Permissividade de materiais elétricos
|
|
|
- Luiza Peixoto Angelim
- 8 Há anos
- Visualizações:
Transcrição
1 Permissividade de materiais elétricos
2 CONDUTORES E ISOLANTES Os condutores de eletricidade são meios materiais que permitem facilmente a passagem de cargas elétricas. O que caracteriza um material como condutor é a camada de valência dos átomos que constituem o material. Os materiais isolantes fazem o papel contrário dos condutores, eles são materiais nos quais não há facilidade de movimentação de cargas elétricas
3 Conceito A permissividade elétrica de um dado meio é a propriedade física que relaciona a maneira como um campo elétrico interage com este meio, ou a maneira que o meio se polariza em função de um campo elétrico.
4 Polarização
5 Estudo da permissividade Esta propriedade elétrica é amplamente utilizada na modelagem de alguns estudos, principalmente no eletromagnetismo aplicado. A permissividade pode variar muito dependendo do tipo de material e da frequência.
6 Permissividades absoluta e relativa A permissividade de um material é usualmente dada com relação à do vácuo, denominando-se permissividade relativa, (também chamada constante dielétrica em alguns casos). A permissividade absoluta se calcula multiplicando a permissividade relativa pela do vácuo:, dada em [pf/m].
7 ε r é uma constante adimensional, diferente para cada material Material Vinil(plastico) Papel Vidro εr 2,0 4,0 4,0 6,0 2,0 6,0
8 C=ϵ A d Capacitância Nos reportando aos conceitos de física e a definição de potencial elétrico podemos obter a relação que descreve a capacitância de diversas formas de capacitores. Para capacitores construídos por placas paralelas obtemos a relação: Onde A é a área das placas em paralelo, d é a distância que separa estas placas e C é a capacitância total.
9 Alterando o dielétrico de um capacitor de placas paralelas Vídeo
10 Perdas Dielétricas Nos dielétricos sujeitos a uma tensão contínua verifica-se uma perda por efeito Joule tal como nos condutores. A corrente de perdas, se bem que muito limitada, dá lugar a um certo aquecimento.
11 DETERMINAÇÃO DO FATOR DE PERDAS Se o capacitor real for substituído por um capacitor ideal em paralelo com um resistor, ou por um capacitor ideal em série com um resistor. Na realidade um capacitor possui tanto a resistência paralelo como a série mas, dependendo da frequência da tensão aplicada, apenas uma delas predomina. Em baixas frequências, o circuito equivalente paralelo é o mais apropriado.
12 Para dielétricos usados em capacitores tem-se, também, as componentes Ia e Ic. Neste tipo de aplicação usa-se normalmente dielétricos de alta constante dielétrica e que tenham uma rigidez dielétrica satisfatória.
13 o valor de Ia está associado um ângulo δ, o ângulo definido como ângulo de perdas e representa o complemento para 90º do ângulo de defasagem φ, entre a corrente e a tensão em um capacitor. Os bons dielétricos possuem baixo valor de δ.
14 Perdas no material isolante do condutor, ele se comporta como um capacitor em paralelo com uma resistência V Z = V R + j V Xc como Xc= 1 ωc
15 Triângulo de Potências Tg δ= P Q => P= Qtgδ ; Q=V2 ωc
16 Potencia dissipada no isolamento P= V 2 R = V2 ωc tg δ => V 2 2πf [ 0 r A h ]tg δ h h No capacitor C = ε A h ε r = ε ε 0 P = f ε r tgδ V h 2 perdas por unidade de volume em cms 3 f= Freqüência em Hertz V=Tensão aplicada em Volts h= espessura em cms εr= Constante dielétrica
17 Perdas em um Transformador
18 Constante de perdas do óleo dielétrico em transformadores Todos os transformadores de potência acima de 20kVA e tensão acima de 6 kv são construídos de maneira a trabalhar imersos em óleos isolantes. O óleo é usado com o objetivo de atender duas finalidades: 1. - Garantir um prefeito isolamento entre os componentes do transformador; 2. - Dissipar para o exterior o calor proveniente do efeito Joule nos enrolamentos
19 Cálculo perda transformado Feito em folha, passar para a apresentação
20 constante de perdas do óleo dielétrico em transformadores Sobre as propriedades do dielétrico, o isolamento de um transformador é composto de espaçamentos preenchidos com óleo isolante.
21
22 POLÍMEROS SINTÉTICOS Existe um prodigioso numero de polímeros sintéticos, entretanto, sob o ponto de vista de aplicações no campo da engenharia elétrica, podem ser citados os seguintes polímeros
23 Para que serve a isolação? A função básica da isolação é confinar o campo elétrico gerado pela tensão aplicada ao condutor no seu interior. Com isso, é reduzido ou eliminado o risco de choques elétricos e curtos-circuitos.
24 PVC O policloreto de polivinila (também conhecido como cloreto de vinila ou policloreto de vinil; nome IUPAC policloroeteno) mais conhecido pelo acrónimo PVC (da sua designação em inglês Polyvinyl chloride) é um plástico não 100% originário do petróleo.
25 PVC - Aplicações Resistividade a 1016 cm Constante dielétrica -5 a 6 Ângulo de perdas -9 x 10-2 Rigidez dielétrica -300 a 400 kv/cm
26 PE polietileno (ou polieteno, de acordo com a denominação oficial da IUPAC) é quimicamente o polímero mais simples. É representado pela cadeia: (CH 2 -CH 2 ) n. Devido à sua alta produção mundial, é também o mais barato, sendo um dos tipos de plástico mais comuns. É quimicamente inerte. Obtém-se pela polimerização do etileno (de fórmula química CH 2 =CH 2, e chamado de eteno pela IUPAC), de que deriva seu nome.
27 PE - Aplicações Resistividade cm Constante dielétrica -2 a 4 Ângulo de perdas -2 a 5 x 10-4 Rigidez dielétrica -300 kv/cm
28 Borracha etileno-propileno (EPR) Excelente resistência ao envelhecimento térmico; Ótima flexibilidade Rigidez dielétrica é Boa resistência à água e aos agentes químicos em geral;
29 Experiência C2 V Onde R é o resistor de 1k, C é o capacitância e Vg é a tensão fornecida pelo gerador, de 220 rms a uma freqüência de 25KHz 1Vac 0Vdc V2 0 R7 100R C = I c 2πfV c V Meça a distancia d que separa as placas do capacitor, e através da medida das dimensões laterais, defina a área A das placas. Preencha o volume entre as placas do capacitor o produto que se deseja determinar a permissibilidade. Meça as tensão no capacitor e no resistor e com elas encontre a corrente que passa pelo capacitor e a permissibilidade do meio.
30 Tabela Experiento Freqüência Vr(V) Vc (V) Ic(mA) εr 15KHz 30KHz delta
31 Experiência 2
Análise da Permissividade Dielétrica de Materiais
Roteiro Experimental n 4 COMPONENTES DA EQUIPE: Data: / / 1. OBJETIVOS: Compreender o significado da constante de permissividade dielétrica; Caracterizar a permissividade dielétrica de alguns materiais;
5. ISOLANTES OU DIELÉTRICOS
5. ISOLANTES OU DIELÉTRICOS 5.1 Definição Material Isolante (Dielétricos): materiais isolantes são substâncias em que os elétrons e íons não podem se mover em distâncias macroscópicas como os condutores
Materiais Elétricos. Isolantes. Prof. Msc. Getúlio Teruo Tateoki
Prof. Msc. Getúlio Teruo Tateoki Definições Dielétricos -Dielétricos ou materiais isolantes caracterizam-se por oferecerem considerável resistência à passagem da corrente, comparativamente aos materiais
1 Exercícios. Carlos Marcelo Pedroso. 17 de abril de 2010
Exercícios Carlos Marcelo Pedroso 17 de abril de 2010 1 Exercícios Exercício 1: Quais os dois principais mecanismos que proporcionam a condução de corrente em materiais? Quais as características (microscópicas)
PROJETOS ELÉTRICOS INDUSTRIAIS FIOS E CABOS
PROJETOS ELÉTRICOS INDUSTRIAIS FIOS E CABOS Professor Saimon Miranda Fagundes 1 CONDUTORES ELÉTRICOS Condutor Denominação genérica de elementos metálicos, geralmente de forma cilíndrica com a função específica
Avaliação do isolamento em transformadores de potência
56 Apoio Manutenção de transformadores Capítulo VI Avaliação do isolamento em transformadores de potência Por Marcelo Paulino* Qualquer máquina ou equipamento elétrico deverá suportar campos elétricos,
Potencial Elétrico, Dielétricos e Capacitores. Eletricidade e magnetismo - potencial elétrico, dielétricos e capacitores 1
Potencial Elétrico, Dielétricos e Capacitores Eletricidade e magnetismo - potencial elétrico, dielétricos e capacitores 1 Potencial elétrico O campo elétrico é um campo de forças conservativo: Se, por
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema
Elementos de circuito Circuito é a interligação de vários elementos. Estes, por sua vez, são os blocos básicos de qualquer sistema Um elemento pode ser ativo (capaz de gerar energia), passivo (apenas dissipam
GERADORES E RECEPTORES:
COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar
Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja
Capacitores - 1) Capacitores são dispositivos utilizados para armazenar cargas elétricas. Como a energia potencial é proporcional ao número de cargas elétricas, estes dispositivos também são reservatórios
Estudo do Capacitor em Corrente Contínua
Unidade 4 Estudo do Capacitor em Corrente Contínua Nesta quarta unidade, você estudará alguns conceitos, características e comportamento do componente eletrônico, chamado capacitor. Objetivos da Unidade
Avaliação Técnica e Vida útil do TR XLPE em Cabos de Média Tensão. Sidnei Ueda Alubar Metais e Cabos
Avaliação Técnica e Vida útil do TR XLPE em Cabos de Média Tensão Sidnei Ueda Alubar Metais e Cabos Avaliação Técnica e Vida útil do TR XLPE em Cabos de Média Tensão Conteúdo da Apresentação 1- Cabos Isolados
Ciência e Tecnologia dos Materiais Elétricos. Aula 1. Prof.ª Letícia chaves Fonseca
Ciência e Tecnologia dos Materiais Elétricos Aula 1 Prof.ª Letícia chaves Fonseca Capítulo 1 PROPRIEDADES DOS MATERIAIS USADOS EM ENGENHARIA 2 1.1 Introdução Distinguir e recomendar os materiais Correlacionar:
Lista de Exercícios de Corrente
Disciplina: Física F Professor: Joniel Alves Lista de Exercícios de Corrente 1) Um capacitor de placas paralelos, preenchido com ar, tem uma capacitância de 1 pf. A separação de placa é então duplicada
1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo atômico de Bohr?
ATIVIDADE T3 - Capítulo 8. 1. Princípios básicos de eletrônica 8.1 Cargas elétricas. 1) Como as cargas eletrostáticas se comportam umas com as outras? 2) Quais são as três partículas que compõe o modelo
Fundamentos do Eletromagnetismo - Aula IX
Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações
BC 1519 Circuitos Elétricos e Fotônica
BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância
Capacitores. Prof. Carlos T. Matsumi
Circuitos Elétricos II Prof. Carlos T. Matsumi 1 Conhecidos também como condensadores; São componentes que acumulam carga elétricas; Podem ser: Circuitos Elétricos II Polarizados (ex. capacitor eletrolítico)
CIRCUITOS ELÉTRICOS. Aula 06 POTÊNCIA EM CORRENTE ALTERNADA
CIRCUITOS ELÉTRICOS Aula 06 POTÊNCIA EM CORRENTE ALTERNADA Introdução Potência em corrente Alternada: Quando falamos em potência em circuitos de corrente alternada, temos que ser específicos sobre qual
CABOS PARA USO MÓVEL
Cabos PARA Cabos elétricos de potência, controle e instrumentação superflexíveis para uso móvel eventual ou em constante movimento, resistentes a abrasão e a tração para casos em que o cabo sofre arraste
16 x PROFESSOR DOCENTE I - ELETRICIDADE CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍICOS 6. Um condutor conduz uma corrente contínua constante de 5mA. Considerando-se que a carga de 19 um elétron é 1,6x1 C, então o número de elétrons que passa pela seção reta do condutor
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Agenda Noções básicas de circuitos elétricos: Corrente; Tensão; Fontes de Corrente Contínua; Condutores e Isolantes; Semicondutores;
GrandezasElétricase Principais Dispositivos
GrandezasElétricase Principais Dispositivos Vasos comunicantes podem ser uma analogia. Site Condutores, Isolantes e Semicondutores Lei de Ohm Resistor Resistor Um resistor é um componente que fornece
Exemplo-) Determinar a potência aparente do circuito a seguir. Figura 68 Cálculo da potência aparente.
55 10. POTÊNCIA EM CORRENTE ALTERNADA Além da tensão e da corrente, a potência é um parâmetro muito importante para o dimensionamento dos diversos equipamentos elétricos. A capacidade de um consumidor
Cabos Condutores. Verônica Rodrigues Fernanda Posy Luis Felipe Nogueira Douglas Toledo Ana Carolina Alves Artur Coutinho
Cabos Condutores - Verônica Rodrigues Fernanda Posy Luis Felipe Nogueira Douglas Toledo Ana Carolina Alves Artur Coutinho Cabos Condutores Aéreos Características importantes nos condutores Carga de Ruptura;
Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,
Eletrostática: Capacitância e Dielétricos
Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-2 Eletrostática:
Eletricidade Professor Pisciotta
CONDUTORES E ISOLANTES Já foi mencionado que segurando uma barra de vidro por uma das extremidades e atritando a outra com um pano de lã, somente a extremidade atritada se eletriza. Isto significa que
Aula 01 Propriedades Gerais dos Materiais
Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Materiais Elétricos - Teoria Aula 01 Propriedades Gerais dos Materiais Clóvis Antônio Petry, professor. Florianópolis, setembro
Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti
Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:
Semi Condutora Interna e Externa na cor Preta, Isolação na cor Laranja e Cobertura na cor Preta
WIREPOWER 90º C 7 6 5 4 3 2 1 Características Construtivas Especificações Aplicáveis Identificação Aplicação Temperaturas Máximas do Condutor Notas Condutor: Rígido classe 2, formado com fios de cobre
Corrente Alternada. Circuitos Monofásicos (Parte 2)
Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO
Aula 4 Circuitos básicos em corrente alternada continuação
Aula 4 Circuitos básicos em corrente alternada continuação Objetivos Continuar o estudo sobre circuitos básicos iniciado na aula anterior. Conhecer o capacitor e o conceito de capacitância e reatância
MÓDULO II SELEÇÃO DE CONDUTORES NAS INSTALAÇÕES ELÉTRICAS
MÓDULO II SELEÇÃO DE CONDUTORES NAS INSTALAÇÕES ELÉTRICAS Versão 2.0 Ditreitos Reservados PROCOBRE 2009 CONTEÚDO Condutores elétricos Normalização e parâmetros elétricos para a seleção de condutores Seleção
1ª LISTA DE FÍSICA 1º BIMESTRE
Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece
Aula 6 Análise de circuitos capacitivos em CA circuitos RC
Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números
Capacitância C = Q / V [F]
Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através
Disciplina: ELI Eletricidade e Instrumentação. Engenharia de Telecomunicações
A Norma ABNT NBR-5410 Instalações elétricas de baixa tensão estabelece as condições a que devem satisfazer as instalações elétricas de baixa tensão, a fim de garantir a segurança de pessoas e animais,
Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker
14 de dezembro de 016 EXERCÍCIOS CAPACITORES Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker Capacitância 1 Os dois objetos
Lista 02 Parte I. Capacitores (capítulos 29 e 30)
Lista 02 Parte I Capacitores (capítulos 29 e 30) 01) Em um capacitor de placas planas e paralelas, a área de cada placa é 2,0m 2 e a distância de separação entre elas é de 1,0mm. O capacitor é carregado
Etapa 1: Questões relativas aos resultados Lei de Ohm. 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor.
Respostas Questões relativas ao resultado Etapa 1: Questões relativas aos resultados Lei de Ohm 1.1 A partir dos dados tabelados, calcule o valor médio da resistência do resistor. Resposta: O valor encontrado
Capacitores e Indutores Associação e Regime Permanente DC. Raffael Costa de Figueiredo Pinto
Capacitores e Indutores Associação e Regime Permanente DC Raffael Costa de Figueiredo Pinto Fundamentals of Electric Circuits Chapter 6 Copyright The McGraw-Hill Companies, Inc. Permission required for
CABEAMENTO. Instrutor: Vinicius Barbosa Lima
CABEAMENTO Instrutor: Vinicius Barbosa Lima Objetivos da disciplina Conceitos fundamentais Conhecer os tipos de cabos Análise das especificações Estudo dos conectores Análise dos materiais Geometria e
CIRCUITOS COM CAPACITORES
CIRCUITOS COM CAPACITORES 1. (Ufpr 13) Considerando que todos os capacitores da associação mostrada na figura abaixo têm uma capacitância igual a C, determine a capacitância do capacitor equivalente entre
Equipamentos Elétricos. Aula 4 Isolação em Condutores de AT
Equipamentos Elétricos Aula 4 Isolação em Condutores de AT Prof. Dr. Hugo Valadares Siqueira Condutores Características Gerais Condutor Isolação Cobertura Materiais Condutores Caracter. dos Condut. UN.
Escola Secundária Alfredo da Silva Ensino Básico 6º Ano Disciplina de Educação Tecnológica Materiais e Técnicas (7) Plásticos e Borrachas / 6ºB
Escola Secundária Alfredo da Silva Ensino Básico 6º Ano Disciplina de Educação Tecnológica Materiais e Técnicas (7) Plásticos e Borrachas / 6ºB 1. Alguns factos sobre os plásticos Os plásticos são materiais
CURSINHO COMUNITÁRIO PRÉ-VESTIBULAR CUCA-FRESCA
CURSINHO COMUNITÁRIO PRÉ-VESTIBULAR CUCA-FRESCA UNIVERSIDADE ESTADUAL PAULISTA Júlio de Mesquita Filho Rua Geraldo Alckmin, 519 N. Srª de Fátima / Itapeva SP www.cursinhocucafresca.wordpress.com Tel: (15)
SOLUÇÃO PRATIQUE EM CASA
SOLÇÃO PC1. Com as chaves () fechadas e a chaves (1) abertas, temos apenas dois capacitores em série. 4 V 1 V SOLÇÃO PATIQE EM CASA Q C 6 Q 1.000 10 1 Q 1, 10 C SOLÇÃO PC. Q i Δt 15 3 Δt 0,5 10 3 30 10
( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.
FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores
RADIOELETRICIDADE. O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO CORRIGIDO CONFORME A ERRATA
Dados: ANATEL - DEZ/2008 RADIOELETRICIDADE TESTE DE AVALIAÇÃO 1 RADIOELETRICIDADE O candidato deverá acertar, no mínimo: Classe B 50% Classe A 70% TESTE DE AVALIAÇÃO CORRIGIDO CONFORME A ERRATA Fonte:
Circuitos de Corrente Contínua. Unidade 03 Circuitos de Corrente Contínua
Circuitos de Corrente Contínua Prof. Edwar Saliba Júnior Julho de 2012 1 Eletricidade Fenômeno físico atribuído a cargas elétricas estáticas ou em movimento; Quando o assunto é eletricidade, precisamos
ELETROQUÍMICA. Prof a. Dr a. Carla Dalmolin
ELETROQUÍMICA Prof a. Dr a. Carla Dalmolin MÉTODOS DE IMPEDÂNCIA Espectroscopia de Impedância Eletroquímica Aplicada à caracterização de processos de eletrodo e de interfaces complexas Deve ser utilizada
ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto
ELETROMAGNETISMO SEL 0309 LISTA ADICIONAL DE EXERCÍCIOS SOBRE CAMPOS ELÉTRICOS E MAGNÉTICOS EM MATERIAIS Professor: Luís Fernando Costa Alberto Campo elétrico 1) O campo elétrico na passagem de um meio
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS
RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS Sabemos, do estudo da física, que uma relação entre causa e efeito não ocorre sem um oposição, ou seja, a relação entre causa
Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua
Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém
ISOLANTES. Disciplina: Materiais Elétricos Prof a : Sheila Santisi Travessa
ISOLANTES Disciplina: Materiais Elétricos Prof a : Sheila Santisi Travessa Introdução Quando se trata de campos eletrostáticos, o meio no qual eles existem deve ter resistividade muito alta. Deverá opor-se
Transformadores trifásicos
Transformadores trifásicos Transformadores trifásicos Transformadores trifásicos Por que precisamos usar transformadores trifásicos Os sistemas de geração, transmissão e distribuição de energia elétrica
Unidades. Coulomb segundo I = = Ampere. I = q /t. Volt Ampere R = = Ohm. Ohm m 2 m. r = [ r ] = ohm.m
Eletricidade Unidades I = Coulomb segundo = Ampere I = q /t R = Volt Ampere = Ohm r = Ohm m 2 m [ r ] = ohm.m Grandeza Corrente Resistência Resistividade Condutividade SI (kg, m, s) Ampere Ohm Ohm.metro
Revisão de Eletricidade
Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Revisão de Eletricidade Prof. Clóvis Antônio Petry. Florianópolis, fevereiro
Apostila de Física 36 Capacitores
Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador
2 Condutores Elétricos
2 Condutores Elétricos 2.1 Introdução O dimensionamento de um condutor deve ser precedido de uma análise detalhada de sua instalação e da carga a ser suprida. Um condutor mal dimensionado, além de implicar
CONDUTORES E ISOLANTES
ELETRICIDADE CONDUTORES E ISOLANTES O FÍSICO INGLÊS STEPHEN GRAY PERCEBEU QUE ALGUNS FIOS CONDUZIAM BEM A ELETRICIDADE E CHAMOU-OS DE CONDUTORES E, AOS QUE NÃO CONDUZIAM OU CONDUZIAM MAL A ELETRICIDADE,
4. A eletrosfera de um átomo estável de ferro contém 26 elétrons. Determinar a carga elétrica de sua eletrosfera. Resp.: 4,1652.
1 Eletricidade ndustrial Prof. Vernetti Lista de exercícios 1 1. Estrutura da matéria e carga elétrica 1. Segundo o modelo de Bohr da estrutura atômica dos elementos, os elétrons de um átomo ocupam determinados
Δt, quando. R. 1 Nessas condições, a relação entre as
1. (Unesp 016) As companhias de energia elétrica nos cobram pela energia que consumimos. Essa energia é dada pela expressão E V i t, em que V é a tensão que alimenta nossa residência, a intensidade de
Capacitância e Dielétricos
Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em
Eletricidade (EL63A) LEIS BÁSICAS
Eletricidade (EL63A) LEIS BÁSICAS Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Como determinar os valores de tensão, corrente e potência
A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c) 2,0 A. d) 4,0 A.
1. Seja o circuito elétrico apresentado, onde R = ohms. A diferença entre as intensidades das correntes que passam nos pontos x e y é: a) 0,5 A. b) 1,5 A. c),0 A. d) 4,0 A.. Um circuito de malha dupla
Soluções inovadoras em fios e cabos elétricos.
1 Soluções inovadoras em fios e cabos elétricos. Somos um dos maiores fabricantes mundiais de fios e cabos, com mais de 170 anos de história de progresso contínuo em nível global e mais de 40 anos no Brasil.
Fascículo. Capítulo I. Transformadores. Equipamentos para ensaios em campo. 1 - Introdução. 2 - Manutenção preventiva: inspeções e ensaios
20 Fascículo Equipamentos para ensaios em campo Por Fábio Henrique Dér Carrião* Capítulo I Transformadores 1 - Introdução e dos enrolamentos; deve ser verificado o nível de óleo do transformador; Os transformadores,
23/5/2010 CAPACITORES
CAPACITORES O capacitor é um componente, que tem como finalidade, armazenar energia elétrica. São formados por duas placas condutoras, também denominadas armaduras, separadas por um material isolante ou
Teo. 9 - Capacitância
Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados
A NEXANS e as Tendências no Mercado Solar. Rafael Cunha
A NEXANS e as Tendências no Mercado Solar Rafael Cunha Normas Brasileiras para SFV ABNT NBR 5410 Instalações elétricas de baixa tensão Projeto de Norma ABNT NBR 16690 de instalação fotovoltaica, baseada
Instalações Elétricas Industriais
Instalações Elétricas Industriais ENG 1480 Professor: Rodrigo Mendonça de Carvalho Dimensionamento de Condutores Elétricos Livro: João Mamede Filho Instalações Elétricas Industriais 2 Dimensionamento de
Teoria de Eletricidade Aplicada
1/46 Teoria de Eletricidade Aplicada Conceitos Básicos Prof. Jorge Cormane Engenharia de Energia 2/46 SUMÁRIO 1. Introdução 2. Sistemas 3. Circuitos Elétricos 4. Componentes Ativos 5. Componentes Passivos
MANUTENÇÃO PREVENTIVA E PREDITIVA EM MÁQUINAS ELÉTRICAS ROTATIVAS. Gustavo G. Corgosinho
MANUTENÇÃO PREVENTIVA E PREDITIVA EM MÁQUINAS ELÉTRICAS ROTATIVAS Gustavo G. Corgosinho SUMÁRIO 1 - Histórico 2 Exemplo de soluções diferenciadas 3 Manutenção preditiva e técnicas para avaliação do sistema
DIMENSIONAMENTO DOS CONDUTORES
DIMENSIONAMENTO DOS CONDUTORES 1. Introdução - O dimensionamento dos condutores deve ser realizado seguindo as seguintes etapas: a) cálculo da corrente de projeto; b) dimensionamento pelo critério da máxima
Eletrotécnica geral. - é a permissividade do meio capacidade de conduzir o campo elétrico. A intensidade do campo elétrico é dada por:
apacitância É a propriedade de um componente que determina a capacidade de armazenar energia, ou também a oposição à variação da tensão. A energia é armazenada em forma de campo elétrico. O capacitor é
Laboratório de Qualidade e Racionalização da Energia Elétrica
Laboratório de Qualidade e Racionalização da Energia Elétrica Prof. Luís Fernando Pagotti Objetivo: Apresentar uma visão geral sobre circuitos elétricos, com ênfase à segurança das instalações e às características
Eletricidade Aula 8. Componentes Reativos
Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada
η= = VALORES NOMINAIS DOS MOTORES POTÊNCIA CORRENTE (A) NO EIXO ABSORVIDA FP η (220 V) (CV) DA REDE (KW)
(c) Rendimento É a relação entre a potência fornecida ao eixo e a potência elétrica de entrada, ou seja, (Veja Tabela 3), P P util η= = total P P mecanica eletrica (d) Fator de potência Relação entre a
SISTEMAS ELÉTRICOS. Sistemas p.u. Jáder de Alencar Vasconcelos
SISTEMAS ELÉTRICOS Sistemas p.u Jáder de Alencar Vasconcelos Sistemas Elétricos de Potência Sistemas por unidade p.u Aula 4 Sistema por unidade (pu) O sistemas por unidade (pu), é um meio conveniente de
Eletricidade Geral. Resumo do Curso Fórmulas e Conceitos
Eletricidade Geral Resumo do Curso Fórmulas e Conceitos 1. Revisão de Elétrica Campo elétrico: E = # $%&' Força elétrica: F *+ = # - $%&' q / Potencial elétrico: independente dos corpos que está interagindo,
CAPACITOR. Capacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão.
APAITOR apacitor é um componente eletrônico capaz de armazenar carga elétrica e energia, ao ser ligado em uma fonte de tensão. O capacitor possui dois terminais para sua polarização (d.d.p.). Dentro do
2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?
Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial
ENGENHARIA ELÉTRICA PROJETO DE INSTALAÇÕES ELÉTRICAS II
ENGENHARIA ELÉTRICA PROJETO DE INSTALAÇÕES ELÉTRICAS II Prof.: Luís M. Nodari [email protected] http://www.joinville.ifsc.edu.br/~luis.nodari/ 1 Dimensionamento de Condutores Norma Técnica ABNT NBR-
Física C Semiextensivo V. 4
GRITO Física Semiextensivo V. 4 Exercícios 0) a) 0 ; b) 800 W; c) 4,0 Ω; d) 80 V. 0) a) P consumida 00 W V 0 V P V. i 00 0. i i 0 b) P útil? P consumida P útil + P dissipada 00 P útil + 400 P útil 800
Corrente elétrica pode ser entendida como sendo a quantidade de elétrons que atravessa a secção de um condutor em um segundo.
Corrente, Tensão, Resistência, Potência e Freqüência. Conceitos Básicos Mesmo pensando somente em Informática, temos que conhecer algumas grandezas elétricas básicas. Essas grandezas são: Corrente, tensão,
Aquino, Josué Alexandre.
Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:
Capítulo 8 Elementos sensores
(parte I) Instrumentação eletrônica para sistemas de medição Capítulo 8 Prof. Lélio R. Soares Júnior ENE FT UnB Introdução É o primeiro elemento do sistema de medição Está em contato e absorve energia
Eletricidade (EL63A) CAPACITORES E INDUTORES
Eletricidade (EL63A) CAPACITORES E INDUTORES Prof. Luis C. Vieira [email protected] http://paginapessoal.utfpr.edu.br/vieira/el63a-eletricidade INTRODUÇÃO Capacitores e Indutores: Elementos Passivos
