite radiação, algumas vezes denominada radiação térmica. O estudo minucioso
Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck
Mecânica Quântica Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck...numa reunião em 14/12/1900, Max Planck apresentou seu artigo Sobre a teoria
A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos
Universidade de São Paulo Instituto de Física de São Carlos A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Nome: Mirian Denise Stringasci Disciplina: Mecânica Quântica Aplicada
A radiação do corpo negro
A radiação do corpo negro Um corpo em qualquer temperatura emite radiações eletromagnéticas. Por estarem relacionadas com a temperatura em que o corpo se encontra, freqüentemente são chamadas radiações
INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO
Introdução à Astrofísica INTRODUÇÃO À ASTROFÍSICA LIÇÃO 9 O PROBLEMA DO CORPO NEGRO Lição 8 O Problema do Corpo Negro A maior parte de toda a física do século XIX estava bem descrita através da mecânica
INTRODUÇÃO À ASTROFÍSICA
Introdução à Astrofísica Lição 9 O Espectro da Luz INTRODUÇÃO À ASTROFÍSICA LIÇÃO 10 O ESPECTRO CONTÍNUO DA LUZ A medição do brilho das estrelas está diretamente ligada à medida de distância. A medida
Física Moderna I Aula 03. Marcelo G Munhoz Pelletron, sala 245, ramal 6940
Física Moderna I Aula 03 Marcelo G Munhoz Pelletron, sala 245, ramal 6940 [email protected] 1 Radiação Térmica Ondas eletromagnéticas emitidas por todos os objetos com temperatura acima do zero absoluto
Termo-Estatística Licenciatura: 22ª Aula (05/06/2013) RADIAÇÃO TÉRMICA. (ver livro Física Quântica de Eisberg e Resnick)
ermo-estatística Licenciatura: ª Aula (5/6/13) Prof. Alvaro Vannucci RADIAÇÃO ÉRMICA (ver livro Física Quântica de Eisberg e Resnick) Experimentalmente observa-se que os corpos em geral e principalmente
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-
ESPECTROSCOPIA: 734EE. Como podemos estudar a Teoria de Planck em um laboratório didático?
1 Imprimir Complementações sobre a Teoria de Planck: Como podemos estudar a Teoria de Planck em um laboratório didático? LÂMPADA DE FILAMENTO Em geral podemos estudar a lei de Stefan-Boltzmann e a Lei
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 Marcelo Gameiro Munhoz [email protected] 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o
POSTULADOS DA MECÂNICA QUÂNTICA
UNIVERSIDADE FEDERAL DO ABC POSTULADOS DA MECÂNICA QUÂNTICA FERNANDA MARIA RODRIGUEZ ABRIL/2015 Resumo da Apresentação O que é Mecânica Quântica? Cenário no fim do século XIX; Radiação do corpo negro;
Instituto de Física USP. Física V - Aula 09. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 09 Professora: Mazé Bechara Material para leitura complementar ao Tópico II na Xerox do IF 1. Produção e Transformação de Luz; Albert Einstein (1905); Artigo 5 do
Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso
Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Primeira Edição junho de 2005 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Introdução 2.2- Corpo
Introdução à Química Moderna
Introdução à Química Moderna Prof. Alex Fabiano C. Campos, Dr Radiação de Corpo Negro Objeto com T 0K:emite radiação eletromagnética. T 0K Física Clássica: vibração térmica dos átomos e moléculas, provoca
Radiação do corpo negro
Radiação do corpo negro Radiação térmica. Um corpo a temperatura ambiente emite radiação na região infravermelha do espectro eletromagnético e portanto, não é detectável pelo olho humano. Com o aumento
Transmissão de Calor I - Prof. Eduardo Loureiro
Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de
RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
O ESPECTRO ELETROMAGNÉTICO
O ESPECTRO ELETROMAGNÉTICO ONDAS: Interferência construtiva e destrutiva Onda 1 Onda 2 Onda composta a b c d e A luz apresenta interferência: natureza ondulatória: O experimento de Young (~1800) Efeito
SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
Radiação do Corpo Negro
Aula-8 Fótons I Radiação do Corpo Negro Radiação Térmica Até agora estudamos fenômenos em que a luz é era considerada como onda. Porém, há casos em que a explicação convencional da teoria eletromagnética
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 10-28/10/2017 TURMA: 0053- A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM 1 Introdução à Física Moderna 2 Objetivos do Aprendizado Explicar a absorção e emissão da
Estrutura eletrônica da matéria - resumo
Estrutura eletrônica da matéria - resumo A NATUREZA ONDULATÓRIA DA LUZ COMO A RADIAÇÃO ELETROMAGNÉTICA SE MOVE À VELOCIDADE DA LUZ, O COMPRIMENTO DE ONDA E A FREQUÊNCIA ESTÃO RELACIONADOS: νλ=c ONDE ν(ni)
2. Propriedades Corpusculares das Ondas
2. Propriedades Corpusculares das Ondas Sumário Revisão sobre ondas eletromagnéticas Radiação térmica Hipótese dos quanta de Planck Efeito Fotoelétrico Geração de raios-x Absorção de raios-x Ondas eletromagnéticas
Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário
Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário Rutherford Niels Bohr Max Planck Sommerfeld Modelos atômicos quânticos Problemas de Rutherford: Modelo entrou em choque com os conceitos
EMISSÃO e ABSORÇÃO de radiação
EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n, E
Introdução à Física Quântica
17/Abr/2015 Aula 14 Introdução à Física Quântica Radiação do corpo negro; níveis discretos de energia. Efeito foto-eléctrico: - descrições clássica e quântica - experimental. Efeito de Compton. 1 Introdução
AULA 21 INTRODUÇÃO À RADIAÇÃO TÉRMICA
Notas de aula de PME 3361 Processos de Transferência de Calor 180 AULA 1 INTRODUÇÃO À RADIAÇÃO TÉRMICA A radiação térmica é a terceira e última forma de transferência de calor existente. Das três formas,
Notas de Aula de Física Quântica (BCK0103)
Física Quântica 1 Notas de Aula de Física Quântica (BCK13) Prof. Dr. Marcelo Augusto Leigui de Oliveira Radiação de Corpo Negro I. LEIS DA RADIAÇÃO TÉRMICA Todos os corpos com temperatura acima do zero
Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica
Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento Prof. Emery Lins Curso Eng. Biomédica Introdução Breve revisão: Questões... O que é uma radiação? E uma partícula? Como elas
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 0 4. LEIS DA EMISSÃO
FNC375N: Lista 2. 7 de outubro de Para um oscilador clássico unidimensional em equilíbrio a uma temperatura T a Mecânica
FNC375N: Lista 2 7 de outubro de 24 Radiação Térmica - II. Para um oscilador clássico unidimensional em equilíbrio a uma temperatura T a Mecânica Estatística prevê: P (E)dE = Ae E/k BT de, Resp.: a) em
Capítulo 9: Transferência de calor por radiação térmica
Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário Introdução O Fóton (quantum de luz) Radiação térmica O Efeito Fotoelétrico Os Fótons possuem Momento A luz como uma
EMISSÃO e ABSORÇÃO de radiação
EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n 1,
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 23 2 MEDIÇÃO DE TEMPERATURA COM TERMÔMETRO DE RADIAÇÃO CONTATO INDIRETO 3 INTRODUÇÃO
Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change
Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E
Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503
Aula 21 Fótons e ondas de matéria I Física Geral IV FIS503 1 Correção da aula passada: Energia relativística: uma nova interpretação m p = 1, 007276 u m 4 He = 4, 002603 u ΔE = (mhe 4m p )c 2 = 0, 026501
QUÍMICA I. Teoria atômica Capítulo 6. Aula 2
QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta
Instituto de Física USP. Física V - Aula 18. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 18 Professora: Mazé Bechara Aula 28 Discussão da 1ª prova e Apresentação do Tópico III 1. Soluções das questões da prova com comentários. Critérios de correção.
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Agronomia
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Agronomia NOTAS DE AULA PRINCÍPIOS DE RADIAÇÃO ELETROMAGNÉTICA 1. Introdução A radiação eletromagnética
ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS VERIFICAÇÃO
Lei de Planck. Lei de Stefan
ei de Planck UNIVERSIDADE FEDERA DO RIO GRANDE DO SU. Instituto de Física. Departamento de Física. Física do Século XXA (FIS156). Prof. César Augusto Zen Vasconcellos. ista (Site: www.cesarzen.com) ópicos.
CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO
FÍSICA QUÂNTICA: FÓTONS E ONDAS DE MATÉRIA Prof. André L. C. Conceição DAFIS CAPÍTULO 38 HALLIDAY, RESNICK. 8ª EDIÇÃO Fótons e ondas de matéria Revisão 1) Relatividade: Do Tempo: (dilatação temporal) Das
Radiação de Corpo Negro
Radiação de Corpo Negro Monica Bahiana Instituto de Física Universidade Federal do Rio de Janeiro O espectro de radiação térmica de matéria condensada é um desses problemas que mostram, de forma simples,
Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016
Sensoriamento remoto 1 Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016 Súmula princípios e leis da radiação eletromagnética radiação solar conceito de corpo negro REM e sensoriamento
Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel
Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo
Principais modelos atômicos. Principais modelos atômicos Modelo Atômico de Rutherford (1911)
Principais modelos atômicos Modelo Atômico de Thomson (898) Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos,
Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez
Aula 25 Radiação UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez REVISÃO: Representa a transferência de calor devido à energia emitida pela matéria
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. 1. INTRODUÇÃO: 1.1. Um rápido olhar na relação
Max Planck Pai da Física Quantica
A Mecânica Quântica é a parte da física que estuda o movimento dos corpos microscópicos em altas velocidades. As principais conclusões da Física Quântica são que, em estados ligados, a energia não se troca
Quantização da Carga, Luz e Energia
Quantização da Carga, Luz e Energia Prof. Jaime Urban 1 / 13 Quantização da Carga Elétrica Primeiras medidas de e e de e/m Michael Faraday (1791-1867) Condução da eletricidade em ĺıquidos - Lei da eletrólise
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Manaus, 27 de julho de 2015 A Óptica Geométrica Fenômenos
Física Moderna. A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico.
Física Moderna A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico. Efeito fotoelétrico Quando uma radiação eletromagnética incide sobre a superfície de um metal, elétrons podem ser
Luz & Radiação. Roberto Ortiz EACH USP
Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares
Princípios de Mecânica Quântica
1 Princípios de Mecânica Quântica 2 1 Alguns personagens Albert Einstein Max Planck Erwin Schrodinger Ernest Rutherford Werner Heisenberg Niels Bohr Louis de Broglie 3 Fins do Século XIX As leis da Mecânica
MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini [email protected] Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação
Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta:
23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 1 Expansão
Considerações gerais sobre radiação térmica
CÁLCULO TÉRMICO E FLUIDOMECÂNICO DE GERADORES DE VAPOR Prof. Waldir A. Bizzo Faculdade de Engenharia Mecânica - UNICAMP General Considerations Considerações gerais sobre radiação térmica Radiação térmica
MODELOS ATÔMICOS BIK0102: ESTRUTURA DA MATÉRIA. Professor Hugo Barbosa Suffredini Site:
BIK0102: ESTRUTURA DA MATÉRIA Crédito: Sprace MODELOS ATÔMICOS Professor Hugo Barbosa Suffredini [email protected] Site: www.suffredini.com.br Ondas (uma breve revisão...) Uma onda é uma perturbação
Graça Meireles. Física -10º ano. Física -10º ano 2
Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em
Propagação do calor. Condução térmica
Propagação do calor A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a irradiação. Condução térmica A condução térmica é um processo
Prof. Dr. Lucas Barboza Sarno da Silva
Prof. Dr. Lucas Barboza Sarno da Silva Espectros atômicos Toda substância a uma certa temperatura emite radiação térmica, caracterizada por uma distribuição contínua de comprimentos de onda. A forma da
Introdução à Mecânica Quântica. Stoian Ivanov Zlatev
Introdução à Mecânica Quântica Stoian Ivanov Zlatev São Cristóvão/SE 2012 Introdução à Mecânica Quântica Elaboração de Conteúdo Stoian Ivanov Zlatev Capa Hermeson Alves de Menezes Copyright 2012, Universidade
Noções básicas de quântica. Prof. Ms. Vanderlei Inácio de Paula
Noções básicas de quântica Prof. Ms. Vanderlei Inácio de Paula Noções de quântica O professor recomenda: Estude pelos seguintes livros/páginas sobre a Ligações químicas e faça os exercícios! Shriver Ed
Relação da intensidade com poder emissivo, irradiação e radiosidade
Relação da intensidade com poder emissivo, irradiação e radiosidade O poder emissivo espectral (W/m 2.μm) corresponde à emissão espectral em todas as direcções possíveis: 2π π 2 ( ) /, (,, ) cos sin E
Instituto de Física USP. Física Moderna I. Aula 13. Professora: Mazé Bechara
Instituto de Física USP Física Moderna I Aula 13 Professora: Mazé Bechara Aula 13 Processos de criação e de aniquilação de matéria 1. Outros processos que evidenciam o caráter corpuscular da radiação (chocantes
SIMULADOR DE RADIAÇÃO DE CORPO NEGRO
SIMULADOR DE RADIAÇÃO DE CORPO NEGRO Daniel Henriques Cézar Miranda Soares 1 Diego Haji Carvalho Campos 2 Weber Hanry Morais e Feu 3 PALAVRAS-CHAVE: radiação de corpo negro; física quântica; espectro eletromagnético;
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de junho de 2014 CAPÍTULO 2 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 2.1- Radiação
Cap. 38 Fótons e ondas de matéria
Cap. 38 Fótons e ondas de matéria Problemas com a mecânica clássica: Radiação de corpo negro; Efeito fotoelétrico; O fóton; Efeito fotoelétrico explicado; Exemplo prático: fotoemissão de raios-x; Efeito
A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN
A LEI DE RADIAÇÃO DE STEFAN BOLTZMANN Material Utilizado: - um fonte regulada de potência CC (3 A, 12 V) - uma lâmpada de Stefan-Boltzmann (PASCO TD-8553) - um sensor de radiação (PASCO TD-8555) - um milivoltímetro
Lista de Exercícios para P2
ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800
Radiação térmica e a hipótese de Planck
Radiação térmica e a hipótese de Planck o que é radiação térmica e como é medida (radiância, radiância espectral,...); Lei de Kirchhoff para a radiação (taxas de emissão e de absorção): E v A v = J(v,T
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 4. LEIS DA EMISSÃO
ESZO Fenômenos de Transporte
Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto [email protected] Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode
Bacharelado em Engenharia Agronômica AGROMETEOROLOGIA E CLIMATOLOGIA. Prof. Samuel Silva. Radiação Solar. IFAL/Piranhas
Bacharelado em Engenharia Agronômica AGROMETEOROLOGIA E CLIMATOLOGIA Prof. Samuel Silva Radiação Solar IFAL/Piranhas Diâmetro Sol: 1.392.684 km Terra: 12.742 km Estratificação da Atmosfera Terrestre
