Regulares, são só esses?
|
|
|
- Juliana Canto Bennert
- 9 Há anos
- Visualizações:
Transcrição
1 Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Ensino Médio 2ª Geométrico Introdução à Geometria Espacial Primeira Etapa Compartilhar Ideias Atividade Dando nome aos bois! Os polígonos podem ser denominados simplesmente pelo número de lados (ou de vértices, ou ainda de ângulos internos), por exemplo, quando esta quantidade é 15, chamamos esse polígono simplesmente de polígono de quinze lados Por outro lado, alguns polígonos recebem um nome que pode parecer estranho, mas que possui uma explicação Você já parou para pensar nas palavras triângulo e quadrilátero? Ambas têm origem do Latim, veja a seguir mais detalhes Triângulo Quadrilátero TRI: três ANGULUS: recanto, canto, ângulo QUADRILATERUS: o que tem 4 lados QUATTUOR: quatro LATERUS: lado 1
2 Um polígono de 5 lados, por sua vez, é chamado de pentágono e a origem dessa palavra é grega Pentágono PENTA: cinco GONOS: ângulo ( acesso em 22 de janeiro) Os nomes dos polígonos com mais de 5 lados também são formados a partir do sufixo GONOS juntamente com um prefixo que indica a quantidade de ângulos internos, que coincide com a quantidade de lados 1 Preencha a tabela a seguir nomeando os polígonos de acordo com a quantidade de lados Quantidade de lados Nome do Polígono 5 Pentágono 6 7 Octógono 9 10 Undecágono 12 2 Vamos fazer um experimento? Pegue o polígono entregue pelo seu professor e destaque os ângulos externos Repare que fazendo isso o polígono será recortado pelo seu contorno Polígono como recebido de seu professor Polígono com os ângulos externos destacados 2
3 Sobre uma mesa, justaponha os ângulos externos do polígono e observe a figura formada O que você pode afirmar sobre a soma dos ângulos externos desse polígono? 3 Será que isso é verdade para todos os polígonos? Troque ideias com seus colegas e tentem chegar a alguma conclusão 4 Quando os polígonos possuem todos os lados com a mesma medida, eles são ditos regulares Nesse caso, todos os ângulos internos têm a mesma medida, assim como os externos também Agora que você já sabe que a soma das medidas dos ângulos externos de um polígono é sempre igual a 360 o, preencha a tabela a seguir Polígono Triângulo equilátero Medida do ângulo externo 360 = Quadrado Pentágono Regular Hexágono Regular 3
4 Decágono Regular 360 = Dodecágono Regular Polígono Regular de n-lados 5 Na figura a seguir, estão indicados os ângulos interno e externo em um dos vértices de um polígono qualquer Qual a relação entre as medidas desses ângulos? 6 Agora, preencha a tabela a seguir com as medidas dos ângulos internos dos polígonos indicados 4
5 Resposta Polígono Triângulo equilátero Quadrado Pentágono Regular Hexágono Regular Medida do ângulo interno 180o 120o = 60o Decágono Regular Dodecágono Regular Polígono Regular de n-lados 180o 36o = 144o Segunda Etapa Um novo olhar Atividade Poli o quê? Tá falando grego? Você e seu grupo receberam um conjunto de polígonos regulares constituído de 12 triângulos equiláteros, 3 quadrados, 3 pentágonos, 3 hexágonos e 3 heptágonos Com o uso de uma fita adesiva, faça o que é pedido a seguir 1 Pegue 3 triângulos equiláteros Una-os por um de seus vértices, justapondo seus lados, conforme a figura a seguir, utilizando a fita adesiva 2 Agora, una os dois lados que incidem nesse vértice e que ainda não estão unidos Repare que fazendo isso a figura deixará de ser plana 5
6 3 Agora, pegue 4 triângulos e os una como no item 1, obtendo uma figura como a seguinte Em seguida, una os dois lados que não estavam justapostos 4 Faça o mesmo com 5 triângulos 5 É possível fazer o mesmo com 6 triângulos? Justifique a sua resposta, para isso, troque ideias com seus colegas 6 Utilizando o mesmo procedimento feito com os triângulos, una os quadrados como indicado na figura a seguir E, em seguida, una os outros dois lados, usando uma fita adesiva 7 E se tivéssemos 4 quadrados? É possível formar uma figura tridimensional? 6
7 8 Agora, chegou a vez do pentágono! Una três pentágonos como foi feito nos itens anteriores para os outros polígonos Em seguida, una os outros dois lados, formando uma figura tridimensional 9 Troque ideias com seus colegas e perceba se é possível adicionar mais um pentágono à figura do item anterior 10 Com três hexágonos, justaponha seus lados como nos itens anteriores Caso tenha dúvidas, observe a figura a seguir 7
8 Você consegue partir dessa figura plana para uma figura tridimensional? Troque ideias com seus colegas para chegarem a uma conclusão 11 Finalmente, justaponha três heptágonos como nos itens anteriores E aí? Foi possível? Por quê? Observe a figura a seguir e apresente uma justificativa para o fato de não conseguirmos justapor 3 heptágonos no plano, fixando um vértice 8
9 Terceira Etapa Fique por dentro! Atividade Os 5 fabulosos Existem cinco poliedros regulares os cinco fabulosos Eles são formados, utilizando apenas um mesmo tipo de polígono regular Vamos conhecê-los! 1 Na etapa anterior, seu grupo montou bicos nos itens 2, 3, 4, 6 e 8 Relacione os cinco poliedros regulares, com suas as respectivas planificações e seus respectivos bicos Poliedro Planificação Bicos (I) (A) (R) (II) (B) (S) 9
10 (III) (C) (T) (IV) (D) (U) (V) (E) (V) 2 Nossos 5 fabulosos são poliedros que possuem nomes próprios, derivados de palavras gregas Poliedro POLI: muitos, vários EDRO HEDRA: assento, lugar que se ocupa, superfície Escreva ao fim de cada frase o nome apropriado, escolhendo-o entre os nomes abaixo: 10
11 DODECAEDRO TETRAEDRO ICOSAEDRO OCTAEDRO HEXAEDRO a Poliedro formado por 4 triângulos equiláteros b Poliedro formado por 6 quadrados, também conhecido como cubo c Poliedro formado por 8 triângulos equiláteros d Poliedro formado por 12 pentágonos regulares e Poliedro formado por 20 triângulos equiláteros Quarta Etapa Quiz Existem muitos poliedros especiais, como por exemplo, os Sólidos de Arquimedes O Cubo snub é um exemplo de Sólido de Arquimedes, veja sua forma abaixo 11
12 Sabemos que esse sólido tem 38 faces, 24 vértices e 60 arestas Uma planificação desse sólido é: a b c d e 12
13 Quinta Etapa Análise das respostas ao QUIZ 13
14 Etapa Flex Para saber + Platão e os poliedros Há muito tempo, os poliedros regulares despertam fascínio nos homens de todas as idades Esse fascínio é motivado pela beleza simétrica dos poliedros regulares Os Poliedros Regulares Fonte da imagem: Um poliedro convexo é chamado de regular se suas faces são polígonos regulares, cada um com o mesmo número de lados e, para todo vértice, converge um mesmo número de arestas O que Platão via de especial nos poliedros regulares? Para Platão, o Universo era formado por um corpo e uma alma ou inteligência Ele concebia o mundo como sendo constituído por quatro elementos básicos: a Terra, o Fogo, o Ar e a Água, e estabelecia uma associação mística entre estes elementos e os sólidos 14
15 Associado ao Fogo, cuja natureza penetrante está simbolizada na agudeza dos seus vértices Relaciona-se com a Terra devido a sua estabilidade Associado ao Ar devido a sua instabilidade, uma vez que só fica estável quando segurado por dois vértices opostos Considerado como o símbolo do Universo; suas doze faces podem ser identificadas aos doze signos do zodíaco Relacionado com a Água Realmente, esses poliedros são muito interessantes Podemos encontrá-los na natureza ou sob forma de cristais ou como esqueletos de animais marinhos microscópicos Para saber mais, visite o endereço Fontes:
16 Agora, é com você! 1 Observando os poliedros regulares, preencha a tabela Poliedro Regular Quantidade de Vértices V Quantidade de Faces F Quantidade de Arestas A Tetraedro Regular Cubo Octaedro Regular Dodecaedro Regular 16 Icosaedro Regular
17 2 Qual é o poliedro regular cujos vértices são os centros das faces de um cubo? Dica: Relacione a quantidade de vértices procurado com a quantidade de faces do poliedro dado 17
Regulares, são só esses?
Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática DINÂMICA Ensino Médio Geométrico 2ª Regulares, são só esses? Introdução
Os Poliedros Platônicos. Por que existem só 5 sólidos platônicos?
Os Poliedros Platônicos Por que existem só 5 sólidos platônicos? Introdução O sufixo edro vem da palavra grega hédra que significa face. Os prefixos, também oriundos do grego, indicam a quantidade de faces
Olhando por esse Prisma...
Reforço escolar M ate mática Olhando por esse Prisma... Dinâmica 7 2º Série 2º Bimestre DISCIPLINA série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria Espacial: Prismas e Cilindros Primeira
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
Chama-se poliedro a uma figura geométrica, a três dimensões, cujas faces são polígonos. Um poliedro regular é aquele em que as faces são polígonos
Ana Salgado INTRODUÇÃO Acedendo ao site The Geometry Junkyard, encontrei o link All the junk in one big pile onde escolhi o tema Poly. Poly, é um programa para explorar várias classes de poliedros, incluindo
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Discutindo a Relação Dinâmica 7 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática 2ª do Ensino Médio Geométrico DINÂMICA Discutindo a Relação Introdução
1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem
Os Poliedros de Platão
Os Poliedros de Platão Poliedro é um sólido geométrico cuja superfície é composta por um número finito de faces, cujos vértices são formados por três ou mais arestas em três dimensões (eixo dos "X", "Y",
DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Invadindo o espaço Dinâmica 5 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 2ª Campo Algébrico Simbólico Introdução à geometria espacial Aluno
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Mat. Monitor: Roberta Teixeira
1 Mat. Professore: Alex Amaral Monitor: Roberta Teixeira 2 Poliedros 19 set RESUMO Poliedros São sólidos geométricos formados por vértices, arestas e faces, cujas superfícies são polígonos planos (triângulos,
Figuras tri, tchê! Dinâmica 6. Aluno Primeira Etapa Compartilhar ideias. 2ª Série 2º Bimestre
Reforço escolar M ate mática Figuras tri, tchê! Dinâmica 6 2ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria espacial: prismas e cilindros Primeira Etapa
Embrulhando uma Esfera!
Reforço escolar M ate mática Embrulhando uma Esfera! Dinâmica 6 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2 a do Ensino Médio Geométrico. Geometria Espacial: Esferas. Aluno Primeira
1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino
1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Décio/Eloy/Marcello
ROTEIRO DE RECUPERAÇÃO BIMESTRAL MATEMÁTICA 7º ANO Nome: Nº - Série/Ano Data: / / Professor(a): Décio/Eloy/Marcello Os conteúdos essenciais do bimestre. Capítulo 1 Números inteiros Ideia de número positivo
Noções de Geometria. Professora: Gianni Leal 6º B.
Noções de Geometria Professora: Gianni Leal 6º B. Figuras geométricas no espaço: mundo concreto e mundo abstrato Mundo concreto: é mundo no qual vivemos e realizamos nossas atividades. Mundo abstrato:
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1:
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1: Observando a natureza A primeira descrição formal do dodecaedro rômbico deve-se a Kepler,
Soma dos ângulos: internos ou externos?
Reforço escolar M ate mática Soma dos ângulos: internos ou externos? Dinâmica 5 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas
POLIEDROS AULA I. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
POLIEDROS AULA I Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos POLIEDROS Vértice Face Aresta 1) Definição de POLIEDRO: É uma região do espaço delimitada por um conjunto finito de polígonos,
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE
GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO
FIGURAS GEOMÉTRICAS. MEDIDA
7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Alfabeto Grego. Linhas poligonais e polígonos. Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o
Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros
Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,
POLIEDROS REGULARES. São os poliedros cujas faces são polígonos regulares iguais entre si, e cujos ângulos poliédricos são todos iguais.
1 POLIEDROS REGULARES DEFINIÇÃO E CLASSIFICAÇÃO DE POLIEDROS Do grego - poly (muitas) + edro (face). Os poliedros fazem parte do pensamento grego, foram estudados pelos grandes filósofos da antiguidade
Volume de pirâmides. Dinâmica 5. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 2ª Série 3º Bimestre ATIVIDADE QUAL É A SUA ÁREA?
Reforço escolar M ate mática Volume de pirâmides Dinâmica 5 2ª Série º Bimestre Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS
Geometria Espacial: Sólidos Geométricos
Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.
Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro
Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte
III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso
Quantos cones cabem em um cilindro?
Reforço escolar M ate mática Quantos cones cabem em um cilindro? Dinâmica 4 2º Série 3º Bimestre Aluno Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Prismas e Cilindros. PRIMEIRA ETAPA
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)
MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de
Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática
Caro(a) aluno(a), Neste Caderno, você irá reconhecer e estimar medidas angulares em contextos e formas de linguagens diversificadas. Uma delas é o jogo Anguloteria, no qual você e seus colegas deverão
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:
Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado
CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:
2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:
Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015
GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.
Aula 3 Polígonos Convexos
MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos
Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)
Com base no texto e assuntos ligados a ele, marque a alternativa correta nas questões 02 e 03.
1º BIM P2 HABILIDADES LISTA DE EXERCÍCIOS MATEMÁTICA 6º ANO Aluno (a): Professor: Turma: Turno:... Data: / /2014 Unidade: ( ) Asa Norte ( ) Águas Lindas ( )Ceilândia ( ) Gama ( )Guará ( ) Pistão Norte
Conteúdos Exame Final
Componente Curricular: Matemática Série/Ano: 6º ANO Professora Fernanda S. Hamerski Conteúdos Exame Final. Frações * Comparação de frações e representação por desenho * Operações com frações (adição, subtração,
Si, Se, Ai, Ae, diagonais
Obs.: As atividades desta bateria contemplam o conteúdo do trimestre. Si, Se, Ai, Ae, diagonais 1. Calcule a soma dos ângulos internos de um triângulo qualquer e de um retângulo qualquer. 2. Calcule o
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL Tarefa 1 Aluno: Thiago Milani Cabral Grupo 2 Tutora: Susi Cristine
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS 1 Sólidos Geométricos Introdução Grande parte dos objetos que nos são familiares tem formas geométricas definidas; são
Matemática 2º Ano 3º Bimestre/2013 Plano de Trabalho 2 Pirâmides
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 3º Bimestre/2013 Plano de Trabalho 2 Pirâmides Cursista: Marta Vieira de Andrade. 1 Série: 2ª. Tutor: Andréa Silva
Durante a atividade Divida os alunos em duplas; 1 - Peça para que cada dupla inicie a atividade; 2 - Depois de reconhecer e classificar os tipos de fi
Geometria 3ª atividade Relacionando formas Introdução Após várias atividades que possibilitaram a classificação das formas tridimensionais desejamos que os alunos continuem a percebê-las e que possam ser
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que
Formação Continuada Nova EJA. Plano de Ação 22
Formação Continuada Nova EJA Plano de Ação 22 Nome: ANDRÉ LUIZ REBELLO SOARES Regional 3 - IE CARMELA DUTRA Tutor: CARLOS EDUARDO LIMA DE BARROS INTRODUÇÃO: Sistematizando os conhecimentos que outros povos
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Se os tubos opostos forem de mesmo comprimento, teremos as várias possibilidades de paralelogramos, incluindo o retângulo.
Ernesto Rosa Poliedros de canudinhos rígidos possuem muitas vantagens: são fáceis de se fazer com sucata como tubinhos de canetas, bambus etc. (mas no mercado há tubos plásticos à venda), são ótimos nas
Volume do dodecaedro e do icosaedro
Capítulo Volume do dodecaedro e do icosaedro.1 Introdução. Os cálculos do volume dos sólidos platônicos que geralmente são abordados pelos livros didáticos de Matemática do ensino médio, resumem-se ao
CAPÍTULO 5 POLÍGONOS. é denominada linha poligonal. A 3 D B A 2 A 4 A 5 A 1. A n-1. A n
PÍTULO 5 POLÍGONOS efinição 5.1: Sejam 1, 2,..., n n pontos coplanares dos quais três quaisquer deles não são colineares. união dos segmentos, 1 2 2 3, 3 4,..., n 1 n é denominada linha poligonal. 3 2
ATIVIDADES COM POLÍGONOS
ATIVIDADES COM POLÍGONOS Observação. Para o desenvolvimento das seguintes Atividades, levando em conta que Polígonos é uma coleção de peças com um número elevado de elementos, utilizamos as subcoleções
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental
3º trimestre SALA DE ESTUDOS Data: 25/09/18 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
3º trimestre SALA DE ESTUDOS Data: 5/09/18 Ensino Médio º ano classe: Prof. Maurício Nome: nº.. 1. (Uem 018) Sobre geometria espacial, assinale o que for correto. 01) Dois planos sempre se interceptam.
Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri
Unidade 9 Geometria Espacial Poliedros Volume de sólidos geométricos Princípio de Cavalieri Poliedros palavra poliedro tem sua origem no idioma grego (poly significa, muitos, e hedra, faces). Poliedro
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine
Aula 26 Poliedros. Objetivos. Identificar poliedros. Aplicar o Teorema de Euler
MÓDULO 2 - AULA 26 Aula 26 Poliedros Objetivos Identificar poliedros Aplicar o Teorema de Euler Introdução Nesta aula estudaremos outros exemplos de figuras no espaço: os poliedros Começaremos com a definição
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Se essa rua fosse minha, eu mandava ladrilhar!
Reforço escolar M ate mática Se essa rua fosse minha, eu mandava ladrilhar! Dinâmica 4 9º Ano 4º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares
EXPLORANDO O SOFTWARE POLY- PRO Natália Lummertz 1 Sabrini Micheli da Silva dos Anjos 2 RESUMO
EXPLORANDO O SOFTWARE POLY- PRO Natália Lummertz 1 Sabrini Micheli da Silva dos Anjos 2 RESUMO O Poly-pro é um software matemático que pode ser utilizado no conteúdo de Geometria Espacial. Com o poly pode-se
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações
Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP [email protected] Uma aplicação da congruência de triângulos e polígonos
Questão 1. Com base nas informações, qual é a quantidade de cores que serão utilizadas na pintura das faces do troféu?
SE18 - Matemática LMAT 6C4 - Poliedros convexos Questão 1 (Enem 2015) Para o modelo de um troféu foi escolhido um poliedro P, obtido a partir de cortes nos vértices de um cubo. Com um corte plano em cada
PROPOSTA DIDÁTICA. 2. Objetivo(s) da proposta didática - Reconhecer o que é um sólido geométrico e suas características.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Jéssica Marilda Gomes Mendes 1.2 Público alvo: Alunos de 6º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo
Posições relativas entre elementos geométricos no espaço
Geometria no espaço Posições relativas entre elementos geométricos no espaço Plano: constituído por três pontos distintos e não colineares; o plano é bidimensional (tem duas dimensões: altura e largura);
PAVIMENTAÇÕES DO PLANO POR POLÍGONOS REGULARES E VISUALIZAÇÃO EM CALEIDOSCÓPIOS
PAVIMENTAÇÕES DO PLANO POR POLÍGONOS REGULARES E VISUALIZAÇÃO EM CALEIDOSCÓPIOS Marli Regina dos Santos Universidade Federal de Viçosa [email protected] Claudemir Murari Universidade Estadual Paulista
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Prova - 26 de abril 2ª chamada 29 de abril
ª série - REVISÃO Prova - 6 de abril ª chamada 9 de abril Nome dos polígonos De acordo com o número de n lados, os polígonos recebem nomes especiais. Veja a seguir as correspondências: n = 3 triângulo
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS 1. Classificação das vinte figuras de Polígonos segundo o número dos seus lados. Representação em tabela. Número lados de Polígono Representação gráfica Três lados
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
PLANO DE TRABALHO SOBRE GEOMETRIA ESPACIAL. H07 Relacionar diferentes poliedros ou corpos redondos com suas planificações.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: COLÉGIO ESTADUAL PAULINO PINHEIRO BAPTISTA PROFESSORA: PATRÍCIA DOMINGUES DE SOUZA MATRÍCULA: 0912303-5 TUTOR: SUSI
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
INTRODUÇÃO À GEOMETRIA ESPACIAL
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 1º Bimestre/2014 Plano de Trabalho INTRODUÇÃO À GEOMETRIA ESPACIAL Tarefa 1 Cursista: Wendel do Nascimento Pinheiro
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
OFICINA CONSTRUÇÃO DE PROTA RETRATOS COM A FORMA DE HEXAEDROS REGULARES
ISSN 2316-7785 OFICINA CONSTRUÇÃO DE PROTA RETRATOS COM A FORMA DE HEXAEDROS REGULARES Tânia Baier FURB Universidade Regional de Blumenau [email protected] Dalana Fischer FURB - Universidade regional
Jogo dos polígonos. Jogo dos polígonos. Página 1/13
Jogo dos polígonos Este jogo tem como objetivos principais desenvolver a compreensão da classificação de polígonos quanto ao número de lados e da classificação hierárquica de quadriláteros, assim como
Figuras tri, tchê! Dinâmica 6. Professor. 2ª Série 2º Bimestre. Professor, nesta dinâmica, você irá desenvolver as seguintes etapas com seus alunos.
Reforço escolar M ate mática Figuras tri, tchê! Dinâmica 6 2ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática Ensino Médio 2ª Geométrico DINÂMICA Figuras tri, tchê! Geometria espacial:
Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado.
1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. a) ( 3 4 )25 : ( 3 4 )15 5 10 b) 15 35 : 5 35 3 45 2. Calcule o valor das seguintes
Geometria Computacional
GeoComp 2014 p. 1/29 Geometria Computacional Cristina G. Fernandes Departamento de Ciência da Computação do IME-USP http://www.ime.usp.br/ cris/ segundo semestre de 2014 GeoComp 2014 p. 2/29 Poliedros
A Pirâmide e Seus Mistérios
Reforço escolar M ate mática A Pirâmide e Seus Mistérios Dinâmica 6 2º Série 3º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2a Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones
Cones, cilindros, esferas e festividades, qual a ligação?
Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo [email protected] Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5
Plano de Trabalho sobre Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C. E. Madre Teresa de Calcutá. PROFESSORA: Angela Saida Alvarez Jacob. GRUPO 6 MATRÍCULA: 0913098-0 TURMA: 2 ano.
Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre
Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Aluno
DRAFT. Simulado 1 - Nível 2 - ângulos. Colégio: Gabarito
Estudante: Geometria Colégio: Simulado 1 - Nível 2 - ângulos i) Preencha o cabeçalho acima com atenção. ii) Cada questão tem apenas uma letra correta. iii) Preencha o gabarito ao lado com as respostas.
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar
Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de
Propriedades geométricas e combinatórias dos polígonos convexos
Propriedades geométricas e combinatórias dos polígonos convexos Definição 1. Dados os pontos,,..., pontos no plano, tais que quaisquer três deles não são colineares, chamaremos de polígono a reunião dos
1) (SIMAVE). A logomarca de uma empresa é formada por um hexágono regular, um trapézio retângulo e um quadrado, como mostra a figura abaixo.
1) (SIMAVE). A logomarca de uma empresa é formada por um hexágono regular, um trapézio retângulo e um quadrado, como mostra a figura abaixo. Quanto mede o ângulo α, indicado nessa figura? (A) 30º (B) 45º
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2. Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 -
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2 Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 - Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ MATEMÁTICA 2º ANO/ENS.
UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE EDUCAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA JOSÉ WELLINGTON SANTOS SILVA
UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE EDUCAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA JOSÉ WELLINGTON SANTOS SILVA SEQUÊNCIA DIDÁTICA PARA O ESTUDO DE SÓLIDOS GEOMÉTRICOS COM
