Enunciados Quantificados Equivalentes

Tamanho: px
Começar a partir da página:

Download "Enunciados Quantificados Equivalentes"

Transcrição

1 Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados Observações Exercícios resolvidos Neste texto, continuamos com o estudo da noção de equivalência de enunciados, aplicando os conceitos e resultados já estudados na resolução (parcial) do problema da equivalência de enunciados quantificados. Após estudarmos este texto, vamos ser capazes de: entender a noção de equivalência de enunciados construídos por aplicações de conectivos e quantificadores; entender como podemos aplicar a noção de interpretação para decidir quando dois enunciados simbolizados são equivalentes ou não; justificar que dois enunciados não equivalentes não são, de fato, equivalentes. Dada a complexidade do problema, um método para a justificativa da equivalência de enunciados construídos por aplicações de conectivos e quantificadores será apenas esboçado. Este texto sobre equivalência de enunciados quantificados corresponde ao Texto 6B, sobre a equivalência de enunciados que só possuem ocorrências de conectivos. 1

2 1 Equivalência de enunciados quantificados De maneira análoga ao que acontece com enunciados formados por meio de conectivos, dependendo de como entendemos o significado de um enunciado quantificado, ele pode ser simbolizado de mais de uma maneira. Exemplo 1 O enunciado pode ser interpretado como ninguém é feliz (1) todos são infelizes se admitimos que ser infeliz é a negação de ser feliz. Neste caso, (1) pode ser simbolizado diretamente como x[f(x)] ou indiretamente como de acordo com a legenda x[ f(x)] f(x) : x é feliz Do que foi dito acima, surge, então, a questão de decidir se dois enunciados quantificados, simbolizados de maneira distinta, expressam ou não o mesmo conteúdo. Vamos ver agora que, para os enunciados que só possuem uma ocorrência de quantificador, esta questão pode ser resolvida com o uso de interpretações. Equivalências A definição de quando dois enunciados são equivalentes é a mesma, para qualquer tipo de enunciado. Sejam ϕ e ψ enunciados simbolizados. Dizemos que ϕ e ψ são equivalentes se, para cada interpretação para ϕ e ψ, os valores de ϕ e ψ são iguais. O que muda, dos conectivos para os quantificadores, é que, no caso dos enunciados quantificados, a noção de interpretação é um pouco mais elaborada. Exemplo 2 Para interpretar os enunciados devemos determinar: x[f(x)], x[ f(x)] 2

3 1. um domínio de quantificação, D, para os quantificadores que ocorrem nos enunciados; 2. uma propriedade sobre elementos de D para ser o significado de f. Na interpretação original para os enunciados, dada no Exemplo 1, o domínio D consiste de todas as pessoas e f é a propriedade ser feliz. Mas, além desta, podemos definir muitas outras interpretações para x[f(x)] e x[ f(x)]. Por exemplo, D pode consistir de todos os animais e f ser a propriedade ser bípede; D pode consistir de todos os números reais e f ser a propriedade ser irracional; etc. Assim, de maneira geral, temos: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Dizemos que ϕ e ψ são equivalentes se, para qualquer interpretação conjunta para ϕ e ψ ou seja, qualquer domínio de avaliação D, associado simultaneamente a todos os quantificadores e quaisquer significados para as propriedades p 1, p 2,..., p n em D temos que o valor de ϕ é igual ao valor de ψ. O que queremos resolver é o problema da equivalência de enunciados, isto é, o problema de dados dois enunciados, classificá-los como equivalentes ou não. Vamos ver, agora, como podemos utilizar o critério acima para mostrar que certos enunciados bem simples são equivalentes. Exemplo 3 (a) Como suspeitamos, os enunciados x[f(x)], x[ f(x)] são equivalentes. De fato, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por f, em D. De acordo com as regras de avaliação do, do e do, temos que: x[f(x)] é V x[f(x)] é F 3

4 o enunciado f(x) é F para todos os valores que a variável x pode assumir em D para todos os valores que a variável x pode assumir em D, o enunciado f(x) é F para todos os valores que a variável x pode assumir em D, o enunciado f(x) é V x[ f(x)] é V. Assim, x[f(x)] é V x[ f(x)] é V e, daí, x[f(x)] é F se, e somente se, x[ f(x)] é F. Ou seja, x[f(x)] e x[ f(x)] têm os mesmos valores nas mesmas interpretações. (b) De maneira similar, podemos garantir que os enunciados x[f(x)], x[ f(x)] são equivalentes. De fato, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por f, em D. De acordo com as regras de avaliação do, do e do, temos que: x[f(x)] é V x[f(x)] é F o enunciado f(x) é F para ao menos um dos valores que a variável x pode assumir em D para ao menos um dos valores que a variável x pode assumir em D, o enunciado f(x) é F 4

5 para ao menos um dos valores que a variável x pode assumir em D, o enunciado f(x) é V x[ f(x)] é V. Assim, x[f(x)] é V x[ f(x)] é V e, daí, x[f(x)] é F se, e somente se, x[ f(x)] é F. Ou seja, x[f(x)] e x[ f(x)] têm os mesmos valores nas mesmas interpretações. O critério acima pode ser convertido em um método para justificar que certos enunciados não são equivalentes. De fato, como dois enunciados simbolizados são equivalentes quando possuem os mesmos valores em qualquer interpretação, dois enunciados simbolizados não são equivalentes quando possuem valores diferentes em alguma interpretação. Assim, de maneira geral, temos: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Dizemos que ϕ e ψ não são equivalentes se existe ao menos uma interpretação conjunta para ϕ e ψ ou seja, algum domínio de avaliação D, associado simultaneamente a todos os quantificadores e significados para as propriedades p 1, p 2,..., p n em D no qual o valor de ϕ é diferente do valor de ψ. Vamos ver, agora, como podemos utilizar o critério acima para mostrar que certos enunciados bem simples não são equivalentes. Exemplo 4 (a) Os enunciados x[p(x)], x[p(x)] não são equivalentes. Intuitivamente, isto é claro pois, usualmente, quando afirmamos que algum objeto possui uma propriedade, não estamos querendo dizer que todos os objetos a possuam. Assim, aparentemente, é possível exibir uma interpretação conjunta para x[p(x)] e x[p(x)], na qual x[p(x)] é V e x[p(x)] é F. De fato, consideremos a interpretação: D : formado por todos os números naturais p : ser igual a 0 Nesta interpretação o enunciado x[p(x)] significa x (x é igual a 0) 5

6 ou seja, ao menos um é igual a 0 e, portanto, é V. Enquanto que o enunciado x[p(x)] significa ou seja, x (x é igual a 0) todos são iguais a 0 e, portanto, é F. Como exibimos uma interpretação na qual x[p(x)] e x[p(x)] têm valores diferentes, eles não são equivalentes. (b) Os enunciados y[p(y)] z[q(z)], x[p(x) q(x)] não são equivalentes. Intuitivamente, isto é claro pois, usualmente, quando afirmamos que existe um objeto que possui uma propriedade e que existe um objeto que possui uma outra propriedade, não estamos querendo dizer que o mesmo objeto possui ambas as propriedades. Assim, aparentemente, é possível exibir uma interpretação conjunta para y[p(y)] z[p(z)] e x[p(x) q(x)], na qual y[p(y)] z[p(z)] é V e x[p(x) q(x)] é F. De fato, consideremos a interpretação: D : formado por todos os números naturais p : ser par q : ser ímpar Nesta interpretação o enunciado y[p(y)] z[p(z)] significa ou seja, y (y é par) z (z é ímpar) existe ao menos um par e existe ao menos um ímpar e, portanto, é V. Observe que, ao interpretarmos p(y) e p(z) para tornarmos y[p(y)] e z[p(z)] verdadeiros, nesta interpretação, as variáveis y e z assumem valores diferentes. Enquanto que o enunciado x[p(x) q(x)] significa x (x é par x ímpar) e, portanto, é F. Observe que, ao interpretarmos p(x) q(x) para tornarmos x[p(x) q(x)] verdadeiros, nesta interpretação, o valor de x deveria ser simultaneamente par e ímpar, o que é impossível. 6

7 1.1 Observações Observação 1 Os raciocínios empregados nos Exemplos 3(a) e 3(b) são perfeitamente gerais. Isto é, se v é uma variável qualquer e ϕ(v) é um enunciado qualquer que possui ocorrências livres de v (e não possui ocorrências livres de nenhuma outra variável), então os seguintes pares de enunciados são formados por enunciados equivalentes: v[ϕ(v)], v[ ϕ(v)] v[ϕ(v)], v[ ϕ(v)] Esta é uma característica comum das justificativas de que dois enunciados são equivalentes: Usualmente, um raciocínio baseado apenas nas regras de avaliação dos conectivos e quantificadores, que justifica corretamente que dois enunciados simbolizados são equivalentes, também mostra que quaisquer dois enunciados, que possuem a mesma forma que os enunciados dados, são equivalentes. Observação 2 Por outro lado, a justificativa de que dois enunciados não são equivalentes, usualmente, não é suficiente para mostrar que quaisquer dois enunciados que possuem a mesma forma que os enunciados dados não são equivalentes. Por exemplo, nos Exemplos 4(a) e 4(b), mostramos que os enunciados x[p(x)] e x[p(x)] não são equivalentes. Mas isto não nos autoriza a concluir de imediato que, dadas uma existencialização e uma generalização, elas não são equivalentes. De fato, os enunciados x[p(x) p(x)], x[p(x) p(x)] que, em um certo sentido, possuem as mesmas formas que x[p(x)] e x[p(x)], são equivalentes. Para justificar esta afirmação, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por p, em D. De acordo com as regras de avaliação do, do, do e do, temos que: x[p(x) p(x)] é V o enunciado p(x) p(x) é V, para ao menos um dos valores que a variável x pode assumir em D (2) F 7

8 para todos os valores que a variável x pode assumir em D o enunciado p(x) p(x) é V (3) x[p(x) p(x)] é V Na justificativa acima, usamos o fato de que o enunciado p(x) p(x) é uma contradição para qualquer valor que a variável x assuma em D. Assim, (2) e (3) são F. Logo, x[p(x) p(x)] é V x[p(x) p(x)] é V, ou seja, os enunciados são equivalentes. Observação 3 Em linhas gerais, o método que utilizamos nos Exemplos 3(a) e 3(b) para justificar que dois enunciados simbolizados são equivalentes pode ser resumido do seguinte modo: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Para justificar que ϕ e ψ são equivalentes, podemos executar os seguintes passos: 1. Considerar uma interpretação conjunta genérica para ϕ e ψ, formada por um domínio de avaliação genérico, D, e n propriedades genéricas, representadas por p 1,..., p n, em D. 2. Utilizar as regras de avaliação dos conectivos e quantificadores para justificar que ϕ é V ψ é V. 3. Se o Passo 2 terminar com sucesso, então ϕ e ψ são equivalentes. Observe o peso que é dado à palavra genérico, na descrição geral deste método. Aqui, a palavra genérico é empregada para salientar que: Os raciocínios apresentados na justificativa de que dois enunciados simbolizados são equivalentes devem ser baseados apenas nas regras de avaliação dos conectivos e quantificadores e não, por exemplo, em nossa intuição e/ou imaginação. 8

9 O uso deste tipo de raciocínio, ou seja, raciocínio baseado apenas nas definições e não na intuição e/ou imaginação é uma das características essenciais da Matemática. Nos primeiros contatos com os conteúdos matemáticos abordados no Ensino Superior, o emprego deste tipo de raciocínio parece um pouco exagerado, já que ele usualmente não é empregado no Ensino Médio. Mas, quanto mais estudamos e aprendemos Matemática, mais vemos que o emprego deste tipo de raciocínio é essencial. Assim, ele também é uma das habilidades que todo estudante de Matemática deve possuir. Observação 4 Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1,..., p n. Para justificar que ϕ e ψ não são equivalentes, podemos executar os seguintes passos: 1. Considerar uma interpretação conjunta específica para ϕ e ψ, formada por um domínio de avaliação específico, D, e n propriedades específicas, representadas por p 1,..., p n, em D. 2. Utilizar as regras de avaliação dos conectivos e quantificadores para justificar que ϕ e ψ possuem valores diferentes nesta interpretação. 3. Se o Passo 2 terminar com sucesso, então ϕ e ψ não são equivalentes. Observe o peso que é dado à palavra específico, na descrição geral deste método. Aqui, a palavra específico é empregada para salientar que: Os raciocínios apresentados na justificativa de que dois enunciados simbolizados não são equivalentes deve ser baseado nas regras de avaliação dos conectivos e quantificadores mas pode, também, ser baseado em nossos conhecimentos específicos sobre um determinado domínio de objetos. Na verdade, neste caso, utilizamos nossa intuição, imaginação e/ou conhecimentos específicos, quando estamos elaborando uma interpretação determinada, baseada na qual raciocinamos empregando as definições para mostrar que os enunciados podem possuir valores diferentes. Observação 5 Justificar que enunciados quantificados são equivalentes, baseados apenas na definição de interpretação e nas regras de avaliação dos conectivos e quantificadores, é uma tarefa puramente técnica que requer, usualmente, reflexão e cuidado. Além disso, em certos casos, elaborar uma explicação detalhada da equivalência pode requerer um texto muito mais complexo do que os que estamos acostumados a redigir, até o momento. Por estas razões, nos limitaremos a tratar apenas dos exemplos mais simples e úteis de equivalências de enunciados quantificados. 9

10 Justificar que enunciados não são equivalentes baseados apenas na definição de interpretação e nas regras de avaliação dos conectivos e quantificadores também é uma tarefa técnica, mas pode requerer um pouco de imaginação, uma vez que devemos exibir ao menos uma interpretação na qual os valores de ϕ e ψ são diferentes. Esta interpretação pode ser qualquer uma, baseada na realidade ou inventada, desde que os enunciados, quando ali interpretados, tenham valores opostos. 1.2 Exercícios resolvidos Exercício 1 Mostre, usando interpretações, que os enunciados abaixo são equivalentes: (i) x[p(x)] e y[p(y)] (ii) x[p(x)] e y[p(y)] Exercício 2 Mostre, usando interpretações, que os enunciados x[p(x) q(x)] e y[p(y)] z[p(z)] não são equivalentes. Antes de ler as resoluções, tente resolver o exercício usando os conceitos estudados. Resolução do Exercício 1: (i) Sejam D um domínio qualquer e p uma propriedade qualquer em D. Temos que x[p(x)] é V sse p(x) é V para ao menos um dos valores que x pode assumir em D sse p(y) é V para ao menos um dos valores que y pode assumir em D sse y[p(y)] é V (observe que, se p(x) é V quando x : d, temos que p(y) também é V quando y : d; e vice-versa). (ii) Sejam D um domínio qualquer e p uma propriedade qualquer em D. Temos que x[p(x)] é V sse para todos os valores que x assume em D, temos que p(x) é V sse para todos os valores que y assume em D, temos que p(y) é V sse y[p(y)] é V (observe que, se p(x) fosse F quando x : d, teríamos que p(y) também seria F quando y : d; e vice-versa). D : N Resolução do Exercício 2: Considere a interpretação: p : ser par Nesta q : ser ímpar. interpretação x[p(x) q(x)] significa x (x é par x é ímpar) e, portanto, é V. Enquanto que y[p(y)] z[p(z)] significa [ x (x é par) ] [ x (x é ímpar) ] e, portanto, é F. Observe que x (x é par) é F, nesta interpretação, e x (x é ímpar) também é F, nesta interpretação. c 2014 Márcia Cerioli, Renata de Freitas e Petrucio Viana IM-UFRJ, IME-UFF 10

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Enunciados Quantificados Equivalentes Renata de Freitas e Petrucio Viana IME, UFF Junho de 2014 Sumário Equivalência de enunciados quantificados. Aplicação da noção de interpretação para decidir quando

Leia mais

Simplificação de Enunciados com um Quantificador Petrucio Viana

Simplificação de Enunciados com um Quantificador Petrucio Viana GAN00166: Lógica para Ciência da Computação Texto da Aula 19 Simplificação de Enunciados com um Quantificador Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Transformação de enunciados quantificados

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Lógica Texto 7. Texto 7. 1 Negação de enunciados atômicos Exercício resolvido Negação de enunciados moleculares 5

Lógica Texto 7. Texto 7. 1 Negação de enunciados atômicos Exercício resolvido Negação de enunciados moleculares 5 Lógica para Ciência da Computação I Lógica Matemática Texto 7 Negação e simplificação de enunciados Sumário 1 Negação de enunciados atômicos 2 1.1 Observações................................ 2 1.2 Exercício

Leia mais

Método das Tabelas para Validade

Método das Tabelas para Validade Lógica para Ciência da Computação I Lógica Matemática Texto 10 Método das Tabelas para Validade Sumário 1 Simbolização de argumentos 2 1.1 Observações................................ 3 1.2 Exercício resolvido............................

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Enunciados Atômicos, Conectivos e Enunciados Moleculares

Enunciados Atômicos, Conectivos e Enunciados Moleculares Lógica para Ciência da Computação I Lógica Matemática Texto 3 Enunciados Atômicos, Conectivos e Enunciados Moleculares Sumário 1 Enunciados atômicos 2 1.1 Observações................................ 2

Leia mais

4 Simbolização de enunciados 24

4 Simbolização de enunciados 24 Matemática Discreta Tópicos da Linguagem e da Lógica Matemáticas Texto da Semana 1, Parte 3 Simbolização de Enunciados Sumário 1 Conectivos e simbolização dos conectivos 18 2 Enunciados componentes 18

Leia mais

Enunciados Abertos e Enunciados Fechados

Enunciados Abertos e Enunciados Fechados Lógica para Ciência da Computação I Lógica Matemática Texto 12 Enunciados Abertos e Enunciados Fechados Sumário 1 Enunciados atômicos abertos e fechados 2 1.1 Observações................................

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009 Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2

Leia mais

Simbolização de Enunciados com Conectivos

Simbolização de Enunciados com Conectivos Lógica para Ciência da Computação I Lógica Matemática Texto 4 Simbolização de Enunciados com Conectivos Sumário 1 Conectivos: simbolização e sintaxe 2 2 Enunciados componentes 5 2.1 Observações................................

Leia mais

Lógica dos Quantificadores: refutação

Lógica dos Quantificadores: refutação Lógica dos Quantificadores: refutação Renata de Freitas e Petrucio Viana IME, UFF 15 de junho de 2015 Sumário 1. Refutação para LQ 2. Redução ao absurdo e refutação 3. Regras de refutação para os quantificadores

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

Equivalência em LC. Renata de Freitas e Petrucio Viana. IME - UFF 27 de março de 2015

Equivalência em LC. Renata de Freitas e Petrucio Viana. IME - UFF 27 de março de 2015 Equivalência em LC Renata de Freitas e Petrucio Viana IME - UFF 27 de março de 2015 Sumário Equivalência de sentenças. Equivalência semântica em LC. Método das Tabelas para Equivalência. Principais equivalências.

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica de IME, UFF 7 de novembro de 2013 Sumário em... em Sintaxe da A lógica que estamos definindo é uma extensão de LS e é chamada de Lógica de Ordem,, por uma razão que será esclarecida mais adiante.

Leia mais

Método das Tabelas para Validade Petrucio Viana

Método das Tabelas para Validade Petrucio Viana GAN00166: Lógica para Ciência da Computação Texto da Aula 8 Método das Tabelas para Validade Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Simbolização de argumentos 1 1.1 Observação................................

Leia mais

Lógica dos Quantificadores: sintaxe e semântica intuitiva

Lógica dos Quantificadores: sintaxe e semântica intuitiva Lógica dos Quantificadores: sintaxe e semântica intuitiva quantificação em domínios infinitos Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Quantificadores sobre domínios infinitos.

Leia mais

IME, UFF 4 de novembro de 2013

IME, UFF 4 de novembro de 2013 Lógica IME, UFF 4 de novembro de 2013 Sumário e ferramentas Considere o seguinte texto, da aritmética dos números naturais. Teorema: Todo número inteiro positivo maior que 1 tem um fator primo. Prova:

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 5 de novembro de 2014 Sumário Acrescentando premissas. Estratégias indiretas. Principais exemplos. Um problema

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

equivalentes em LC Petrucio Viana

equivalentes em LC Petrucio Viana GAN00166: Lógica para Ciência da Computação Texto da Aula 6 Transformação e negação por meio de equivalentes em LC Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Transformação de enunciados

Leia mais

Simbolização de Enunciados com um Quantificador

Simbolização de Enunciados com um Quantificador Lógica para Ciência da Computação I Lógica Matemática Texto 13 Simbolização de Enunciados com um Quantificador Sumário 1 Quantificadores: simbolização e sintaxe 2 2 Explicitando e quantificando variáveis

Leia mais

Lógica dos Conectivos: árvores de refutação

Lógica dos Conectivos: árvores de refutação Lógica dos Conectivos: árvores de refutação Petrucio Viana IME UFF 30 de junho de 2015 Sumário Algoritmos para classificação das fórmulas Intermezzo sobre Redução ao Absurdo Método de refutação Árvores

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos

Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Notas de aula de Lógica para Ciência da Computação Aula 2, 2014/2 Sintaxe da Lógica dos Conectivos Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 27 de agosto de 2014 Sumário 1 Sintaxe

Leia mais

6 Demonstrações indiretas 29. Petrucio Viana

6 Demonstrações indiretas 29. Petrucio Viana GAN00166: Lógica para Ciência da Computação Texto da Aula 9 Demonstrações Indiretas Petrucio Viana Departamento de Análise IME UFF Sumário 1 Demonstrações diretas 2 1.1 Observações................................

Leia mais

Argumentos e Validade Petrucio Viana

Argumentos e Validade Petrucio Viana GAN00166: Lógica para Ciência da Computação Texto da Aula 7 Argumentos e Validade Petrucio Viana Departamento de Análise, IME UFF Sumário 1 Argumentos 1 1.1 Observações................................

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

Notas de Aula Aula 2, 2012/2

Notas de Aula Aula 2, 2012/2 Lógica para Ciência da Computação Notas de Aula Aula 2, 2012/2 Renata de Freitas & Petrucio Viana Departamento de Análise, IME UFF 23 de janeiro de 2013 Sumário 1 Conteúdo e objetivos 1 2 Legibilidade

Leia mais

IME, UFF 3 de junho de 2014

IME, UFF 3 de junho de 2014 Lógica IME, UFF 3 de junho de 2014 Sumário A lógica formal e os principais sistemas A lógica formal Um dos objetivos da lógica formal é a mecanização do raciocínio, isto é, a obtenção de nova informação

Leia mais

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4

Passos lógicos. Texto 18. Lógica Texto Limitações do Método das Tabelas Observações Passos lógicos 4 Lógica ara Ciência da Comutação I Lógica Matemática Texto 18 Passos lógicos Sumário 1 Limitações do Método das Tabelas 2 1.1 Observações................................ 4 2 Passos lógicos 4 2.1 Observações................................

Leia mais

IME, UFF 5 de novembro de 2013

IME, UFF 5 de novembro de 2013 Lógica IME, UFF 5 de novembro de 2013 . em LS. Método das.. Sumário. Simbolização não é determinística Dependendo de o entendemos o significado de uma sentença, ela pode ser simbolizada de mais de uma

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores

Leia mais

Os Fundamentos: Lógica de Predicados

Os Fundamentos: Lógica de Predicados Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG Introdução à Lógica Computacional 2019/01 Introdução à Lógica Computacional Os Fundamentos: Lógica de Predicados Área de Teoria DCC/UFMG - 2019/01

Leia mais

Lógica Matemática - Quantificadores

Lógica Matemática - Quantificadores Lógica Matemática - Quantificadores Prof. Elias T. Galante - 2017 Quantificador Universal Seja p(x) uma sentença aberta em um conjunto não-vazio A e seja V p o seu conjunto verdade: V p = {x x A p(x)}.

Leia mais

Renata de Freitas e Petrucio Viana. IME - UFF 27 de agosto de 2014

Renata de Freitas e Petrucio Viana. IME - UFF 27 de agosto de 2014 Simbolização em LC Renata de Freitas e Petrucio Viana IME - UFF 27 de agosto de 2014 Sumário Classificações imediatas e não imediatas Falta de uniformidade Regras de reescrita Legendas Procedimento de

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica IME, UFF 7 de novembro de 2013 em Sumário Intermezzo sobre problemas. Intermezzo sobre algoritmos.. em : Val, Sat, Conseq, Equiv, Consist. Redução de problemas. em Um problema computacional é

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

NOÇÕES DE LÓGICA MATEMÁTICA. O CÁLCULO DE PREDICADOS DE 1 a ORDEM

NOÇÕES DE LÓGICA MATEMÁTICA. O CÁLCULO DE PREDICADOS DE 1 a ORDEM NOÇÕES DE LÓGICA MATEMÁTICA O CÁLCULO DE PREDICADOS DE 1 a ORDEM O Cálculo de Predicados, dotado de uma linguagem mais rica, tem várias aplicações importantes não só para matemáticos e filósofos como também

Leia mais

Argumentos, Correção e Validade

Argumentos, Correção e Validade Lógica para Ciência da Computação I Lógica Matemática Texto 9 Argumentos, Correção e Validade Sumário 1 Razões e opiniões 2 2 Argumentos 3 2.1 Observações................................ 4 2.2 Exercício

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Aula 7 Os teoremas de Weierstrass e do valor intermediário.

Aula 7 Os teoremas de Weierstrass e do valor intermediário. Os teoremas de Weierstrass e do valor intermediário. MÓDULO - AULA 7 Aula 7 Os teoremas de Weierstrass e do valor intermediário. Objetivo Compreender o significado de dois resultados centrais a respeito

Leia mais

Texto 1. Lógica Texto 1. 1 O que é Lógica 2. 2 Sistemas lógicos 2. 3 Principais problemas 3. 4 Principais sistemas 7

Texto 1. Lógica Texto 1. 1 O que é Lógica 2. 2 Sistemas lógicos 2. 3 Principais problemas 3. 4 Principais sistemas 7 Lógica para Ciência da Computação I Lógica Matemática Texto 1 O que é Lógica Sumário 1 O que é Lógica 2 2 Sistemas lógicos 2 3 Principais problemas 3 4 Principais sistemas 7 Neste texto, discutimos, em

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Quantificadores Agrupados Negando expressões com quantificadores Agrupados Prioridade dos Quantificadores

Leia mais

Gestão Empresarial Prof. Ânderson Vieira

Gestão Empresarial Prof. Ânderson Vieira NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Quantificadores Agrupados Negando expressões com quantificadores

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial

Semana 3 MCTB J Donadelli. 1 Técnicas de provas. Demonstração indireta de implicação. indireta de. Demonstração por vacuidade e trivial Semana 3 por de por de 1 indireta por de por de Teoremas resultados importantes, Os rótulos por de por de Teoremas resultados importantes, Os rótulos Proposições um pouco menos importantes, por de por

Leia mais

Instituto de Matemática e Estatística, UFF Abril de 2013

Instituto de Matemática e Estatística, UFF Abril de 2013 Instituto de Matemática e Estatística, UFF Abril de 2013 Sumário.... Hermann Grassmann Famoso em sua época como linguista, somente hoje é valorizado como matemático. Foi o primeiro a usar o método de prova

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

Aula 1 Aula 2 Aula 3. Ana Carolina Boero. Página:

Aula 1 Aula 2 Aula 3. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Apresentação do curso

Apresentação do curso Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica 2 Conteúdo

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

1 Lógica de primeira ordem

1 Lógica de primeira ordem 1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

Apresentação do curso

Apresentação do curso Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Apresentação do curso Parte 1 Parte 1 Matemática Básica 1 Parte 1 Matemática Básica

Leia mais

MDI0001 Matemática Discreta Aula 01

MDI0001 Matemática Discreta Aula 01 MDI0001 Matemática Discreta Aula 01 e Karina Girardi Roggia karina.roggia@udesc.br Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina 2016 Karina

Leia mais

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo

Negação. Matemática Básica. Negação. Negação. Humberto José Bortolossi. Parte 3. Regras do Jogo. Regras do Jogo Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Parte 3 Parte 3 Matemática Básica 1 Parte 3 Matemática Básica 2 Qual é a negação do predicado

Leia mais

Linguagem matemática e elementos de lógica. Ana Carolina Boero

Linguagem matemática e elementos de lógica. Ana Carolina Boero Linguagem matemática e elementos de lógica Ana Carolina Boero Quantificadores Em Matemática, os quantificadores existe e para todo, denotados respectivamente pelos símbolos e, são amplamente utilizados.

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 6-29/03/2012 Introdução à Lógica de Predicados Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Introdução

Leia mais

Lógica Computacional

Lógica Computacional Aula Teórica 22: em Lógica de Primeira Ordem António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,

Leia mais

Departamento de Análise Instituto de Matemática, UFF Outubro de 2014

Departamento de Análise Instituto de Matemática, UFF Outubro de 2014 O Paradoxo Departamento de Análise Instituto de Matemática, UFF Outubro de 2014 da mentira Nossa conversa tratará dos seguinte itens: Sumário..... Vou mostrar para vocês como eu entrei no mundo da Lógica

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Equações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 3 de novembro de 018 No material da aula

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto

A Linguagem dos Teoremas - Parte II. Tópicos Adicionais. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto Material Teórico - Módulo de INTRODUÇÃO À LÓGICA MATEMÁTICA A Linguagem dos Teoremas - Parte II Tópicos Adicionais Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto 12 de maio

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Rosen 47 6) Considere N(x) como o predicado x visitou Dakota do Norte, em que o domínio são os estudantes de sua escola. Expresse cada uma dessas quantificações em português. a) x

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Aula 1 - Definições indutivas e definições recursivas

Aula 1 - Definições indutivas e definições recursivas Notas de aula de Lógica para Ciência da Computação Aula 1 - Definições indutivas e definições recursivas Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 6 de agosto de 2014 Sumário

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Álgebra Linear Semana 05

Álgebra Linear Semana 05 Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais

Leia mais

Lógica predicados. Lógica predicados (continuação)

Lógica predicados. Lógica predicados (continuação) Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo

Leia mais

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas.

Bases Matemáticas. Como o Conhecimento Matemático é Construído. Aula 2 Métodos de Demonstração. Rodrigo Hausen. Definições Axiomas. 1 Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2012-9-21 1/15 Como o Conhecimento Matemático é Construído 2 Definições Axiomas Demonstrações Teoremas Demonstração: prova de que um

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Demonstrações Matemáticas Parte 2

Demonstrações Matemáticas Parte 2 Demonstrações Matemáticas Parte 2 Nessa aula, veremos aquele que, talvez, é o mais importante método de demonstração: a prova por redução ao absurdo. Também veremos um método bastante simples para desprovar

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Predicados e Quantificadores

Predicados e Quantificadores Predicados e Quantificadores Profa. Sheila Morais de Almeida DAINF-UTFPR-PG junho - 2018 Sheila Almeida (DAINF-UTFPR-PG) Predicados e Quantificadores junho - 2018 1 / 57 Este material é preparado usando

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Neste artigo, a título de sugestão de abordagem do tema, apresentamos exemplos de explicitação e utilização de algumas dessas regras.

Neste artigo, a título de sugestão de abordagem do tema, apresentamos exemplos de explicitação e utilização de algumas dessas regras. Somo Gilda de La Roque Palis e Iaci Malta PUC - RJ Em sua autobiografia, Carl Gustav Jung 1, um dos grandes pensadores da Psicanálise, lembrando de seus tempos de colégio, diz:... o que mais me irritava

Leia mais