Usando unidades de medida
|
|
|
- Baltazar Camelo Bandeira
- 10 Há anos
- Visualizações:
Transcrição
1 Usando unidades de medida O problema Q uando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro, o modelo e o ano de fabricação. Com essas informações, o vendedor é capaz de fornecer exatamente o que a pessoa deseja em poucos minutos. Isso acontece devido à normalização, isto é, por causa de um conjunto de normas estabelecidas de comum acordo entre fabricantes e consumidores. Essas normas simplificam o processo de produção e garantem um produto confiável, que atende às necessidades do consumidor. Um dos dados mais importantes para a normalização é exatamente a unidade de medida. Graças a ela, você tem certeza de que o parafuso quebrado que prendia a roda de seu carro poderá ser facilmente substituído, uma vez que é fabricado com unidades de medida também padronizadas. Na Mecânica, o conhecimento das unidades de medida é fundamental para a realização de qualquer tarefa específica nessa área. Por exemplo, vamos fazer de conta que você é um torneiro e recebeu o desenho de uma peça para fabricar. No desenho, você nota que não está escrita a unidade de medida usada pelo desenhista. Você sabe por quê? Não? Então estude esta lição, porque nela daremos a resposta a essa e a outras perguntas que talvez você tenha sobre este assunto. Nossa aula O milímetro Em Matemática, você já aprendeu que, para medir as coisas de modo que todos entendam, é necessário adotar um padrão, ou seja, uma unidade de medida. Em Mecânica, a unidade de medida mais comum é o milímetro,cuja abreviação é mm. Ela é tão comum que, em geral, nos desenhos técnicos, essa abreviação (mm) nem aparece. O milímetro é a milésima parte do metro, ou seja, é igual a uma parte do metro que foi dividido em.000 partes iguais.provavelmente, você deve estar pensando: Puxa! Que medida pequenininha! Imagine dividir o metro em.000 partes!. Pois, na Mecânica, essa unidade de medida é ainda considerada enorme, quando se pensa no encaixe de precisão, como no caso de rolamentos, buchas, eixos. E essa unidade é maior ainda para instrumentos de medição, como calibradores ou blocos-padrão.
2 Assim, a Mecânica emprega medidas ainda menores que o milímetro, como mostra a tabela a seguir. SUBMÚLTIPLOS DO MILÍMETRO REPRESENTAÇÃO CORRESPONDÊNCIA Décimo de milímetro 0, mm 0 Centésimo de milímetro 0,0 mm 00 Milésimo de milímetro 0,00mm (mm) 000 Na prática, o milésimo de milímetro também é representado pela letra grega m (lê-se mi). Assim, o milésimo de milímetro pode também ser chamado de micrometro ou, simplesmente, de mícron (0,00 mm = mm = m). É bom estudar os assuntos passo a passo, para não perder nenhuma informação. Por isso, vamos propor um exercício bem fácil, para você fixar as informações que acabamos de lhe dar. Tente você também Exercício Identifique as medidas, escrevendo, 2, 3 ou 4 nos parênteses. () milímetros ( )0,5 mm (2) décimos de milímetro ( )0,00 mm (3) centésimos de milímetro ( )3 mm (4) milésimos de milímetro ( )0,04 mm ( )0,6 mm ( )0,003 mm A polegada A polegada é outra unidade de medida muito utilizada em Mecânica, principalmente nos conjuntos mecânicos fabricados em países como os Estados Unidos e a Inglaterra. Embora a unificação dos mercados econômicos da Europa, da América e da Ásia tenha obrigado os países a adotarem como norma o Sistema Métrico Decimal, essa adaptação está sendo feita por etapas. Um exemplo disso são as máquinas de comando numérico computadorizado, ou CNC - Computer Numerical Control, que vêm sendo fabricadas com os dois sistemas de medida. Isso permite que o operador escolha o sistema que seja compatível com aquele utilizado em sua empresa. Por essa razão, mesmo que o sistema adotado no Brasil seja o sistema métrico decimal, é necessário conhecer a polegada e aprender a fazer as conversões para o nosso sistema. A polegada, que pode ser fracionária ou decimal, é uma unidade de medida que corresponde a 25,4 mm.
3 Observe que, na régua de baixo, os números aparecem acompanhados de um sinal ( ). Esse sinal indica a representação de uma medida em polegada ou em fração de polegada. Da mesma forma que o milímetro é uma unidade de medida muito grande para a Mecânica e, por isso, foi dividido em submúltiplos, a polegada também foi dividida. Ela tem subdivisões que podem ser usadas nas medidas de peças de precisão. Assim, a polegada foi dividida em 2, 4,, 6, 32, 64 e 2 partes iguais. Nas escalas graduadas em polegada, normalmente a menor divisão corresponde a /6. Essas subdivisões são chamadas de polegadas fracionárias. Dê mais uma olhada na figura acima. Você deve ter percebido que a escala apresenta as frações /, /4, 3/... e assim por diante. Observe que os numeradores das frações são sempre números ímpares. Como se chegou a essas frações? Para obter essa resposta, vamos representar uma escala de uma polegada de comprimento e verificar como as subdivisões foram feitas: Você que estudou frações em Matemática já sabe que algumas das que estão na escala mostrada acima podem ser simplificadas. Por exemplo: = 6 = 2 Esse procedimento é realizado até obtermos a fração final da escala. Os resultados dos exemplos acima mostram as subdivisões mais comuns da polegada fracionária.
4 Para medidas menores, o procedimento será o mesmo. As subdivisões são obtidas a partir da divisão de /6, e seus valores em ordem crescente serão: A representação da polegada em forma decimal é tão usada na Mecânica quanto a fracionária. Ela aparece em desenhos, aparelhos de medição, como o paquímetro e o micrômetro, e permite medidas menores do que a menor medida da polegada fracionária, que é /2. Uma polegada decimal equivale a uma polegada fracionária, ou seja, 25,4 mm. A diferença entre as duas está em suas subdivisões: em vez de ser subdividida em frações ordinárias, a polegada decimal é dividida em partes iguais por 0, 00,.000 etc. A divisão mais comum é por.000. Assim, temos, por exemplo: /2 correspondente a 0,5 (ou 5 décimos de polegada) /4 correspondente a 0,25 (ou 25 centésimos de polegada) / correspondente a 0,25 (ou 25 milésimos de polegada) Transformação de unidades de medida Você deve estar pensando que entender o que é o milímetro e suas subdivisões, bem como o que é a polegada e como ela está dividida, não é muito difícil. Provavelmente o que você deve estar se perguntando agora é: E se eu tiver uma medida em polegadas e precisar saber quanto isso vale em milímetros e vice-versa?. Esse cálculo é necessário, por exemplo, quando um operador recebe materiais cujas dimensões estão em polegadas e precisa construir uma peça ou dispositivo cujo desenho apresenta as medidas em milímetros ou frações de milímetros, o que é bastante comum na indústria mecânica. Transformando polegadas em milímetros Vamos começar pelo mais fácil, então. Para transformar uma medida dada em polegadas para milímetros, basta apenas multiplicar a fração por 25,4 mm. Veja como isso é fácil nos exemplos a seguir. a)a)a)a)a) Você tem em casa uma furadeira e um conjunto de brocas medidas em milímetros. Para instalar a secadora de roupas de sua mãe, é necessário fazer um furo na parede de 5/6. Qual a medida da broca que você precisa para fazer o furo? 5 25, 4 ou 5 25, = 27 6 = 7,937 mm
5 Portanto, 5/6 corresponde a 7,937 mm. Como o seu conjunto de brocas certamente não possui uma broca com essa medida, você deverá usar aquela cuja medida mais se aproxime desse resultado, ou seja, mm. b) Você recebeu um material cilíndrico com diâmetro de 3/ e precisa torneálo de modo que fique medindo mm de diâmetro. Quantos milímetros deverão ser desbastados? 3 25, 4 ou 3 25, 4 = 76, 2 = 9,525 mm Logo, 3/ = 9,525 mm Como o diâmetro pedido é mm, é necessário fazer a subtração para saber quanto do material deverá ser desbastado. 9,525 - =,525 mm Portanto, você deverá desbastar,525 mm no diâmetro. Tente você também Para ver se você entendeu o que acabamos de explicar, faça os cálculos propostos no exercício seguinte. Exercício 2 Na gaveta do ajustador mecânico existem chaves de boca, limas e brocas com medidas em polegadas. Transforme as medidas em polegas para milímetros: Chaves de boca de a)a)a)a)a) 2 Solução: 25,4 = 25,4 2 2 = b) 7 6 Solução: 7 25,4 = 6 c)c)c)c)c) 3 4 Solução: 3 4 d) 7 Solução:
6 Limas de, 0 e 2 a)a)a)a)a) x 25,4 = b) 0 x c)c)c)c)c) 2 Brocas de 6 a)a)a)a)a) 6 b),, 4 c)c)c)c)c) 4 Transformando milímetros em polegadas Para transformar uma medida em milímetros para polegadas, você vai precisar aplicar mais alguns de seus conhecimentos de operações aritméticas e simplificação de frações. Esse processo de transformação de medidas tem os seguintes passos:... Multiplique o valor em milímetros por Divida o resultado por 25, Monte a fração de modo que o resultado dessa divisão corresponda ao numerador da fração da polegada. O denominador é sempre Simplifique a fração resultante. Parece difícil? Vamos a um exemplo, transformando 2,7mm em polegada fracionária.... Multiplicação de 2,7 por 2. 2,7 x 2 =.625, Divisão do resultado por 25,4..625,6 25,4 = Montagem de fração. Numerador da fração: 64 Denominador: 2 A fração resultante é: Simplificação da fração = = = = = = 2 Portanto, 2,7 mm = /2.
7 Tente A Uvocê L A também Reforce o que você aprendeu no exercício a seguir. Exercício 3 No almoxarifado de uma empresa mecânica existem os seguintes materiais: a)a)a)a)a) barra de aço quadrada de 9,05mm de lado b) barra de aço redonda de 5,59mm de diâmetro c)c)c)c)c) chapa de alumínio de,5mm de espessura d) chapa de aço de 24,606mm de espessura. Converta essas medidas para polegada fracionária. a)a)a)a)a) Solução: 9,05 2 =. 2 = b) Solução: 5,59 c)c)c)c)c) Solução:,5 d) Solução: 24,606 25,4 =. Transformando polegada fracionária em decimal Vamos supor agora que o desenho que você recebeu tem as medidas em polegadas fracionárias e o seu instrumento de medida está em polegada decimal. Nesse caso, você vai ter de fazer a conversão das medidas. Para isso, basta apenas dividir o numerador da fração por seu denominador. Como exemplo, vamos converter 3/4 para polegada decimal. Efetuandose a divisão 3 4 = 0,75. Esse resultado corresponde a 0,750. Tente você também Faça os cálculos a seguir para reforçar seu aprendizado. Exercício 4 Converta as seguintes medidas para polegada decimal. a)a)a)a)a) 6 Solução: 6 = b) 3 32 c)c)c)c)c) 2 d) e)e)e)e)e) 5 32
8 Transformando polegada decimal em fracionária Para converter polegada decimal em fracionária, basta transformar a polegada decimal em uma fração na qual o numerador é o valor que você quer converter, multiplicado por 0, 00,.000 etc. O denominador é o número que você usou na multiplicação (0, 00,.000 etc.), dependendo do número decimal a ser convertido. Após a montagem da fração, procede-se à sua simplificação. Por exemplo, se você quiser converter 0,5 (cinco décimos de polegada) em polegada fracionária, você terá: 0,5 0 0 = 5 0 Simplificando, você terá: = 2 Se você tivesse 0,625 (seiscentos e vinte e cinco milésimos de polegada), sua fração seria: 0, = Simplificando a fração, você tem 5. Faça o exercício a seguir. Exercício 5 Converta as seguintes medidas para polegada fracionária: Tente você também a)a)a)a)a) 0,0625 Solução: 0,0625 '' = Simplificando: b) 0,25 Solução: 0, 25 '' Simplificando: c)c)c)c)c) 0,40625 d) 0,500 e)e)e)e)e) 0,9375 Agora que você já estudou as unidades de medida mais utilizadas na área da Mecânica e as possibilidades de transformação que elas oferecem, vamos fazer mais alguns exercícios para que você fique ainda mais por dentro do assunto. Lembre-se de que essas unidades de medida geralmente apresentam números decimais, ou seja, com vírgula. Você não pode esquecer que, quando são realizados cálculos com esse tipo de número, muito cuidado deve ser tomado com relação à posição da vírgula. Releia toda a lição e faça os exercícios a seguir. São problemas comuns do diaa-dia de uma empresa mecânica. As respostas de todos eles estão no final do livro. Corrija você mesmo os exercícios e, após fazer uma revisão na lição, refaça aqueles que você errou. Teste o que você aprendeu
9 Exercício 6 O inspetor de qualidade precisava calcular o comprimento da peça abaixo. Qual foi o resultado que ele obteve? Exercício 7 Qual é o diâmetro externo x da arruela desta figura? Exercício Qual é a medida da cota D no desenho abaixo?
10 Exercício 9 Determine a cota x do seguinte desenho. Exercício 0 Determine a distância A no desenho a seguir. Exercício Determine o número de peças que pode ser obtido de uma chapa de 3 m de comprimento, sendo que cada peça deve ter 30 mm de comprimento e que a distância entre as peças deve ser de 2,5 mm.
11 Exercício 2 Um mecânico precisava medir a distância x entre os centros dos furos da peça representada abaixo. Qual foi a medida obtida? Exercício 3 Converta para polegadas decimais os valores em polegadas fracionárias dados a seguir. a)a)a)a)a) 5/6 b) 3/ c)c)c)c)c) 3/4 Exercício 4 Converta para polegadas fracionárias os valores de polegadas decimais dados a seguir. a)a)a)a)a) 0,25 b) 0,75 c)c)c)c)c) 0,250
C.N.C. Programação Torno
C.N.C. Programação Torno Módulo I Aula 03 Unidades de medidas ( Sistema Inglês) milímetros - polegadas Sistema Imperial Britânico Embora a unificação dos mercados econômicos da Europa, da América e da
Mecânica Técnica. Prof. Edimilson Alves Pinto
Mecânica Técnica Prof. Edimilson Alves Pinto 2012 UNIDADES DE MEDIDA Quando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro,
Medidas e conversões
Medidas e conversões Apesar de se chegar ao metro como unidade de medida, ainda são usadas outras unidades. Na Mecânica, por exemplo, é comum usar o milímetro e a polegada. O sistema inglês ainda é muito
Paquímetro: sistema inglês
Paquímetro: sistema inglês Um problema Agora que o pessoal da empresa aprendeu a leitura de paquímetros no sistema métrico, é necessário aprender a ler no sistema inglês. Este é o assunto a ser estudado
METROLOGIA MEDIDAS E CONVERSÕES
METROLOGIA MEDIDAS E CONVERSÕES Prof. Fagner Ferraz 1 Algarismos significativos Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem
6 Paquímetro: sistema inglês. Agora que o pessoal da empresa aprendeu a. Um problema. Leitura de polegada milesimal
A U A UL LA Paquímetro: sistema inglês Um problema Agora que o pessoal da empresa aprendeu a leitura de paquímetros no sistema métrico, é necessário aprender a ler no sistema inglês. Este é o assunto a
Tolerância dimensional
Tolerância dimensional Introdução É muito difícil executar peças com as medidas rigorosamente exatas porque todo processo de fabricação está sujeito a imprecisões. Sempre acontecem variações ou desvios
Algarismos Significativos
Algarismos Significativos Neste texto você conhecerá melhor os algarismos significativos, bem como as Regras gerais para realização de operações com algarismos significativos e as regras para Conversão
Calculando o desalinhamento da contraponta
Calculando o desalinhamento da contraponta A UU L AL A Tornear peças cônicas é uma atividade bastante comum na área da Mecânica. Para fazer isso, o torneiro tem duas técnicas a sua disposição: ele pode
Medidas de Grandezas Fundamentais - Teoria do Erro
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Medidas de Grandezas Fundamentais - Teoria do Erro Objetivo As práticas que serão trabalhadas nesta aula têm os objetivos de
Ensaio de tração: cálculo da tensão
Ensaio de tração: cálculo da tensão A UU L AL A Você com certeza já andou de elevador, já observou uma carga sendo elevada por um guindaste ou viu, na sua empresa, uma ponte rolante transportando grandes
2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados
2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas
Descobrindo medidas desconhecidas (IV)
A U L A A U L A Descobrindo medidas desconhecidas (IV) O problema U ma das operações mais comuns que o torneiro deve realizar é o torneamento cônico. Quando é necessário tornear peças cônis, uma das técnis
Acesse: http://fuvestibular.com.br/
Esse torno só dá furo! Na aula sobre furação, você aprendeu que os materiais são furados com o uso de furadeiras e brocas. Isso é produtivo e se aplica a peças planas. Quando é preciso furar peças cilíndricas,
SENAI UOP Caxias Cálculo Técnico
01-Usando unidades de medida Quando alguém vai à loja de autopeças para comprar alguma peça de reposição, tudo que precisa é dizer o nome da peça, a marca do carro, o modelo e o ano de fabricação Com essas
METROLOGIA Escala e Paquímetro. Prof. João Paulo Barbosa, M.Sc.
METROLOGIA Escala e Paquímetro Prof. João Paulo Barbosa, M.Sc. Regras de Arredondamento Quando o algarismo seguinte ao último algarismo a ser conservado for inferior a 5, o último algarismo a ser conservado
Tópico 2. Conversão de Unidades e Notação Científica
Tópico 2. Conversão de Unidades e Notação Científica Toda vez que você se refere a um valor ligado a uma unidade de medir, significa que, de algum modo, você realizou uma medição. O que você expressa é,
Realizando cálculos para o aparelho divisor (I)
Realizando cálculos para o aparelho divisor (I) A UU L AL A Você já estudou como fazer os cálculos para encontrar as principais medidas para a confecção de uma engrenagem cilíndrica de dentes retos. Vamos
Cotagens especiais. Você já aprendeu a interpretar cotas básicas
A UU L AL A Cotagens especiais Você já aprendeu a interpretar cotas básicas e cotas de alguns tipos de elementos em desenhos técnicos de modelos variados. Mas, há alguns casos especiais de cotagem que
A Matemática e o dinheiro
A Matemática e o dinheiro A UUL AL A Muita gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular o total a pagar no caixa. Não é bem assim. Sem a Matemática, não
Matemática Financeira Módulo 2
Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente
Cálculo Numérico Aula 1: Computação numérica. Tipos de Erros. Aritmética de ponto flutuante
Cálculo Numérico Aula : Computação numérica. Tipos de Erros. Aritmética de ponto flutuante Computação Numérica - O que é Cálculo Numérico? Cálculo numérico é uma metodologia para resolver problemas matemáticos
Perspectiva isométrica de modelos com elementos diversos
Perspectiva isométrica de modelos com elementos diversos Introdução Algumas peças apresentam partes arredondadas, elementos arredondados ou furos, como mostram os exemplos abaixo: parte arredondada furo
Calculando RPM. O s conjuntos formados por polias e correias
A U L A Calculando RPM O problema O s conjuntos formados por polias e correias e os formados por engrenagens são responsáveis pela transmissão da velocidade do motor para a máquina. Geralmente, os motores
Tópico 5. Aula Prática: Paquímetro e Micrômetro: Propagação de Incertezas - Determinação Experimental do Volume de um Objeto
Tópico 5. Aula Prática: Paquímetro e Micrômetro: Propagação de Incertezas - Determinação Experimental do Volume de um Objeto 1. INTRODUÇÃO Será calculado o volume de objetos como esferas, cilindros e cubos
Sistemas de Numerações.
Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema
EXPERIMENTO 1 INSTRUMENTOS DE MEDIDA E MEDIDAS FÍSICAS
EXPERIMENTO 1 INSTRUMENTOS DE MEDIDA E MEDIDAS FÍSICAS I - OBJETIVO Operar com algarismos significativos, definir o limite do erro instrumental para instrumentos de medição, definir o desvio avaliado para
A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:
Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: [email protected] Prof. Flavio Fernandes E-mail: [email protected] O METRO E SEUS MÚLTIPLOS
Corte total. Qualquer pessoa que já tenha visto um regis- A U L A
Corte total Introdução Qualquer pessoa que já tenha visto um regis- tro de gaveta, como o que é mostrado a seguir, sabe que se trata de uma peça complexa, com muitos elementos internos. Se fôssemos representar
2. Representação Numérica
2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos
Essas duas questões serão estudadas nesta aula. Além delas, você vai ver quais erros podem ser cometidos na rebitagem e como poderá corrigi-los.
A UU L AL A Rebites III Para rebitar peças, não basta você conhecer rebites e os processos de rebitagem. Se, por exemplo, você vai rebitar chapas é preciso saber que tipo de rebitagem vai ser usado - de
Mandrilamento. determinado pela operação a ser realizada. A figura a seguir mostra um exemplo de barra de mandrilar, também chamada de mandril.
A UU L AL A Mandrilamento Nesta aula, você vai tomar contato com o processo de mandrilamento. Conhecerá os tipos de mandrilamento, as ferramentas de mandrilar e as características e funções das mandriladoras.
Regras de Conversão de Unidades
Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes
Hoje estou elétrico!
A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.
FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica
SISTEMAS LINEARES CONCEITOS
SISTEMAS LINEARES CONCEITOS Observemos a equação. Podemos perceber que ela possui duas incógnitas que são representadas pelas letras x e y. Podemos também notar que se e, a igualdade se torna verdadeira,
16 Comprimento e área do círculo
A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.
Conceitos Fundamentais
Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;
APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.
CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota ([email protected]) Curitiba
Ensaio de torção. Diz o ditado popular: É de pequenino que
A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando
Cotagem de dimensões básicas
Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar
Realizando cálculos para o aparelho divisor (II)
Realizando cálculos para o aparelho divisor (II) O problema Na aula anterior você aprendeu a fazer vários cálculos para o aparelho divisor. Mas, o assunto ainda não está esgotado. Há casos em que não existe
EXPERIMENTO 1: PROPAGAÇÃO DE INCERTEZAS ( Determinaçãoda massa específica )
EXPERIMENTO 1: PROPAGAÇÃO DE INCERTEZAS ( Determinaçãoda massa específica ) 1- INTRODUÇÃO Este experimento tem como objetivo o aprendizado no manuseio de instrumentos de medição bem como suas respectivas
Cotagem de elementos
Cotagem de elementos Introdução Na aula anterior você estudou algumas regras para cotagem e aprendeu como indicar as cotas básicas da peça. Mas, só com essas cotas, não é possível produzir peças que tenham
1. Instalei o DutotecCAD normalmente no meu computador mas o ícone de inicialização do DutotecCAD não aparece.
1. Instalei o DutotecCAD normalmente no meu computador mas o ícone de inicialização do DutotecCAD não aparece. Para acessar o programa através do comando na barra de prompt, basta digitar dutoteccad e
LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES
LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar o funcionamento do computador Apresentar a função da memória e dos dispositivos
Cálculos de roscas. Nem sempre os parafusos usados nas máquinas. Formulários
A UU L AL A Cálculos de roscas Nem sempre os parafusos usados nas máquinas são padronizados (normalizados) e, muitas vezes, não se encontra o tipo de parafuso desejado no comércio. Nesse caso, é necessário
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
Realizando o ensaio de ultra-som
Realizando o ensaio de ultra-som A UU L AL A Na aula anterior, você ficou sabendo que o ultra-som é uma onda mecânica que se propaga de uma fonte emissora até uma fonte receptora, através de um meio físico.
Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica
Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para
Arquitetura de Rede de Computadores
TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador
casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço.
A UUL AL A A casa Nesta aula vamos examinar a planta de uma casa. Será uma casa simples, situada em terreno plano, com, dois quartos, cozinha, banheiro e área de serviço. Introdução terreno 20 m rua 30
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES
CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:
SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2
SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 1.1 Introdução... 2 1.2 Estrutura do IP... 3 1.3 Tipos de IP... 3 1.4 Classes de IP... 4 1.5 Máscara de Sub-Rede... 6 1.6 Atribuindo um IP ao computador... 7 2
Geometria Área de Quadriláteros
ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos
Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala
Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas
Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan
Matéria: Matemática Assunto: Máximo Divisor Comum Prof. Dudan Matemática Máximo Divisor Comum (MDC) O máximo divisor comum entre dois números é representado pelo maior valor comum pertencente aos divisores
(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).
Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,
Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13
Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................
5 Equacionando os problemas
A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar
Removendo o cavaco. Na aula passada, tratamos das noções gerais. Nossa aula. Como calcular a rpm, o avanço e a profundidade de corte em fresagem
A U A UL LA Removendo o cavaco Na aula passada, tratamos das noções gerais sobre a operação de usinagem feita com máquinas fresadoras. Vimos, de modo geral, como se dá a fresagem e aprendemos um pouco
1. Introdução ao uso da calculadora
1. Introdução ao uso da calculadora O uso da calculadora científica no curso de Estatística é fundamental pois será necessário o cálculo de diversas fórmulas com operações que uma calculadora com apenas
Prof. Rafael Gross. [email protected]
Prof. Rafael Gross [email protected] Todo protocolo define um tipo de endereçamento para identificar o computador e a rede. O IP tem um endereço de 32 bits, este endereço traz o ID (identificador)
Exercícios Teóricos Resolvidos
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar
Tutorial Gerar arquivo PDF. Gerando um documento pdf com várias imagens 1- Inserir imagem no Word
Tutorial Gerar arquivo PDF. Com o objetivo de simplificar e diminuir o tamanho de arquivos anexos nos projetos, elaboramos um pequeno tutorial mostrando como gerar um único arquivo no formato pdf contendo
Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v. 2013-7-31 1/15
Bases Matemáticas Aula 2 Métodos de Demonstração Rodrigo Hausen v. 2013-7-31 1/15 Como o Conhecimento Matemático é Organizado Definições Definição: um enunciado que descreve o significado de um termo.
Retificação cilíndrica
A U A UL LA Retificação cilíndrica A retificadora cilíndrica universal é uma máquina utilizada na retificação de todas as superfícies cilíndricas, externas ou internas de peças. Em alguns casos, essa máquina
Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES
FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça
Conversão de Bases e Aritmética Binária
Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário
Como Gerar documento em PDF com várias Imagens
Como Gerar documento em PDF com várias Imagens Para Gerar documento em PDF com várias Imagens, temos que seguir dois passos: 1. Inserir Imagens no Word 2. Gerar PDF a partir de documento do Word 1- Inserir
UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO Campus de Bauru
EXPERIMENTO 2 - INSTRUMENTOS DE MEDIDA ********************************************************************************** 1. Objetivos: familiarizar o estudante com a utilização de instrumentos de medidas;
Dimensão da peça = Dimensão do padrão ± diferença
Relógio comparador Um problema Como vocês podem perceber, o programa de qualidade da empresa envolve todo o pessoal. Na busca constante de melhoria, são necessários instrumentos de controle mais sofisticados
Relógio comparador. Como vocês podem perceber, o programa de. Um problema. O relógio comparador
A U A UL LA Relógio comparador Um problema Como vocês podem perceber, o programa de qualidade da empresa envolve todo o pessoal. Na busca constante de melhoria, são necessários instrumentos de controle
MANUAL PARA INSTALAÇÃO DE PNEU LARGO NA VBLADE
MANUAL PARA INSTALAÇÃO DE PNEU LARGO NA VBLADE Este manual serve apenas como orientação dos procedimentos para instalar um pneu largo na traseira da moto Vblade 250cc da Sundown e deve ser feito por especialista
As peças a serem usinadas podem ter as
A U A UL LA Fresagem As peças a serem usinadas podem ter as mais variadas formas. Este poderia ser um fator de complicação do processo de usinagem. Porém, graças à máquina fresadora e às suas ferramentas
Fresando engrenagens cilíndricas com dentes retos
Fresando engrenagens cilíndricas com dentes retos A UU L AL A Na aula passada você viu como furar na fresadora, utilizando a mesa divisora. Nesta aula você vai aprender a fresar engrenagens, utilizando
Projeção ortográfica de modelos com elementos paralelos e oblíquos
A U L A Projeção ortográfica de modelos com elementos paralelos e oblíquos Introdução Você já sabe que peças da área da Mecânica têm formas e elementos variados. Algumas apresentam rebaixos, outras rasgos,
08 Capital de giro e fluxo de caixa
08 Capital de giro e fluxo de caixa Qual o capital que sua empresa precisa para funcionar antes de receber o pagamento dos clientes? Como calcular os gastos, as entradas de dinheiro, e as variações de
Um momento, por favor
Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,
Matemática Financeira II
Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos
A equação do 2º grau
A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.
quociente razão. mesma área a partes de um tablete de chocolate
1 As sequências de atividades Vamos relembrar, Como lemos os números racionais?, Como escrevemos os números racionais?, As partes das tiras de papel, Comparando e ordenando números racionais na forma decimal
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES
COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,
Aspectos Elementares: Uso em um Laboratório de Física Básica
Aspectos Elementares: Uso em um Laboratório de Física Básica J.R.Kaschny (2008) Introdução A presente apostila tem como objetivo introduzir alguns aspectos básicos do uso do paquímetro e do micrometro,
Rebites I. Um mecânico tem duas tarefas: consertar
A U A UL LA Rebites I Introdução Um mecânico tem duas tarefas: consertar uma panela cujo cabo caiu e unir duas barras chatas para fechar uma grade. A questão é a seguinte: qual elemento de fixação é o
Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?
cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos
Projeção ortográfica da figura plana
A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar
Grandezas e Medidas no CAp UFRJ Introdução. Exercícios
Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES
Caríssimos amigos concurseiros. Seguem breves comentários à prova de RLQ do ATA- MF. Não encontramos nenhuma questão passível de recurso. Mas, se vocês tiverem visualizado alguma coisa e quiserem debater
UTILIZANDO PROGRAMAS EDUCACIONAIS
LINUX EDUCACIONAL UTILIZANDO PROGRAMAS EDUCACIONAIS PROFESSOR GERSON VALENCIO Caro professor: As novas Tecnologias de Informação e Comunicação(TICs) estão mudando nossa forma de pensar, agir, relacionar-se,
I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais
1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA
Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto
Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados
Professor Ventura Ensina Tecnologia
Professor Ventura Ensina Tecnologia Experimento PV001 Maquete com Instalação Elétrica Ensino Fundamental Direitos Reservados = Newton C. Braga 1 Maquete com Instalação Elétrica Você gostaria de aprender
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Uma Sequência Didática De Medidas De Comprimento E Superfície No 5º Ano Do Ensino Fundamental:
Como erguer um piano sem fazer força
A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao
A Matemática do ENEM em Bizus
A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos
Engrenagens II. Nesta aula trataremos da representação das. Conceitos básicos. Representação dos dentes. engrenagens no desenho técnico.
A UU L AL A Engrenagens II Nesta aula trataremos da representação das engrenagens no desenho técnico. Introdução Conceitos básicos As engrenagens são representadas, nos desenhos técnicos, de maneira normalizada.
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS. Reconhecer a figura de uma circunferência e seus elementos em diversos objetos de formato circular.
CÍRCULO, CIRCUNFERÊNCIA E OUTROS BICHOS "Um homem pode imaginar coisas que são falsas, mas ele pode somente compreender coisas que são verdadeiras, pois se as coisas forem falsas, a noção delas não é compreensível."
Equações do primeiro grau
Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais
