O ESPECTRO ELETROMAGNÉTICO
|
|
|
- Angélica Carneiro Bayer
- 7 Há anos
- Visualizações:
Transcrição
1 O ESPECTRO ELETROMAGNÉTICO
2 ONDAS: Interferência construtiva e destrutiva Onda 1 Onda 2 Onda composta a b c d e
3 A luz apresenta interferência: natureza ondulatória: O experimento de Young (~1800)
4 Efeito fotoelétrico: evidência da natureza corpuscular da radiação
5 MODELOS ONDULATÓRIO E CORPUSCULAR DA RADIAÇÃO Lei de Planck do fóton E f = hf = hc λ Luz azul Alta intensidade Luz azul Baixa intensidade λ λ λ = 450 nm c = km/s E f = 2,76 ev λ = 450 nm c = km/s E f = 2,76 ev Luz vermelha Alta intensidade Luz vermelha Baixa intensidade λ λ λ = 670 nm c = km/s E f = 1,85 ev λ = 670 nm c = km/s E f = 1,85 ev
6 COMPRIMENTOS DE ONDA / ENERGIAS TÍPICAS Tipo de radiação Comprimento de onda Energia por fóton Radiação Terrestre 10 µm 0,12 ev (Infravermelha) Radiação Visível ( Luz ) 500 nm 2,5 ev Radiação Ultravioleta 100 nm 12,5 ev Raios-X 0,1 a 10 nm 125 a ev Raios-γ 0,1 a 100 pm 125 a kev
7 Exercício
8 TIPOS DE ESPECTRO Contínuo sólidos, líquidos, gases densos Raias gases rarefeitos Contínuo com linhas de absorção
9 POR QUE RAIAS? (GAS RAREFEITO)
10 O átomo de hidrogênio de BOHR POR QUE RAIAS? (GAS RAREFEITO)
11 Mecanismos de emissão e absorção de radiação
12
13 Excitação eletrônica fóton E = hf e - E=hf Mecanismo 1. A incidência de um fóton num elétron pode causar a sua excitação com a conseqüente absorção do fóton.
14 Excitação eletrônica e - elétron v 2E m e - E elétron = ( E E) v = 2 m Mecanismo 2. A incidência de um elétron livre num elétron da estrutura atômica pode causar a sua excitação.
15 Excitação eletrônica e - e - E Mecanismo 3. A energia térmica de um átomo pode ser parcialmente absorvida por um elétron, causando sua excitação.
16 Fundamentalização e - e - fóton E = hf Mecanismo A. A energia do elétron pode ser emitida na forma de um fóton.
17 Fundamentalização e - e - E Energia térmica Mecanismo A. A energia do elétron pode ser devolvida ao átomo, aumentando sua energia cinética / térmica.
18 Excitação eletrônica Fundamentalização 1. fóton E = hf e - E=hf e - 2. e - E elétron elétron v 2E m e - = ( E E) v = 2 m A. e - e - 3. e - e - E B. e - E
19 Gases rarefeitos emitem (produzem) apenas alguns comprimentos de onda (raias), correspondentes às diferenças de energia presentes na sua estrutura atômica
20 Espectro de Absorção Espectro de Emissão Duas formas para mostrar os mesmos espectros: à esquerda estão imagens da luz dispersa e à direita gráficos da intensidade versus comprimento de onda. Observe que o padrão de linhas espectrais nos espectrosdeabsorçãoeemissãoéomesmo,poisogáséomesmo.
21 Um gás tem a mesma capacidade para emitir (emissividade) e para absover (absorvidade) Lei de Kirchhoff: a λ = ε λ
22 Em outras palavras: A capacidade de uma superfície absorver determinada energia (na forma de um fóton) é igual à sua capacidade de emitir a mesma energia (ou comprimento de onda): Lei de Kirchhoff: ε λ = a λ Emissividade e Absortividade são propriedades da superfície a Absorção é resultado da radiação incidente e da absortividade; a Emissão é resultado da temperatura do corpo e da emissividade DESCREVA O PORQUÊ DA LEI DE KIRCHHOFF!
23 EMISSÃO DE UM FÓTON (por efeito térmico) e - e - e - E Energia térmica E=hf e - e - e - fóton E = hf
24 ABSORÇÃO DE UM FÓTON e - fóton E = hf e - e - E Energia térmica E=hf e - e - e - fóton E = hf INTERAÇÃO FÓTON-ÁTOMO DIFUSÃO DA RADIAÇÃO
25 Clorofila
26 Linhas de Fraunhofer (linhas de absorção na radiação solar)
27
28 Linhas de Fraunhofer
29 Linhas de Fraunhofer
30 POR QUE ESPECTROS CONTÍNUOS? (SÓLIDOS, LÍQUIDOS, GASES DENSOS)
31 gás rarefeito (raias) absortividade comprimento de onda (nm) gás comprimido (raias difusas) absortividade comprimento de onda (nm) sólidos, líquidos (contínuo) comprimento da onda (nm)
32 Em matéria densa (sólidos, líquidos, gases comprimidos) existem saltos eletrônicos para muitas ou todas as diferenças de energia. Assim, é possível uma matéria densa poder emitir e absorver fótons com qualquer energia. O Corpo Negro (Black Body) absorve toda a radiação incidente, e é capaz de emitir qualquer energia de fóton (ou: qualquer comprimento de onda de radiação). A radiação emitida pelo Corpo Negro é função somente de sua temperatura e pode ser prevista teoricamente.
33 Lei de Planck da Radiação Térmica E λ 2 2πc h 1 =. 5 hc / λkt λ e Emissão térmica do Corpo Negro 1 Lei de Wien ω λ max = T Lei de Stefan- Boltzmann q = σt γ X UV visível ( nm) Infravermelho ondas longas radiação terrestre Emitância (MW.m -2.mm -1 ) K = Sol 2400 K = Lâmpada incandescente 288 K = Terra comprimento da onda (µm)
34 Um corpo realemite menos que um corpo negroà mesma temperatura: E λ,corpo real = ε λ.e λ,corpo negro ; 0 ε λ 1
35 O espectro de emissãodo Sol é muito parecido ao de um corpo negroa 5800 K, portanto, sua emissividade está muito próxima a 1 na maioria dos comprimentos de onda.
36 A EMISSIVIDADE é a propriedade de uma superfície que descreve sua capacidade relativa de emitir radiação térmica, em função do comprimento de onda, tendo como referência o corpo negro, cuja emissividade é igual à unidade. A EMISSIVIDADE em determinado comprimento de onda é igual à ABSORTIVIDADE Emissividade Emissividade = Absortividade comprimento da onda (nm)
37 Assim, se um corpo negroa duas temperaturas diferentes tem os seguintes espectros de emissão Emitância (kw m -2 nm ) K 5800 K Emissão corpo negro (ε = 1) Stefan-Boltzmann: q = εσ T 4 Wien: λ max = ω /T comprimento da onda (nm)
38 o corpo real apresentará uma emissão reduzida naqueles comprimentos de onda onde sua emissividade é menor do que 1. Emissividade Emitância (kw m -2 nm -1 ) comprimento da onda (nm) Emissividade Emissão corpo real em duas temperaturas comprimento da onda (nm)
39 A emissão terrestre, isto é, a emissão por superfícies a temperaturas entre K, ocorre predominantemente em comprimentos de onda ao redor de 10 µm (ondas longas), com densidade de fluxo total da ordem de 400 W m K = 30 C q = 480 W m -2 Emitância (W.m -2.mm -1 ) K = 0 C q = 310 W m K = 15 C q = 390 W m comprimento da onda (µm)
40 Emissividade de superfícies terrestres Emissividade neve Comprimento de onda (µm)
41 Emissividade de superfícies terrestres Emissividade folha de eucalipto Comprimento de onda (µm)
42 Emissividade de superfícies terrestres Emissividade solo Comprimento de onda (µm)
43 Emissividade de superfícies terrestres Emissividade areia Comprimento de onda (µm)
44 Assim, a emissividade de interesse para a emissão terrestre é a emissividade para os comprimentos de onda ao redor de 10 µm, pois essa é a faixa onde a emissão ocorre. Observa-se que essa emissividade não tem relação com a absortividade da radiação visível das mesmas superfícies! Emissividade Emissividade neve 0.8 folha de eucalipto Comprimento de onda (µm) Comprimento de onda (µm) Emissividade Emissividade solo areia Comprimento de onda (µm) Comprimento de onda (µm)
45 a EMISSIVIDADE de interesse é aquela válida para as ondas longas, normalmente próxima a 1 ( 0,95), ou seja, em relação a ondas longas a maioria dos corpos se comporta (quase) como corpo negro. a ABSORTIVIDADE de interesse é aquela para as ondas longas (para absorção da radiação terrestre) e para as ondas curtas (para absorção de radiação solar ou visível). Para as ondas curtas, a absortividade nem sempre se aproxima de 1 e varia ainda dentro do espectro visível, causando as cores da luz refletida pelos corpos.
46 ABSORÇÃO EMISSÃO emitida incidente qual λ? refletida r λ T λ, ε λ absorvida t λ a λ transmitida
47 PARA RACIOCINAR: CERTO ou ERRADO?
48 CERTO ou ERRADO? Se a emissividade de um corpo é alta, significa que ele emite muita radiação.
49 CERTO ou ERRADO? EMISSIVIDADE é uma propriedade de uma superfície; a EMISSÃO é um processo cuja ocorrência, além da emissividade, depende da temperatura da superfície.
50 CERTO ou ERRADO? Antes de poder emitir radiação, um corpo deve absorver radiação.
51 CERTO ou ERRADO? A densidade de fluxo de radiação solar que chega ao topo da atmosfera da Terra é muito menor que a emitida pelo Sol. Isso se deve ao fato de a radiação Solar se espalhar por uma área cada vez maior conforme vai se afastando do Sol.
52 CERTO ou ERRADO? Um corpo negro emite, em determinada temperatura, 2000 W de radiação térmica. Se a sua temperatura absoluta dobrar, sua emissão será de 4000 W.
53 CERTO ou ERRADO? A emissividade para ondas longas da grande maioria dos corpos é quase 1. Isso significa que, a temperaturas terrestres, esses corpos emitem radiação como se fossem corpos (quase) negros.
54 CERTO ou ERRADO? É impossível um corpo negro refletir radiação.
55 CERTO ou ERRADO? A clorofila reflete radiação verde. Isso significa que sua emissividade para luz verde é alta.
56 CERTO ou ERRADO? Cada fóton de radiação de ondas longas possui menos energia que o da radiação visível.
57 CERTO ou ERRADO? Quanto menor a energia por fóton, menor a intensidade da radiação.
EMISSÃO e ABSORÇÃO de radiação
EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n 1,
EMISSÃO e ABSORÇÃO de radiação
EMISSÃO e ABSORÇÃO de radiação a EMISSÃO ocorre quando um elétron de um átomo salta de uma órbita superior para uma inferior (fundamentalização): um fóton é emitido (produzido). e - e - + n 2, E 2 n, E
CAPÍTULO 3: RADIAÇÃO TÉRMICA
CAPÍTULO 3: RADIAÇÃO TÉRMICA Todos os corpos (geleiras, nuvens, pessoas, objetos, planetas, fornos, estrelas) emitem radiação. uanto maior a sua temperatura, mais emitem, daí que essa radiação é chamada
Capítulo 9: Transferência de calor por radiação térmica
Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica
Mecânica Quântica. Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck
Mecânica Quântica Corpo negro: Espectro de corpo negro, catástrofe do ultravioleta, Leis de Rayleigh e Jeans, Hipótese de Planck...numa reunião em 14/12/1900, Max Planck apresentou seu artigo Sobre a teoria
RADIAÇÃO. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
Introdução à Astrofísica. Espectroscopia. Rogemar A. Riffel
Introdução à Astrofísica Espectroscopia Rogemar A. Riffel Radiação de Corpo Negro Corpo negro: corpo que absorve toda a radiação que incide sobre ele, sem refletir nada; - Toda a radiação emitida pelo
SOLAR E TERRESTRE RADIAÇÃO O O AQUECIMENTO DA ATMOSFERA. 2. Radiação Eletromagnética. 1. Introdução. Características da Radiação Eletromagnética
O O AQUECIMENTO DA ATMOSFERA RADIAÇÃO SOLAR E TERRESTRE 1. Introdução RADIAÇÃO Radiação = Modo de transferência de energia por ondas eletromagnéticas única forma de transferência de energia sem a presença
Luz & Radiação. Roberto Ortiz EACH USP
Luz & Radiação Roberto Ortiz EACH USP A luz é uma onda eletromagnética A figura acima ilustra os campos elétrico (E) e magnético (B) que compõem a luz Eles são perpendiculares entre si e perpendiculares
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de novembro de 2011 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
Graça Meireles. Física -10º ano. Física -10º ano 2
Escola Secundária D. Afonso Sanches Energia do Sol para a Terra Graça Meireles Física -10º ano 1 Variação da Temperatura com a Altitude Física -10º ano 2 1 Sistemas Termodinâmicos Propriedades a ter em
Sensoriamento remoto 1. Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016
Sensoriamento remoto 1 Prof. Dr. Jorge Antonio Silva Centeno Universidade Federal do Paraná 2016 Súmula princípios e leis da radiação eletromagnética radiação solar conceito de corpo negro REM e sensoriamento
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. Prof. M. Sc. Rafael Urbaneja 0 4. LEIS DA EMISSÃO
Aula 25 Radiação. UFJF/Departamento de Engenharia de Produção e Mecânica. Prof. Dr. Washington Orlando Irrazabal Bohorquez
Aula 25 Radiação UFJF/Departamento de Engenharia de Produção e Mecânica Prof. Dr. Washington Orlando Irrazabal Bohorquez REVISÃO: Representa a transferência de calor devido à energia emitida pela matéria
QUÍMICA I. Teoria atômica Capítulo 6. Aula 2
QUÍMICA I Teoria atômica Capítulo 6 Aula 2 Natureza ondulatória da luz A teoria atômica moderna surgiu a partir de estudos sobre a interação da radiação com a matéria. A radiação eletromagnética se movimenta
Estrutura eletrônica da matéria - resumo
Estrutura eletrônica da matéria - resumo A NATUREZA ONDULATÓRIA DA LUZ COMO A RADIAÇÃO ELETROMAGNÉTICA SE MOVE À VELOCIDADE DA LUZ, O COMPRIMENTO DE ONDA E A FREQUÊNCIA ESTÃO RELACIONADOS: νλ=c ONDE ν(ni)
Lista de Exercícios - Física Quântica - UNIDADE 1
Lista de Exercícios - Física Quântica - UNIDADE 1 Problemas e questões baseados no D. Halliday, R. Resnick e J. Walker, Fundamentos de Física, 6ª ed. - Capítulos 39, 40 e 41. Questões 1. Como pode a energia
ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o
ELÉTRONS EM ÁTOMOS Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o núcleo correspondendo ao sol no nosso sistema solar e os elétrons
A radiação do corpo negro
A radiação do corpo negro Um corpo em qualquer temperatura emite radiações eletromagnéticas. Por estarem relacionadas com a temperatura em que o corpo se encontra, freqüentemente são chamadas radiações
Física Moderna. A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico.
Física Moderna A quantização da energia. Dualidade onda-partícula. O efeito fotoelétrico. Efeito fotoelétrico Quando uma radiação eletromagnética incide sobre a superfície de um metal, elétrons podem ser
Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário
Modelos atômicos (quânticos) Bohr Sommerfeld Professor: Hugo Cesário Rutherford Niels Bohr Max Planck Sommerfeld Modelos atômicos quânticos Problemas de Rutherford: Modelo entrou em choque com os conceitos
Uma breve história do mundo dos quanta. Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso
Uma breve história do mundo dos Érica Polycarpo Equipe de Física Coordenação: Prof. Marta Barroso Tópicos da Segunda Aula Abordagem histórica Radiação de corpo negro Efeito fotoelétrico Espalhamento Compton
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Agronomia
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Unidade Acadêmica de Agronomia NOTAS DE AULA PRINCÍPIOS DE RADIAÇÃO ELETROMAGNÉTICA 1. Introdução A radiação eletromagnética
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Primeira Edição junho de 2005 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
ÓPTICA GEOMÉTRICA PAULO SÉRGIO
ÓPTICA GEOMÉTRICA PAULO SÉRGIO Isaac Newton (1642 1727) Defensor da teoria corpuscular da luz. Explicava: a refração e a reflexão da luz a propagação retilínea a formação de sombras LUZ PARTÍCULAS OU
CLIMATOLOGIA. Radiação solar. Professor: D. Sc. João Paulo Bestete de Oliveira
CLIMATOLOGIA Radiação solar Professor: D. Sc. João Paulo Bestete de Oliveira Sistema Solar Componente Massa (%) Sol 99,85 Júpiter 0,10 Demais planetas 0,04 Sol x Terra massa 332.900 vezes maior volume
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO Edição de janeiro de 2009 CAPÍTULO 3 PROPRIEDADES CORPUSCULARES DA RADIAÇÃO ÍNDICE 3.1- Efeito
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Fundamentos de Astronomia e Astrofísica: FIS2001
Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Fundamentos de Astronomia e Astrofísica: FIS2001 Prof. Rogério Riffel 1 Extinção Atmosférica A atmosfera é praticamente
Fundamentos de Sensoriamento Remoto
UNIVERSIDADE DO ESTADO DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL DISCIPLINA: Geoprocessamento para aplicações ambientais e cadastrais Fundamentos de Sensoriamento Remoto Profª. Adriana
Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia
Nome: Jeremias Christian Honorato Costa Disciplina: Materiais para Engenharia Por propriedade ótica subentende-se a reposta do material à exposição à radiação eletromagnética e, em particular, à luz visível.
Sensoriamento Remoto I Engenharia Cartográfica. Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista
Sensoriamento Remoto I Engenharia Cartográfica Prof. Enner Alcântara Departamento de Cartografia Universidade Estadual Paulista 2016 Interações Energia-Matéria na Atmosfera Energia Radiante Ao contrário
ATIVIDADE DE FÍSICA MODERNA LER E RESUMIR RESPONDER LISTA
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR UNIDADE POLIVALENTE MODELO VASCO DOS REIS VERIFICAÇÃO
INTRODUÇÃO À ASTROFÍSICA
Introdução à Astrofísica Lição 9 O Espectro da Luz INTRODUÇÃO À ASTROFÍSICA LIÇÃO 10 O ESPECTRO CONTÍNUO DA LUZ A medição do brilho das estrelas está diretamente ligada à medida de distância. A medida
A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos
Universidade de São Paulo Instituto de Física de São Carlos A Radiação do Corpo Negro e sua Influência sobre os Estados dos Átomos Nome: Mirian Denise Stringasci Disciplina: Mecânica Quântica Aplicada
Física IV Escola Politécnica GABARITO DA P2 16 de outubro de 2012
Física IV - 4320402 Escola Politécnica - 2012 GABARITO DA P2 16 de outubro de 2012 Questão 1 Ondas longas de rádio, com comprimento de onda λ, de uma estação radioemissora E podem chegar a um receptor
RADIAÇÃO SOLAR E TERRESTRE
RADIAÇÃO SOLAR E TERRESTRE LINHAS DO CAMPO MAGNÉTICO TERR A TEMPESTADE SOLAR SOL 1. INTRODUÇÃO Radiação (energia radiante) - se propaga sem necessidade da presença de um meio material designa processo
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO Edição de janeiro de 2009 CAPÍTULO 2 RADIAÇÃO TÉRMICA E CORPO NEGRO ÍNDICE 2.1- Radiação Térmica 2.2-
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01. Marcelo Gameiro Munhoz
Laboratório de Física Moderna Radiação de Corpo Negro Aula 01 Marcelo Gameiro Munhoz [email protected] 1 Contextualização Para iniciar nosso experimento, vamos compreender o contexto que o cerca Qual o
INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN
INTERPRETAÇÃO DO EXPERIMENTO DE FRANCK E HERTZ EM CONTRAPOSIÇÃO À INTERPRETAÇÃO DE NEILS BOHR E ALBERT EINSTEIN LUIZ CARLOS DE ALMEIDA O experimento e suas interpretações dentro de uma visão da quantização
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria
Aula 12 - Capítulo 38 Fótons e Ondas de Matéria Física 4 Ref. Halliday Volume4 Sumário Introdução O Fóton (quantum de luz) Radiação térmica O Efeito Fotoelétrico Os Fótons possuem Momento A luz como uma
ENERGIA SOLAR: CONCEITOS BASICOS
ENERGIA SOLAR: CONCEITOS BASICOS Uma introdução objetiva dedicada a estudantes interessados em tecnologias de aproveitamento de fontes renováveis de energia. 1. INTRODUÇÃO: 1.1. Um rápido olhar na relação
COMPORTAMENTO ESPECTRAL DE ALVOS
COMPORTAMENTO ESPECTRAL O que é? DE ALVOS É o estudo da Reflectância espectral de alvos (objetos) como a vegetação, solos, minerais e rochas, água Ou seja: É o estudo do da interação da REM com as substâncias
Escola Politécnica FAP GABARITO DA P2 6 de novembro de 2009
P2 Física IV Escola Politécnica - 29 FAP 224 - GABARITO DA P2 6 de novembro de 29 Questão Uma película de óleo de silicone flutuando sobre água é iluminada por uma luz branca a partir do ar. A luz refletida
Relação da intensidade com poder emissivo, irradiação e radiosidade
Relação da intensidade com poder emissivo, irradiação e radiosidade O poder emissivo espectral (W/m 2.μm) corresponde à emissão espectral em todas as direcções possíveis: 2π π 2 ( ) /, (,, ) cos sin E
Fundamentos de Sensoriamento Remoto. Elisabete Caria Moraes (INPE) Peterson Ricardo Fiorio
Fundamentos de Sensoriamento Remoto Elisabete Caria Moraes (INPE) Peterson Ricardo Fiorio Processos de Transferência de Energia Corpos com temperatura acima de 0 K emite energia devido às oscilações atômicas
Considerações gerais sobre radiação térmica
CÁLCULO TÉRMICO E FLUIDOMECÂNICO DE GERADORES DE VAPOR Prof. Waldir A. Bizzo Faculdade de Engenharia Mecânica - UNICAMP General Considerations Considerações gerais sobre radiação térmica Radiação térmica
4º bimestre - Volume 3, Capítulo 19
Página 1 de 7 4º bimestre - Volume 3, Capítulo 19 Testes propostos 4º bimestre 1 (Uneb-BA) De acordo com o físico Max Planck, que introduziu o conceito de energia quantizada, a luz, elemento imprescindível
Aula 21 Fótons e ondas de matéria I. Física Geral IV FIS503
Aula 21 Fótons e ondas de matéria I Física Geral IV FIS503 1 Correção da aula passada: Energia relativística: uma nova interpretação m p = 1, 007276 u m 4 He = 4, 002603 u ΔE = (mhe 4m p )c 2 = 0, 026501
Radiação térmica e a constante de Planck
Material complementar de física 4 Professores: Márcia e Fabris Radiação térmica e a constante de Planck Em 14 de dezembro de 19, Max Planck apresentou a Sociedade Alemã de Física o seu artigo sobre a eoria
A NATUREZA DA LUZ. c=3x10 Fig. 1.1 Sir Isaac Newton PROF. TONHO
AULA 19 NATUREZA DA LUZ APOSTILA 7 FSC-D ÓPTICA GEOM MÉTRICA TEORIA CORPUSCULAR A NATUREZA DA LUZ Em 1672, o físico inglês Isaac Newton apresentou uma teoria conhecida com modelo corpuscular da luz. Nessa
Tópicos em Métodos Espectroquímicos. Aula 2 Revisão Conceitos Fundamentais
Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas Depto. de Química Tópicos em Métodos Espectroquímicos Aula 2 Revisão Conceitos Fundamentais Julio C. J. Silva Juiz de For a, 2015
Astrofísica Geral. Tema 04: Luz
Outline 1 Dualidade onda-partícula 2 Onda eletromagnética 3 Espectro eletromagnético 4 Efeito Doppler 5 Corpo negro 6 Átomo de Bohr e a luz 7 Leis de Kirchhoff para a luz 8 Efeitos da Atmosfera na luz
Transmissão de Calor I - Prof. Eduardo Loureiro
Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de
Física 4. Guia de Estudos P2
Física 4 Guia de Estudos P2 1. Efeito Doppler relativístico O efeito Doppler relativístico é a aparente mudança de frequência da onda eletromagnética quando há movimento relativo entre fonte e observador.
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ)
Vitor Oguri Departamento de Física Nuclear e Altas Energias Instituto de Física Armando Dias Tavares Universidade do Estado do Rio de Janeiro (UERJ) Manaus, 27 de julho de 2015 A Óptica Geométrica Fenômenos
Radiação térmica e a hipótese de Planck
Radiação térmica e a hipótese de Planck o que é radiação térmica e como é medida (radiância, radiância espectral,...); Lei de Kirchhoff para a radiação (taxas de emissão e de absorção): E v A v = J(v,T
PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais PROPRIEDADES TÉRMICAS E ÓPTICAS DOS MATERIAIS PMT 2100 - Introdução à Ciência dos Materiais para Engenharia
Capítulo 5 Distribuição de Energia e Linhas Espectrais
Capítulo 5 Distribuição de Energia e Linhas Espectrais As transições atômicas individuais (das quais falaremos mais adiante) são responsáveis pela produção de linhas espectrais. O alargamento das linhas
QUI 070 Química Analítica V Análise Instrumental. Aula 3 introdução a UV-VIS
Universidade Federal de Juiz de Fora (UFJF) Instituto de Ciências Exatas Depto. de Química QUI 070 Química Analítica V Análise Instrumental Aula 3 introdução a UV-VIS Julio C. J. Silva Juiz de For a, 2013
Fundamentos de Sensoriamento Remoto. Elisabete Caria Moraes
Fundamentos de Sensoriamento Remoto Elisabete Caria Moraes [email protected] Login: guestuser Senha: 5554DZ9M Sensoriamento Remoto Adquirir informações a distância Sensoriamento Remoto Sensoriamento
CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL. Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12)
CURSO SUPERIOR DE TECNOLOGIA EM MECATRÔNICA INDUSTRIAL Prof.: Cristiano Luiz Chostak Disciplina: Química Tecnológica (QMT12) Atomística: Estrutura atômica básica O modelo atômico de Dalton O modelo atômico
QUESTÕES DE FÍSICA MODERNA
QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns
Introdução aos métodos espectrométricos. Propriedades da radiação eletromagnética
Introdução aos métodos espectrométricos A espectrometria compreende um grupo de métodos analíticos baseados nas propriedades dos átomos e moléculas de absorver ou emitir energia eletromagnética em uma
Física IV Escola Politécnica GABARITO DA P2 15 de outubro de 2013
Física IV - 4320402 Escola Politécnica - 2013 GABARITO DA P2 15 de outubro de 2013 Questão 1 Luz monocromática de comprimento de onda λ incide sobre uma fenda S. Um espelho metálico plano está a uma distância
GNE 109 AGROMETEOROLOGIA Características Espectrais da Radiação Solar
GNE 109 AGROMETEOROLOGIA Características Espectrais da Radiação Solar Prof. Dr. Luiz Gonsaga de Carvalho Núcleo Agrometeorologia e Climatologia DEG/UFLA Absorção seletiva de radiação Absorção seletiva
Estrutura dos átomos
Estrutura dos átomos O número quântico principal n define o nível energético de base. Os outros números quânticos especificam o tipo de orbitais mas a relação com a energia pode ser complicada. Exemplos:
01. (ITA ) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso.
01. (ITA - 1999) A tabela abaixo mostra os níveis de energia de um átomo do elemento X que se encontra no estado gasoso. E 0 0 E 1 7,0 ev E 2 13,0 ev E 3 17,4 ev Ionização 21,4 ev Dentro das possibilidades
INFORMAÇÃO. Distribuição da radiação* ESPECTRO
ESPECTROSCOPIA INFORMAÇÃO Distribuição da radiação* ESPECTRO Através do espectro de um objeto astronômico pode-se conhecer informações sobre temperatura, pressão, densidade, composição química, estrutura,
Radiação electromagnetica
Radiação electromagnetica A radiação eletromagnética é uma forma de energia absorvida e emitida por partículas com carga elétrica quando aceleradas por forças. Ao nível subatómico, a radiação eletromagnética
Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa
Introdução às interações de partículas carregadas Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Introdução Radiação diretamente ionizante Partículas carregadas rápidas pesadas Partículas carregadas
Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica
Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento Prof. Emery Lins Curso Eng. Biomédica Introdução Breve revisão: Questões... O que é uma radiação? E uma partícula? Como elas
Aula 1 - Sensoriamento Remoto: evolução histórica e princípios físicos. Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho.
Aula 1 - Sensoriamento Remoto: evolução histórica e princípios físicos Patricia M. P. Trindade; Douglas S. Facco; Waterloo Pereira Filho. O que é SR????? Forma de obter informações de um objeto ou alvo
Sumário. Espectros, Radiação e Energia
Sumário Das Estrelas ao átomo Unidade temática 1 Emissão da radiação pelas estrelas. Temperatura das estrelas. Tipos de espectros. Os espectros emitidos pelas estrelas. dos átomos dos elementos. APSA 4.
Energia Eletromagnética. Q = h.c/λ. c = λ. f A energia eletromagnética se propaga. Q = h. f. Teoria Ondulatória. Teoria Corpuscular (Planck-Einstein)
Energia Eletromagnética Teoria Ondulatória (Huygens-Maxwell) c = λ. f A energia eletromagnética se propaga seguindo um modelo harmônico e contínuo na velocidade da luz, em dois campos ortogonais, um elétrico
O Elétron como Onda. Difração de Bragg
O Elétron como Onda Em 1924, de Broglie sugeriu a hipótese de que os elétrons poderiam apresentar propriedades ondulatórias além das suas propriedades corpusculares já bem conhecidas. Esta hipótese se
QUI346 QUÍMICA ANALÍTICA INSTRUMENTAL
QUI346 QUÍMICA ANALÍTICA INSTRUMENTAL Prof. Mauricio Xavier Coutrim DEQUI RADIAÇÃO ELETROMAGNÉTICA Onda eletromagnética (vácuo: v = 2,99792.10 8 m.s -1 ) l = comprimento de onda A = amplitude da onda v
Fundamentos do. Sensoriamento Remoto. Metodologias de Aplicação. Mauricio A. Moreira -INPEe
Fundamentos do Sensoriamento Remoto Mauricio A. Moreira [email protected] -INPEe Metodologias de Aplicação Que importância tem o Sensoriamento Remoto nos dias atuais? * A Terra é um planeta finito e
UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Química. CQ122 Química Analítica Instrumental II Prof. Claudio Antonio Tonegutti Aula 01 09/11/2012
UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Química CQ122 Química Analítica Instrumental II Prof. Claudio Antonio Tonegutti Aula 01 09/11/2012 A Química Analítica A divisão tradicional em química analítica
As ondas ou radiações eletromagnéticas não precisam de um meio material para se propagarem.
Radiação As ondas ou radiações eletromagnéticas não precisam de um meio material para se propagarem. O espetro eletromagnético é o conjunto de todas as radiações eletromagnéticas. Radiação A transferência
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna
Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna Bloco 0: AS LINHAS DE BALMER Introdução A teoria quântica prevê uma estrutura de níveis de energia quantizados para os
Principais modelos atômicos. Principais modelos atômicos Modelo Atômico de Rutherford (1911)
Principais modelos atômicos Modelo Atômico de Thomson (898) Com a descoberta dos prótons e elétrons, Thomson propôs um modelo de átomo no qual os elétrons e os prótons, estariam uniformemente distribuídos,
25/Mar/2015 Aula /Mar/2015 Aula 9
20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia
Espectro Eletromagnético. Professor Leonardo
Espectro Eletromagnético VÉSPERA- VERÃO 2010 EFEITO FOTO ELÉTRICO VÉSPERA- VERÃO 2010 VÉSPERA- VERÃO 2010 Efeito Fotoelétrico Problemas com a Física Clássica 1) O aumento da intensidade da radiação incidente
Interação da radiação com a atmosfera
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Interação da radiação com a atmosfera Professora Valéria Peixoto Borges COMPONENTE B : Processos de atenuação da radiação
Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1. Flavio D Amico estas aulas são de autoria de Hugo Vicente Capelato
Curso de Introdução à Astronomia e Astrofísica ESTRELAS AULA 1 Flavio D Amico [email protected] estas aulas são de autoria de Hugo Vicente Capelato A Constelação de Orion e as 3 Marias super Betelgeuse:
Absorção de Radiação por Gases na Atmosfera. Radiação I Primeiro semestre 2016
Absorção de Radiação por Gases na Atmosfera Radiação I Primeiro semestre 2016 Constituintes gasosos da atmosfera N 2 ~ 78% O 2 ~ 21% ~ 99% da atmosfera seca vapor d água (0 a 4%) Argônio, CO 2, O 3, CH
A fonte Solar de Energia da Terra
A fonte Solar de Energia da Terra A energia solar é criada no núcleo do Sol quando os átomos de hidrogênio sofrem fusão nuclear para hélio. Em cada segundo deste processo nuclear, 700 milhões de toneladas
Instituto de Física USP. Física V - Aula 15. Professora: Mazé Bechara
Instituto de Física USP Física V - Aula 15 Professora: Mazé Bechara Aula 15 Espectros de absorção e emissão atômica e modelo atômico de Thomson. 1. Evidências experimentais da existência de estrutura nos
Radiação de corpo negro, f.e.m. termoelétrica, dependência da resistência com a temperatura.
1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Máximo F. da Silveira Instituto de Física - UFRJ Tópicos Relacionados Radiação de corpo negro, f.e.m. termoelétrica, dependência
https://sites.google.com/site/estruturabc0102/
Estrutura da Matéria Aula 4: Radiações clássicas E-mail da turma: [email protected] Senha: ufabcsigma https://sites.google.com/site/estruturabc0102/ Radiações Clássicas 1899-1900: Rutherford e Villard
Avaliação Parcial 01 - GABARITO Questões Bate Pronto. As questões 1 a 23 possuem apenas uma alternativa correta. Marque-a.
Avaliação Parcial 01 - GABARITO Questões Bate Pronto. As questões 1 a 23 possuem apenas uma alternativa correta. Marque-a. 1) A água reflete muita radiação no infravermelho próximo. (5 pontos) 2) A radiação
