ANTECESSORES RELATIVAMENTE PRIMOS
|
|
|
- Octavio Azevedo Lopes
- 9 Há anos
- Visualizações:
Transcrição
1 ANTECESSORES RELATIVAMENTE PRIMOS ALUNO: MÁRCIO PALMARES Trabalho apresentado para a Disciplina CM141 - TÓPICOS DE MATEMÁTICA II, a cargo do Prof. ABEL SOARES SIQUEIRA INTRODUÇÃO Neste trabalho, número natural significa inteiro positivo, isto é, N = {1, 2, 3,...}. Dado um natural n, em certos problemas de Teoria de Números é necessário considerar o conjunto formado pelos antecessores k de n tais que k e n não possuem divisores comuns, ou, equivalentemente, tais que mdc(k, n) = 1. Tais pares de números são chamados primos entre si, coprimos ou relativamente primos. Adotamos a sigla ARP como abreviatura para a expressão antecessores relativamente primos. Em símbolos, ARP(n) = {k N 1 k < n e mdc(k, n) = 1}. Por exemplo, para n = 10, o conjunto de seus ARP é: ARP(10) = {1, 3, 7, 9}. Observemos que em ARP(10) nem todos os elementos são primos: 1 não é primo, por definição, e 9 é composto, múltiplo de 3; no entanto, mdc(1, 10) = mdc(9, 10) = 1. Para n = 30, ARP(30) = {1, 7, 11, 13, 17, 19, 23, 29}. Neste caso, como se vê, com exceção do 1, os demais elementos em ARP(30) são primos. Mais ainda, observamos que podemos organizar tais elementos em pares ordenados cuja soma das componentes é n = 30: (1, 29) (7, 23) (11, 19) (13, 17) Tais pares correspondem à ação de somar os extremos da sequência 1, 7, 11, 13, 17, 19, 23, 29, o mesmo procedimento que adotamos inicialmente quando queremos calcular a soma dos termos de uma progressão aritmética, como 2, 4, 6, 8. Em ambos os casos a soma dos extremos é constante. Notemos ainda que mdc(1, 29) = mdc(7, 23) = mdc(11, 19) = mdc(13, 17) = 1. 1
2 2 ALUNO: MÁRCIO PALMARES Finalmente, observamos que na sequência 1, 7, 11, 13, 17, 19, 23, 29 a diferença entre dois termos sucessivos (primeira derivada discreta) fornece-nos um padrão de crescimento 6, 4, 2, 2, 2, 4, 6 que apresenta simetria e cuja derivada discreta (segunda derivada discreta em termos da sucessão inicial), a partir do centro, para a esquerda ou para a direita, é em módulo constante e igual a 2. Um problema pente ainda não examinado pelo autor desse trabalho é o de saber se um polinômio interpolador (que pode ser obtido por integração discreta) poderia nos fornecer algum tipo de informação sobre a distribuição dos primos no conjunto dos ARP de qualquer múltiplo de 30. Essa hipótese deve-se a que o mesmo padrão de crescimento é preservado quando consideramos múltiplos de 30. Por exemplo, para obter ARP(60) é suficiente adicionarmos mais uma coluna à sucessão original, formando um conjunto de pares ordenados (ou um conjunto comum ou uma matriz 8x2) e preservando as relações mdc(a, b) = 1 e a + b = n: (1, 59) (7, 53) (11, 49) (13, 47) (17, 43) (19, 41) (23, 37) (29, 31) Observemos que: (1) O único número composto no conjunto acima é 49; (2) A segunda coluna (a segunda componente dos pares) segue o mesmo padrão de crescimento da primeira coluna (porém com sentido contrário); (3) O centro de simetria do padrão de crescimento da sucessão completa continua so igual a 2. Esse comportamento altamente organizado ou previsível dos ARP de 30 e de seus múltiplos sugere-nos o desenvolvimento de métodos computacionais para produzir grandes coleções de ARP e pesquisar o comportamento dos primos em seu interior. Sabe-se (até o momento) que a distribuição dos primos é aleatória. No entanto, introduzindo alguns poucos números compostos em sucessões específicas, conseguimos distribuições mistas (de compostos e primos) que respeitam padrões determinados, como vemos no caso dos ARP(60). Uma questão a ser respondida é então: listas puras de primos (obtidas de conjuntos de ARP após a eliminação de compostos) poderiam exibir algum padrão? Se a resposta for afirmativa, poderíamos afirmar que os primos se distribuem de acordo com padrões em subconjuntos específicos de N. 1. A função φ de Euler: o número de elementos em ARP(n) O número de elementos em ARP(n) é calculado pela função φ de Euler, cuja expressão é:
3 ANTECESSORES RELATIVAMENTE PRIMOS 3 φ(n) = n p n (1 1 p ) = n p n onde p é um fator primo da decomposição de n. Por exemplo, para n = 30, temos: φ(30) = p n ( p 1 p ). ( p 1 p ) = (1 2 ) (2 3 ) (4 5 ) = 8. O número de ARP de um natural n aparece em diferentes contextos, por exemplo, como o grau do n-ésimo polinômio ciclotômico (associado às raízes primitivas de ordem n da unidade, em C) e também na equação abaixo, que nos fornece um interessante modo de particionar um natural n: onde d é um divisor de n. Para n = 10, temos n = d n φ(d), 10 = d 10 φ(d) = φ(1) + φ(2) + φ(5) + φ(10) = Para construir essa função usando a linguagem Julia, copiamos parte do raciocínio usado por outros programadores, substituindo, entretanto, o emprego do Crivo de Eratóstenes pelo emprego da função factor, disponível no pacote Primes, que retorna os fatores primos da decomposição de n no formato desejado (num vetor/matriz, num dicionário ou num conjunto). Eis o código (é preciso instalar e carregar o pacote Primes): f u n c t i o n phi ( n : : I n t e g e r ) m = n f o r p in f a c t o r ( Set, n ) m = m div (m, p ) # m = m (1 1/p ) r eturn Int ( round (m) ) 2. A função ARP(n) Para construir o conjunto dos ARP de um n qualquer, criamos antes a função coprimos, que diz se dois números dados são relativamente primos ou não:
4 4 ALUNO: MÁRCIO PALMARES f u n c t i o n coprimos (n, m: : I n t e g e r ) i f gcd (n,m) == 1 r eturn true e l s e r eturn f a l s e Neste caso usamos a função disponível gcd(a, b), máximo divisor comum dos inteiros a e b. A função que nos fornece o conjunto dos ARP de n é então obtida da seguinte maneira: f u n c t i o n ARP( n : : I n t e g e r ) A = Vector ( ) f o r k = 1 : n 1 i f coprimos ( k, n ) A = push! ( A, k ) r eturn A Observemos que a função retorna um vetor (matriz coluna) e não um conjunto propriamente dito. Para facilitar a visualização de conjuntos pequenos de ARP, criamos ainda a função f u n c t i o n ARP ver ( n : : I n t e g e r ) f o r p = 1 : Int ( n /2) i f p in ARP( n ) p r i n t l n ( ( $ ( p ), $ (n p ) ) ) que imprime a lista de ARP organizados em pares do tipo (a, b) onde mdc(a, b) = 1 e a + b = n. 3. Eliminando os números compostos e o 1 de ARP(n) Ao eliminar os compostos e o número 1 de ARP(n), obtemos uma sucessão pura de primos. Acrescentando a ela os primos que estão na decomposição de n, obtemos
5 ANTECESSORES RELATIVAMENTE PRIMOS 5 a lista de primos até n, dada pela função f u n c t i o n primosate ( n : : I n t e g e r ) X = ARP( n ) Y = f i l t e r ( isprime, ARP( n ) ) S = unique ( f a c t o r ( Vector, n ) ) T = f l i p d i m (S, 1 ) f o r p in T Y = u n s h i f t! ( Y, p ) r eturn Y Criamos também a função primos até n visualização, que produz uma matriz mais adequada para a visualização (sempre que o número de primos até n não for primo!): f u n c t i o n p r i m o s a t e v i s ( n : : I n t e g e r ) A = ARP( n ) B = primosate ( n ) C = l e n g t h (B) D = unique ( f a c t o r ( Vector, C) ) k = maximum(d) reshape (B, k, Int (C/k ) ) Rodando essa última função num computador comum, conseguimos resposta imediata para n = 10 6 (dez milhões). No entanto, para n = 10 7 (cem milhões) o programa falha, talvez por falta de memória para armazenar os primos. 4. Conclusão Num programa como o Excel, por exemplo, é possível construir matrizes de ARP facilmente, pois novas colunas podem ser obtidas das anteriores por simples adição. Por exemplo, ainda no caso do 30 e de seus múltiplos, a primeira coluna da matriz seria formada pelos elementos em ARP(30), a segunda coluna seria obtida por subtração: [a] i2 = 60 [a] i1. Para obter as próximas colunas basta somar 60 à penúltima coluna. Não conseguimos descobrir ainda como fazer isso na linguagem Julia. No entanto, no momento em que conseguirmos, o próximo passo seria construir um meio de determinar, pela coordenadas dos elementos da matriz, as posições de todos os múltiplos de 7, por exemplo. Depois, as posições de todos os múltiplos de 11, e assim sucessivamente. Isso é possível porque os múltiplos de 7 dentro do conjunto de ARP dos múltiplos de 30 se distribuem de acordo com um padrão determinado (o mesmo que gera a primeira sucessão). Essa distribuição,
6 6 ALUNO: MÁRCIO PALMARES quando observada graficamente (como números coloridos numa matriz), apresenta simetrias (a partir da sétima coluna da matriz, para o 7; a partir da décima primeira coluna para o 11, etc.) e os múltiplos em questão são obtidos por reflexão do padrão em torno do eixo de simetria. Assim, quando chegarmos à coluna cujo número é (o mínimo múltiplo comum de 1, 7, 11, 13, 17, 19, 23, 29), bastará refletir o padrão conjunto produzido pelos compostos múltiplos desses primos, e então obteremos gratuitamente compostos do outro lado do eixo de simetria. Após eliminá-los, precisaremos considerar compostos múltiplos da segunda coluna, por um processo similar. Repetindo esse raciocínio, sobrarão apenas primos do outro lado do centro de simetria, até um certo n, obtidos sem testes usuais de primalidade. Essa ideia precisa ainda ser implementada, mas para isso é preciso ter mais conhecimento de programação, algo que pretemos adquirir a partir de agora.
7 ANTECESSORES RELATIVAMENTE PRIMOS 7 References 1. Rotman, Joseph J., A first course in abstract algebra : with aplications, 3rd ed., Pearson Prentice Hall, Milies, Francisco César Polcino, Números: Uma introdução à Matemática, 3rd ed., São Paulo: Editora da Universidade de São Paulo, Birkhoff, Garrett, Álgebra Moderna Básica, 4rd ed., Rio de Janeiro: Editora Guanabara Dois, 1980.
Aula 3: Algoritmos: Formalização e Construção
Aula 3: Algoritmos: Formalização e Construção Fernanda Passos Universidade Federal Fluminense Programação de Computadores IV Fernanda Passos (UFF) Algoritmos: Formalização e Pseudo-Código Programação de
a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.
Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um
Resumo. Palavras-chave: implementações aritméticas; inverso modular; sistema de restos.
2017, NÚMERO 1, VOLUME 5 ISSN 2319-023X Universidade Federal de Sergipe - UFS [email protected] Resumo Neste trabalho apresentamos uma implementação para execução manual do algoritmo estendido das divisões
Formação Continuada Nova Eja. Plano de Ação II INTRODUÇÃO
Nome: Armando dos Anjos Fernandes Formação Continuada Nova Eja Plano de Ação II Regional: Metro VI Tutor: Deivis de Oliveira Alves Este plano de ação contemplará as unidades 29 e 30. Unidade 29 I - Matrizes
1. Múltiplos e divisores
Escola Básica de Santa Marinha Matemática 2009/2010 7º Ano Síntese dos conteúdos Números e operações 1 Múltiplos e divisores Múltiplo de um número é todo o número que se obtém multiplicando o número dado
Aula prática 5. Funções Recursivas
Programação Funcional UFOP DECOM 2014.1 Aula prática 5 Funções Recursivas Resumo Definições recursivas são comuns na programação funcional. Nesta aula vamos aprender a definir funções recursivas. Sumário
é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:
Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que
Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS
1 Ciclo 3 Encontro 1 NÚMEROS PRIMOS, FATORAÇÃO ÚNICA EM PRIMOS, MDC E MMC VIA FATORAÇÃO EM PRIMOS Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Números primos, fatoração única em primos,
Primeiro Exercício programa: Como o Google ordena páginas. MAP-2121 para EPUSP
Primeiro Exercício programa: Como o Google ordena páginas MAP-2121 para EPUSP 1 Instruções gerais Os exercícios computacionais pedidos na disciplina Cálculo Numérico têm por objetivo fundamental familiarizar
Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas
COLÉGIO DE SANTA DOROTEIA LISBOA ANO LETIVO 2018/2019 Planificação (Conteúdos)... Período Letivo: 1.º DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA ANO: 6.º Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos
CIC 111 Análise e Projeto de Algoritmos II
CIC 111 Análise e Projeto de Algoritmos II Prof. Roberto Affonso da Costa Junior Universidade Federal de Itajubá AULA 21 Number theory Primes and factors Modular arithmetic Solving equations Other results
1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)
CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,
Metas Curriculares Conteúdos Aulas Previstas. - Números primos; - Crivo de Eratóstenes;
ANO LETIVO 2017/2018... 1º PERÍODO - (13 de setembro a 15 de dezembro) DEPARTAMENTO DE MATEMÁTICA /INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos
Note-se que pelo Teorema de Euler. a φ(n) 1 (mod n) logo existe k nas condições da definição acima e. Raízes Primitivas. Ordem de um elemento
Ordem de um elemento Definição Sejam a e n inteiros tais que m.d.c.(a, n) = 1. O menor inteiro positivo k tal que tal que a k 1 (mod n) diz-se a ordem de a módulo n e representa-se por ord n (a). Note-se
Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido
Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Introdução Objetivo: estudar o método
, com k 1, p 1, p 2,..., p k números primos e α i, β i 0 inteiros, as factorizações de dois números inteiros a, b maiores do que 1.
Como seria de esperar, o Teorema Fundamental da Aritmética tem imensas consequências importantes. Por exemplo, dadas factorizações em potências primas de dois inteiros, é imediato reconhecer se um deles
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se
Critérios de divisibilidade Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios
Existem infinitos números de Carmichael, mas não provaremos isso neste curso.
6 Pseudoprimos 6.1 O Pequeno Teorema de Fermat nos diz que, se n é primo, então temos b n b (mod n) para todo b Z. Portanto, a contrapositiva diz que se temos b n b (mod n) ( ) para algum b Z, então n
XIX Semana Olímpica de Matemática. Nível 3. Polinômios Ciclotômicos e Congruência Módulo p. Samuel Feitosa
XIX Semana Olímpica de Matemática Nível 3 Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Semana Olímpica 2016 Polinômios
Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)
Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno
étodos uméricos INTERPOLAÇÃO, EXTRAPOLAÇÃO, APROXIMAÇÃO E AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA
Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio
Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro)
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (6º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Números e operações - Números
Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF)
Portal da OBMEP. Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano
Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Máximo divisor comum Nesta aula, estudaremos métodos para
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Universidade do Minho
Teórica n o 1 2007-02-22 Apresentação do docente e da disciplina. Algumas revisões de teoria de números elementar. O algoritmo de Euclides estendido; demonstração do teorema que fundamenta o algoritmo.
Matemática Discreta. Fundamentos e Conceitos da Teoria dos Números. Universidade do Estado de Mato Grosso. 4 de setembro de 2017
Matemática Discreta Fundamentos e Conceitos da Teoria dos Números Professora Dr. a Donizete Ritter Universidade do Estado de Mato Grosso 4 de setembro de 2017 Ritter, D. (UNEMAT) Matemática Discreta 4
Lista de exercícios 9 Mudanças de Bases
Universidade Federal do Paraná 2 semestre 2016 Algebra Linear Olivier Brahic Lista de exercícios 9 Mudanças de Bases Observação: no livro do Leon [1] o autor chama de matriz de transição de B 1 para B
ESTRUTURAS DE REPETIÇÃO - PARTE 2
AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Sequências e sucessões (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Verificando que em cada termo: o número de cubos cinzentos é igual à
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
MATEMÁTICA. Docente: Marina Mariano de Oliveira
MATEMÁTICA Docente: Marina Mariano de Oliveira MATEMÁTICA Docente: Marina Mariano de Oliveira Bacharelado em Meteorologia (incompleto) Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
Método de Newton. 1.Introdução 2.Exemplos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:
(a) 1 (b) 0 (c) 2 (d) 3. (a) 6 (b) 8 (c) 1. (d) H = {p P 2 p(1) = p(2)} (c) H = {p P 2 p(1) + p(2) = 0} 8. Seja H o subespaço definido por
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Cesar, Flavio, Luiz Carlos, Mario, Milton, Monique e Paulo Data: 25 de setembro de 2013 Primeira Prova 1. Podemos
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
Álgebra Linear Semana 04
Álgebra Linear Semana 04 Diego Marcon 17 de Abril de 2017 Conteúdo 1 Produto de matrizes 1 11 Exemplos 2 12 Uma interpretação para resolução de sistemas lineares 3 2 Matriz transposta 4 3 Matriz inversa
Refletores de Householder e Fatoração QR
Refletores de Householder e Fatoração QR Antonio Elias Fabris Instituto de Matemática e Estatística Universidade de São Paulo Map 2210 Aplicações de Álgebra Linear Antonio Elias Fabris (IME-USP) Householder
Introdução à Teoria dos Números Notas de Aulas 3 Prof Carlos Alberto S Soares
Introdução à Teoria dos Números 2018 - Notas de Aulas 3 Prof Carlos Alberto S Soares 1 Números Primos e o Teorema Fundamental da Aritmética Em notas anteriores já definimos os números primos, isto é, números
Probabilidade e Estatística. Medidas de Tendência Central. Cláudio Henrique Albuquerque Rodrigues, M. Sc.
Probabilidade e Estatística Medidas de Tendência Central Cláudio Henrique Albuquerque Rodrigues, M. Sc. Introdução No estudo de uma série estatística é conveniente o cálculo de algumas medidas que a caracterizam
Aritmética Racional MATEMÁTICA DISCRETA. Patrícia Ribeiro. Departamento de Matemática, ESTSetúbal 2018/ / 42
1 / 42 MATEMÁTICA DISCRETA Patrícia Ribeiro Departamento de Matemática, ESTSetúbal 2018/2019 2 / 42 1 Combinatória 2 3 Grafos 3 / 42 Capítulo 2 4 / 42 Axiomática dos Inteiros Sejam a e b inteiros. Designaremos
É uma sequência lógica de ações, um passo a passo, para atingir determinado objetivo.
Computação I Introdução Olá pessoal, eu sou o Edivaldo e aqui vou tentar ensinar de um jeito resumido e descomplicado as noções iniciais do curso de Programação da UFRJ, que é ministrado na linguagem de
Os logaritmos decimais
A UA UL LA Os logaritmos decimais Introdução Na aula anterior, vimos que os números positivos podem ser escritos como potências de base 10. Assim, introduzimos a palavra logaritmo no nosso vocabulário.
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO
Análise Numérica (1) Introdução e Sistemas de Numeração V1.0, Victor Lobo, Análise Numérica. Doutor Victor Sousa Lobo.
e Sistemas de Numeração Análise Numérica Doutor Victor Sousa Lobo Escola Naval 1 1 Objectivo da cadeira Finalidade (Pescolnav 101): Proporcionar aos alunos conhecimentos sobre a introduçao aos métodos
Roteiro de trabalho para o 5o ano
Roteiro de trabalho para o 5o ano No volume do 5º ano estão assim organizados os conteúdos e as habilidades a serem desenvolvidos no decorrer do ano. LIÇÃO CONTEÚDO OBJETOS 1. Vamos recordar 2. Sistema
(Ciência de Computadores) 2005/ Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação
Álgebra (Ciência de Computadores) 2005/2006 Números inteiros 1. Diga quais dos conjuntos seguintes satisfazem o Princípio de Boa Ordenação (a) {inteiros positivos impares}; (b) {inteiros negativos pares};
Os números reais. Capítulo O conjunto I
Capítulo 4 Os números reais De todos os conjuntos numéricos que estudamos agora, a transição de um para outro sempre era construída de forma elementar A passagem do conjunto dos números racionais aos reais
Plano Curricular de Matemática 6ºAno - 2º Ciclo
Plano Curricular de Matemática 6ºAno - 2º Ciclo Domínio Conteúdos Metas Nº de Tempos Previstos Numeros e Operações Geometria Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental
PESQUISA OPERACIONAL
PESQUISA OPERACIONAL Uma breve introdução. Prof. Cleber Almeida de Oliveira Apostila para auxiliar os estudos da disciplina de Pesquisa Operacional por meio da compilação de diversas fontes. Esta apostila
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
ALGORITMO DE EUCLIDES
Sumário ALGORITMO DE EUCLIDES Luciana Santos da Silva Martino lulismartino.wordpress.com [email protected] PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Máximo Divisor Comum 2 Algoritmo
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
Linguagem Haskell. Riocemar S. de Santana
Linguagem Haskell Riocemar S. de Santana Haskell, o que é? É uma linguagem de programação puramente funcional, de propósito geral. Nomeada em homenagem ao matemático americano Haskell B. Curry (1900 1982).
GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).
01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente
MA21: Resolução de Problemas - gabarito da primeira prova
MA21: Resolução de Problemas - gabarito da primeira prova Problema 1 (2 pontos) Prove que a maior área dentre todos os retângulos de perímetro 1 é atingida por um quadrado. Dificuldade: MUITO FÁCIL Sejam
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.
Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f
Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.
Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível
Capítulo 5 - Interpolação Polinomial
Capítulo 5 - Interpolação Polinomial Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa
PROGRAMAÇÃO A. Vetores
PROGRAMAÇÃO A Vetores DEFINIÇÃO Vetor também é conhecido como variável composta homogênea unidimensional. Isso quer dizer que se trata de um conjunto de variáveis de mesmo tipo, que possuem o mesmo identificador
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:
Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.
1. Faça uma função que recebe por parâmetro o raio de uma esfera e calcula o seu volume.
Instituto Federal do Pará Professor: Ricardo José Cabeça de Souza Disciplina: - Algoritmos e Construção de Programas LISTA DE EXERCÍCIOS 1. Faça uma função que recebe por parâmetro o raio de uma esfera
Interpolação polinomial: Diferenças divididas de Newton
Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500
Desenvolvendo o Critério de Eisenstein computacionalmente
Desenvolvo o Critério de Eisenstein computacionalmente Bruno Cezar Steinmetz 19 de dezembro de 2016 1 Introdução Este trabalho visa o desenvolvimento de um estudo sobre polinômios com coeficientes inteiros,
Números Primos e Criptografia RSA
Números Primos e Criptografia RSA Jean Carlo Baena Vicente Matemática - UFPR Orientador: Carlos Henrique dos Santos 6 de outubro de 2013 Sumário Criptografia RSA Por que o RSA funciona? Fatoração Primalidade
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.
EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de
Concurso Público Conteúdo
Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Disciplina: Introdução à Engenharia da Computação
Colegiado de Engenharia de Computação Disciplina: Introdução à Engenharia da Computação Aula 07 (semestre 2011.2) Prof. Rosalvo Ferreira de Oliveira Neto, M.Sc. [email protected] 2 Representação
Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde p é primo ímpar.
raízes primitivas Uma raiz primitiva módulo n é um inteiro b tal que {1, b, b 2,... ( mod n)} = U(n). Teorema. Existe alguma raiz primitiva módulo n se, e só se, n = 2, n = 4, n = p k ou n = 2p k onde
3.6 Erro de truncamento da interp. polinomial.
3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental
Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
G3 de Álgebra Linear I
G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação
Agenda do Dia Aula 14 (19/10/15) Sistemas Lineares: Introdução Classificação Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares. Um
Funções Reais I. Espaços Vetoriais
ESTRUTURA CURRICULAR Ênfase em Matemática Aplicada Funções Reais I Análise e aprofundamento dos tópicos necessários para desenvolver um estudo completo sobre funções de uma variável real, preparando os
