AULA 02 - TENSÃO NORMAL E DE CISALHAMENTO
|
|
|
- Benedicto Minho Camarinho
- 9 Há anos
- Visualizações:
Transcrição
1 AULA 02 - TENSÃO NORMAL E DE CISALHAMENTO Observação: Este texto não deverá ser considerado como apostila, somente como notas de aula. 1 - INTRODUÇÃO O projeto da estrutura de qualquer edificação, máquina ou outro elemento qualquer é um estudo através do qual a estrutura em si e suas partes componentes são dimensionadas de forma que tenham resistência suficiente para suportar os esforços para as condições de uso a que serão submetidas. Este processo envolve a análise de tensões das partes componentes da estrutura e considerações a respeito das propriedades mecânicas dos materiais. A analise de tensões, esforços e as propriedades mecânicas dos materiais são os principais aspectos da resistência dos materiais. A determinação dos esforços e as deformações da estrutura quando a mesma são solicitadas por agentes externos ( cargas, variações térmicas, movimentos de seus apoios, etc.) são os principais aspectos da análise estrutural. 2 - TENSÃO A fim de estudar a capacidade de resistência das peças de uma estrutura deveremos analisar os esforços internos que se desenvolvem nas partículas de uma determinada seção transversal TENSÃO NORMAL A intensidade da força, ou força por unidade de área, que age perpendicularmente A, é definida como tensão normal, (sigma). Visto que Fz é normal à área, então: 1
2 Se a força normal ou tensão tracionar o elemento de área A, como mostra a figura, ela será denominada tensão de tração, ao passo que, se comprimir o elemento A, ela será denominada tensão de compressão. Onde: = tensão normal média em qualquer ponto na área da seção transversal. P = força normal interna resultante, que é aplicada no centroide da área da seção transversal. P é determinada pelo método das seções e pelas equações de equilíbrio. A = área da seção transversal da barra. A carga interna P deve passar pelo centroide da seção transversal, visto que a distribuição de tensão uniforme produzirá momentos nulos em torno de quaisquer eixos x e y que passem por esse ponto. 2
3 Exemplo: O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840 MPa, determine a maior carga vertical P aplicada no centro que ele pode suportar. Resposta: P = 27,3 kn TENSÃO NORMAL MÉDIA EM UMA BARRA COM CARGA AXIAL Frequentemente, elementos estruturais ou mecânicos são compridos e delgados. Além disso, estão sujeitos a cargas axiais que normalmente são aplicadas às extremidades do elemento. Pendurais, parafusos e elementos de treliças são exemplos típicos. Nesta seção, determinaremos a distribuição de tensão média que age na seção transversal de uma barra com carga axial, como aquela cuja forma geral é mostrada na figura abaixo. Esta seção define a área da seção transversal da barra e, como todas as outras seções transversais são iguais, a barra é denominada prismática. 3
4 Antes de determinarmos a distribuição da tensão média que age sobre a área da seção transversal da barra, é necessário adotar duas premissas simplificadoras em relação à descrição do material e à aplicação específica da carga. 1º premissa - É necessário que a barra permaneça reta antes e depois da aplicação da carga; além disso, a seção transversal deve permanecer achatada ou plana durante a deformação, isto é, durante o tempo em que ocorrer a mudança no volume e na forma da barra. 2ª premissa - Para que a barra sofra deformação uniforme é necessário que P seja aplicada ao longo do eixo do centroide da seção transversal e que o material seja homogêneo e isotrópico. Materiais homogêneos têm as mesmas propriedades físicas e mecânicas em todo o seu volume e materiais isotrópicos têm as mesmas propriedades em todas as direções. Muitos materiais de engenharia podem ser considerados homogêneos e isotrópicos por aproximação. Nos materiais reais esta premissa não se verifica exatamente. Por exemplo, os metais consistem em grande número de grãos e as madeiras são fibrosas. Sendo assim, algumas partículas contribuirão mais para a resistência de que outras, e o diagrama verdadeiro de distribuição de tensões varia em cada caso particular e é bastante irregular. 4
5 2.3 - TENSÃO NORMAL MÉDIA MÁXIMA. Em nossa análise, a força interna P e a área da seção transversal A eram constantes ao longo do eixo longitudinal da barra e, como resultado, a tensão normal = P/A também é constante em todo o comprimento da barra. Entretanto, ocasionalmente, a barra pode estar sujeita a várias cargas externas ao longo de seu eixo ou pode ocorrer uma mudança em sua área da seção transversal. O resultado é que a tensão normal no interior da barra poderia ser diferente de uma seção para outra e, se quisermos determinar a tensão normal média máxima, torna-se importante determinar o lugar onde a razão P/A é um máximo. Para isso, é necessário determinar a força interna P em várias seções ao longo da barra. Neste caso, pode ser útil mostrar essa variação por meio de um diagrama de força axial ou normal. Exemplo: Sabendo que P = 177,9 kn, determine a máxima tensão normal média na barra composta ABC; Solução: É necessário determinar a força interna de cada trecho, a qual, é determinada por meio do MÉTODO DAS SEÇÕES: 1º passo: indicar as seções fundamentais: início e fim de barra Pontos com cargas aplicadas 2º passo: realizar a análise: esquerda direita ou direita esquerda 3º passo: determinar o esforço imediatamente antes e depois de cada seção para traçar o diagrama da tensão Normal. Tensão normal média. Aplicando a Equação = P/A, temos: AB = + 90,6 MPa BC = - 18,58 MPa Máx = + 90,6 MPa 5
6 3 - TENSÃO DE CISALHAMENTO. A intensidade da força, ou força por unidade de área, que age tangente a A, é denominada tensão de cisalhamento, (tau). Aqui estão as componentes da tensão de cisalhamento Para mostrar como essa tensão pode desenvolver-se, consideraremos o efeito da aplicação de uma força F à barra na Figura 1.20a. Se considerarmos apoios rígidos e F suficientemente grande, o material da barra irá deformar-se e falhar ao longo dos planos identificados por AB e CD. Um diagrama de corpo livre do segmento central não apoiado da barra (Figura 1.20b) indica que a força de cisalhamento V = F/2 deve ser aplicada a cada seção para manter o segmento em equilíbrio. A tensão de cisalhamento média distribuída sobre cada área secionada que desenvolve essa força de cisalhamento é definida por Nessa expressão, τ méd = tensão de cisalhamento média na seção, que consideramos ser a mesma em cada ponto localizado na seção. V = força de cisalhamento interna resultante na seção determinada pelas equações de equilíbrio. A = área na seção 6
7 7
8 Cisalhamento simples. (V = F) Falha de um parafuso em cisalhamento simples Exemplo 01 - A amarra de um barco é presa a um suporte em T no deque do barco por um pino de aço inoxidável. Se a tensão cisalhamento admissível no pino for de 75 MPa e o diâmetro do pino for 7 mm, qual será a força trativa T permissível na amarra? Resp.:T = 5,77 kn Exemplo 02 - A barra mostrada na figura abaixo, tem área de seção transversal quadrada com 40 mm de profundidade e largura. Uma força axial de 800 N é aplicada ao longo do eixo que passa pelo centroide da área da seção transversal da barra. Determine a tensão normal média e a tensão de cisalhamento média que agem no material ao longo do (a) plano de seção a-a e do (b) plano de seção b-b. 8
9 Parte (a) Carga interna. A barra é secionada (figura abaixo), e a carga interna resultante consiste somente em uma força axial para a qual P = 800 N. Tensão média. A tensão normal média é determinada pela Equação: Não existe nenhuma tensão de cisalhamento na seção, visto que a força de cisalhamento na seção é zero. τ méd = O OBSERVAÇÃO: A distribuição da tensão normal média na seção transversal é mostrada na figura c. Parte (b) Carga interna. Se a barra for secionada ao longo de b-b, o diagrama de corpo livre do segmento esquerdo é mostrado na figura 1.24d. Neste caso, a força normal (N) e a força de cisalhamento (V) agem na área secionada. A utilização dos eixos x, y resulta: 9
10 Tensões médias. Neste caso, a área secionada tem espessura e profundidade de 40 mm e 40 mm/sen 60 = 46,19 mm, respectivamente (figura 1.24a). Portanto, a tensão normal média é: 10
11 A distribuição das tensões é mostrada na figura 1.24e. Ligações com rebites Em qualquer ligação rebitada, além de se levar em conta o cisalhamento nos rebites, outros fatores também devem ser examinados. Sempre que se projeta ou verifica uma ligação rebitada deve-se analisar os seguintes itens: a. Cisalhamento nos rebites. O fator cisalhamento nos rebites previne o corte das seções dos rebites entre duas chapas. Estas seriam as seções chamadas de seções de corte ou seções resistentes. Sendo: n - número de rebites que resiste à carga P. m - número de seções resistentes por rebite. d - diâmetro dos rebites. b. Compressão nas paredes dos furos. A força exercida nas chapas, e estando a ligação em equilíbrio estático, cria uma zona comprimida entre as paredes dos furos dos rebites e o próprio rebite. Esta compressão pode ser tão grande a ponto de esmagar as paredes dos furos e colocar em risco toda a ligação rebitada. 11
12 c. Tração nas chapas enfraquecidas. Quando se perfura as chapas para a colocação de rebites elas são enfraquecidas em sua seção transversal. Quanto maior for o número de furos em uma mesma seção transversal, mais enfraquecida ficará a chapa nesta seção, pois sua área resistente à tração fica reduzida. Nas ligações por superposição simples, sempre estará em pior situação a peça de menor espessura, pois ambas recebem a mesma carga. d. Espaçamento mínimo entre rebites. Com a finalidade de limitar a proximidade entre rebites e entre rebites e bordas livres, as normas fixaram um espaçamento mínimo que deve ser preservado. Isto evita zonas de extrema fragilidade entre dois furos em uma chapa e evita também que o funcionamento de um rebite interfira nos rebites vizinhos, o que poderia provocar acúmulos de tensões nestas áreas comuns. Para que a ligação tenha segurança todos estes fatores devem estar bem dimensionados. Exemplo 03: Duas chapas, conforme a figura, são fixadas com rebites e suportarão uma força de 24 kn. Sabendo-se que o diâmetro de cada rebite é de 4 mm e que a tensão de tração suportada por cada rebite é de 650 MPa, calcule: a) A quantidade mínima de rebites necessários para unir a chapa sem sofrer o cisalhamento. b) A distância mínima do furo até a borda da placa se a espessura da placa for de 2 cm e seu material possua tensão de 10 MPa. Resp.: a) 3 rebites b) 2 cm N a) σ = = = n = 2,45rebites Assim sendo: usaremos 3 2 S n.π.(4.10 ) 4 3 rebites. τ = l. 0,02 12
13 4 - TENSÃO ADMISSÍVEL Um engenheiro responsável pelo projeto de um elemento estrutural ou mecânico deve restringir a tensão atuante no material a um nível seguro. Além disso, uma estrutura ou máquina em uso contínuo deve ser analisada periodicamente para que se verifique quais cargas adicionais seus elementos ou partes podem suportar. Portanto, vale repetir, é necessário fazer os cálculos usando uma tensão segura ou admissível. Uma peça estrutural deve ser projetada de tal forma que a tensão existente nas condições de utilização (trabalho) da peça seja consideravelmente menor que a Tensão de ruptura do material utilizado para confeccionar a peça. Para se garantir a segurança, é preciso escolher uma tensão admissível que restrinja a carga aplicada a um valor menor do que a carga que o elemento pode suportar totalmente. Há várias razões para isso. Por exemplo, a carga para a qual o elemento é projetado pode ser diferente das cargas realmente aplicadas. As dimensões estipuladas no projeto de uma estrutura ou máquina podem não ser exatas, na realidade, por causa de erros de fabricação ou cometidos na montagem de seus componentes. É possível ocorrer problemas com vibrações, impactos ou cargas acidentais desconhecidas, que não tenham sido contemplados no projeto. Corrosão atmosférica, deterioração ou desgaste provocado por exposição a intempéries tendem a deteriorar os materiais em serviço. Por fim, as propriedades mecânicas de alguns materiais como madeira, concreto ou compósitos reforçados com fibras podem apresentar alta variabilidade. FATOR DE SEGURANÇA Um método para especificação da carga admissível para o projeto ou análise de um elemento é o uso de um número denominado fator de segurança. Este fator depende: Consistência da qualidade do material; Durabilidade do material; Comportamento elástico do material; Espécie de carga e de solicitação; 13
14 Tipo de estrutura e importância dos elementos estruturais; Precisão na avaliação dos esforços; Qualidade da mão de obra. O fator de segurança (FS) é a razão entre a carga de ruptura, Frup, e a carga admissível, Fadm. Neste contexto, Frup é determinada por ensaios experimentais do material, e o fator de segurança é selecionado com base na experiência. Se a carga aplicada ao elemento estiver linearmente relacionada com a tensão desenvolvida no interior do elemento, como no caso da utilização de = P/A e méd = V/A, então podemos expressar o fator de segurança como a razão entre a tensão de rup ou (rup ) e a tensão admissível (adm (ou adm); isto é, Em qualquer dessas equações o fator de segurança escolhido é maior que 1, para evitar o potencial de falha. Valores específicos dependem dos tipos de materiais usados e da finalidade pretendida da estrutura. Exemplo: A barra rígida AB mostrada na figura a seguir é sustentada por uma haste de aço AC de 20 mm de diâmetro e por um bloco de alumínio com área de seção transversal de 1800 mm 2. Os pinos de 18 mm de diâmetro em A e C estão submetidos a cisalhamento simples. Considerando as tensões de ruptura do aço e do alumínio definidas respectivamente por rup_aço = 680 MPa e rup alum = 70 MPa, e a tensão de ruptura por cisalhamento para cada pino for rup_pino = 900 MPa, determine a maior carga P que pode ser aplicada à barra. Aplique um coeficiente de segurança ou fator de segurança FS = 2. 14
15 Na engenharia é comum encontrar catálogos e manuais com informações indicadas com unidades inglesas; kip ó quilolibras força (kipf) = 1000 lbf BIBLIOGRAFIA ANTÔNIO NETO, Aiello Giuseppe Resistência dos Materiais I - Universidade Presbiteriana Mackenzi. GASPAR, Ricardo MECÂNICA DOS MATERIAIS - Notas de aula da disciplina Resistência dos Materiais ministrada pelo Prof. Leandro Mouta Trautwein. HIBBELER, R. C. Resistencia dos materiais 7ª Ed. Pearson JUDICE, Flávia Moll de Souza e PERLINGEIRO,Mayra Soares Pereira Lima Resistência Dos Materiais IX - Universidade Federal Fluminense BEER, Ferdinand P. JOHNSTON, E. Russel Jr - Resistência dos Materiais -. Ed. PEARSON - 3ª edição Prof.: Marcos VINICIOS Notas de Aulas da disciplina Resistência dos Materiais- Universidade Candido Mendes BAÊTA, Fernando da Costa SARTOR, Valmir Resistência dos Materiais e Dimencionamento de Estruturas para Construções Rurais Universidade Federal de Viçosa
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Ex. 1.40. O bloco de concreto tem as dimensões mostradas na figura. Se o material falhar quando a tensão normal média atingir 0,840
Tensão. Introdução. Introdução
Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e
Introdução cargas externas cargas internas deformações estabilidade
TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também
Aula 2 - Tensão Normal e de Cisalhamento.
Aula 2 - Tensão Normal e de Cisalhamento. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a figura 1.17a. Se AB tiver diâmetro de 10 mm
Resistência dos Materiais
Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas
RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
Resistência dos Materiais AULA 1-2: TENSÃO
Resistência dos Materiais AULA 1-2: TENSÃO PROF.: KAIO DUTRA Bibliografia Resistência dos Materiais HIBBELER, R.C. Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre
Prof. MSc. David Roza José -
1/26 Tensão Considere que uma área seccionada está subdividida em pequenas áreas ΔA. Para desenvolver o conceito de tensão devemos adotar duas hipóteses: (1) O material é contnuo, isto é, possui contnuidade
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - TENSÃO NORMAL MÉDIA 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO
TENSÃO NORMAL e TENSÃO DE CISALHAMENTO 1) Determinar a tensão normal média de compressão da figura abaixo entre: a) o bloco de madeira de seção 100mm x 120mm e a base de concreto. b) a base de concreto
Capítulo 2 Tração, compressão e cisalhamento
Capítulo 2 Tração, compressão e cisalhamento Resistência dos materiais I SLIDES 02 Prof. MSc. Douglas M. A. Bittencourt [email protected] 2.1 Cargas resultantes internas A distribuição de forças
LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02
LISTA DE EXERCÍCIOS ÁREA 1 Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02 Prof: Diego R. Alba 1. O macaco AB é usado para corrigir a viga defletida DE conforme a figura. Se a força compressiva
Prof. MSc. David Roza José 1/11
1/11 Tensão de Cisalhamento Média A tensão de cisalhamento foi definida anteriormente como a componente da tensão que age no plano da área secionada. Consideremos a seguinte ideia: aplicaremos uma força
RESISTÊNCIA DOS MATERIAIS
Terceira Edição CÍTULO RESISTÊNCI DOS MTERIIS erdinand. Beer E. Russell Johnston Jr. Conceito de Tensão Capítulo 1 Conceito de Tensão 1.1 Introdução 1.2 orças e Tensões; 1.3 orças iais: Tensões Normais;
1ª Lista de Exercícios
Universidade do Estado de Mato Grosso Engenharia Elétrica Mecânica dos Sólidos Prof. MSc. Letícia R. Batista Rosas 1ª Lista de Exercícios 01) A coluna está sujeita a uma força axial de 8 kn aplicada no
1.38. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em
1.36. A luminária de 50 lb é suportada por duas hastes de aço acopladas por um anel em A. Determinar qual das hastes está sujeita à maior tensão normal média e calcular seu valor. Suponha que θ = 60º.
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiais Ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade é inerente
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 6 Flexão
Capítulo 6 Flexão 6.1 Deformação por flexão de um elemento reto A seção transversal de uma viga reta permanece plana quando a viga se deforma por flexão. Isso provoca uma tensão de tração de um lado da
Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama
teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos.
EME311 Mecânica dos Sólidos Objetivo do Curso: ornecer ao aluno os fundamentos teóricos necessários para se calcular as tensões e as deformações em elementos estruturais de projetos mecânicos. 1-1 EME311
RESISTÊNCIA DOS MATERIAIS
RESISTÊNCIA DOS MATERIAIS Eng. Wanderson S. Paris, MSc MÓDULO 18 TENSÃO TÉRMICA E CONCENTRAÇÃO DE TENSÕES. Tensão Térmica ü Mudança na temperatura pode provocar alterações nas dimensões de um material.
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão
Capítulo 1 Tensão 1.1 - Introdução Resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que
CAPÍTULO V ESFORÇO NORMAL E CORTANTE
1 CAPÍTULO V ESFORÇO NORMAL E CORTANTE I. TRAÇÃO OU COMPRESSÃO AXIAL (SIMPLES) A. TENSÕES E DEFORMAÇÕES: Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no seu eixo
Resistência dos Materiais
1ª Parte Capítulo 1: Introdução Conceito de Tensão Professor Fernando Porto Resistência dos Materiais 1.1. Introdução O principal objetivo do estudo da mecânica dos materiais é proporcionar ao engenheiro
4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA
Carga axial. Princípio de Saint-Venant
Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente
AULA 03 - TENSÃO E DEFORMAÇÃO
AULA 03 - TENSÃO E DEFORMAÇÃO Observação: Esse texto não deverá ser considerado como apostila, somente como notas de aula. DEFORMAÇÃO Em engenharia, a deformação de um corpo é especificada pelo conceito
Aula 03 Tensão; Tensão Normal Média em uma barra com carga axial
Aula 03 Tensão; Tensão Normal Média em uma barra com carga axial Prof. Wanderson S. Paris, M.Eng. [email protected] Conceito de Tensão Representa a intensidade da força interna sobre um plano específico
Exercícios de Resistência dos Materiais A - Área 3
1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento
Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013
Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um
Professor: José Junio Lopes
Aula 2 - Tensão/Tensão Normal e de Cisalhamento Média; Tensões Admissíveis. A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a.
Aula 09 - Tensão Admissível Projeto de Acoplamento Simples
ula 09 - Tensão dmissível rojeto de coplamento Simples rof. Wanderson S. aris, M.Eng. [email protected] Tensão dmissível O engenheiro responsável pelo projeto de elementos estruturais ou mecânicos
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2
LISTA DE EXERCÍCIOS RESISTÊNCIA DOS MATERIAIS 2 I) TRANSFORMAÇÃO DE TENSÕES 1) Uma única força horizontal P de intensidade de 670N é aplicada à extremidade D da alavanca ABD. Sabendo que a parte AB da
Professor: José Junio Lopes
A - Deformação normal Professor: José Junio Lopes Lista de Exercício - Aula 3 TENSÃO E DEFORMAÇÃO 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada
Resistência dos Materiais
Capítulo 3: Tensões em Vasos de Pressão de Paredes Finas Coeficiente de Dilatação Térmica Professor Fernando Porto Resistência dos Materiais Tensões em Vasos de Pressão de Paredes Finas Vasos de pressão
Aula 08 - Tensão de Cisalhamento Média
Aula 08 - Tensão de Cisalhamento Média Prof. Wanderson S. Paris, M.Eng. [email protected] Tensão de Cisalhamento Sob a ação de forças de tração P, a barra e a junta irão exercer uma pressão cortante
- 1ª LISTA DE RESISTÊNCIA DOS MATERIAIS II Carga axial
- 1ª LISTA DE RESISTÊNCIA DOS MATERIAIS II Carga axial 1) O tubo de aço tem raio externo de 20mm e raio interno de 15mm. Se ele se ajustar exatamente entre as paredes fixas antes de ser carregado, determine
Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant
Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um
Professor: José Junio Lopes
Lista de Exercício Aula 3 TENSÃO E DEFORMAÇÃO A - DEFORMAÇÃO NORMAL 1 - Ex 2.3. - A barra rígida é sustentada por um pino em A e pelos cabos BD e CE. Se a carga P aplicada à viga provocar um deslocamento
Tensões. Professores: Nádia Forti Marco Carnio
Tensões Professores: Nádia Forti Marco Carnio SOLICITAÇÃO AXIAL Se uma força tende a alongar o elemento, é chamada de força de tração. Se uma força tende a encurtar o elemento, é chamada de força de compressão.
1- Os dois cabos suportam uma luminária de 80 kg. Determinar seus diâmetros requeridos se o esforço de tração admissível para o alumínio for
nhanguera-uniderp Engenharia Civil Resistência dos Materiais 1- Os dois cabos suportam uma luminária de 80 kg. Determinar seus diâmetros requeridos se o esforço de tração issível para o alumínio for =
O que é Resistência dos Materiais?
Roteiro de aula O que é Resistência dos Materiais? Definições Resistência x Rigidez Análise x Projeto Áreas de Aplicação Forças externas Esforços internos Elementos estruturais Hipóteses básicas Unidades
Capítulo 3: Propriedades mecânicas dos materiais
Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade
3ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO DIAGRAMA DE ESFORÇO NORMAL
Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 3ª LISTA
Sistemas Estruturais
Notas de aula Prof. Andréa 1. Elementos Estruturais Sistemas Estruturais Uma vez especificados os tipos de aço comumente utilizados em estruturas metálicas, determinadas as características geométricas
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm
Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 3 Flexão
Capítulo 3 Flexão 3.1 Revisão Flexão provoca uma tensão de tração de um lado da viga e uma tensão de compressão do outro lado. 3.2 A fórmula da flexão O momento resultante na seção transversal é igual
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 2 Tensão e deformação: Carregamento axial Conteúdo Tensão e Deformação: Carregamento Axial Deformação Normal
Carregamentos Combinados
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Carregamentos Combinados
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Maio, 2016. 5 Análise e projeto de vigas em flexão Conteúdo Introdução Diagramas de Força Cortante e Momento Fletor Problema
RESISTÊNCIA DOS MATERIAIS
RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro
1ª Lista de exercícios Resistência dos Materiais IV Prof. Luciano Lima (Retirada do livro Resistência dos materiais, Beer & Russel, 3ª edição)
11.3 Duas barras rígidas AC e BC são conectadas a uma mola de constante k, como mostrado. Sabendo-se que a mola pode atuar tanto à tração quanto à compressão, determinar a carga crítica P cr para o sistema.
E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4
Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão
Equações Diferenciais aplicadas à Flexão da Vigas
Equações Diferenciais aplicadas à Flexão da Vigas Page 1 of 17 Instrutor HEngholmJr Version 1.0 September 21, 2014 Page 2 of 17 Indice 1. CONCEITOS PRELIMINARES DA MECANICA.... 4 1.1. FORÇA NORMAL (N)...
RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica
Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. [email protected] Conteúdo
Capítulo1 Tensão Normal
- UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:
Aula 06 Introdução e Equilíbrio de um corpo deformável
Aula 06 Introdução e Equilíbrio de um corpo deformável Prof. Wanderson S. Paris, M.Eng. [email protected] Resistência dos Materiais Definição: É um ramo da mecânica que estuda as relações entre
ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.
ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para
Capítulo 1 Carga axial
Capítulo 1 Carga axial 1.1 - Revisão Definição de deformação e de tensão: L P A Da Lei de Hooke: P 1 P E E A E EA Barra homogênea BC, de comprimento L e seção uniforme de área A, submetida a uma força
Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais
Ciências dos Materiais Propriedades Mecânicas dos Materiais IMPORTÂNCIA Aplicações onde são necessárias solicitações mecânicas. Atender as exigências de serviço previstas. POR QUÊ ESTUDAR? A determinação
(atualizado em 12/07/2014)
ENG285 4ª Unidade 1 (atualizado em 12/07/2014) Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para
Flexão. Diagramas de força cortante e momento fletor. Diagramas de força cortante e momento fletor
Capítulo 6: Flexão Adaptado pela prof. Dra. Danielle Bond Diagramas de força cortante e momento fletor Elementos delgados que suportam carregamentos aplicados perpendicularmente a seu eixo longitudinal
Deformação. - comportamento de um material quando carregado
Deformação - comportamento de um material quando carregado : tipos de deformação Deformação - deformação normal variação do comprimento de uma fibra em relação a uma direção. : tipos de deformação Deformação
Resposta: F AB = 1738,7 N F AC = 1272,8 N
Trabalho 1 (Cap. 1 a Cap. 4) Mecânica Aplicada - Estática Prof. André Luis Christoforo, e-mail: [email protected] Departamento de Engenharia Civil - DECiv/UFSCar Cap. 1 Vetores de Força 1) A força
RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO
CONTROLE DE QUALIDADE INDUSTRIAL Tensão Tensão é ao resultado da ação de cargas externas sobre uma unidade de área da seção analisada na peça, componente mecânico ou estrutural submetido à solicitações
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03
UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais 1 Flexão Diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares
Quarta Lista de Exercícios
Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)
Terceira Lista de Exercícios
Universidade Católica de Petrópolis Disciplina: Resistência dos Materiais II Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Para os estados de tensões abaixo, Pede-se: a) Componentes de tensão
Aula 8 Uniões sujeitos à cisalhamento: parafusos e rebites
SEM 0326 Elementos de Máquinas II Aula 8 Uniões sujeitos à cisalhamento: parafusos e rebites Profa. Zilda de C. Silveira São Carlos, Outubro de 2011. 1. Parafusos sob cisalhamento - Parafusos sob carregamento
a-) o lado a da secção b-) a deformação (alongamento) total da barra c-) a deformação unitária axial
TRAÇÃO / COMPRESSÃO 1-) A barra de aço SAE-1020 representada na figura abaixo, deverá der submetida a uma força de tração de 20000 N. Sabe-se que a tensão admissível do aço em questão é de 100 MPa. Calcular
Disciplina: Resistência dos Materiais Unidade V - Flexão. Professor: Marcelino Vieira Lopes, Me.Eng.
Disciplina: Resistência dos Materiais Unidade V - Flexão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.
Capítulo 3 Propriedades Mecânicas dos Materiais
Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa
Estabilidade. Marcio Varela
Estabilidade Marcio Varela Esforços internos O objetivo principal deste módulo é estudar os esforços ou efeitos internos de forças que agem sobre um corpo. Os corpos considerados não são supostos perfeitamente
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE. Experimento de ensino baseado em problemas. Módulo 01: Análise estrutural de vigas
Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio NECE Experimento de ensino baseado em problemas Módulo 01: Análise estrutural de vigas Aula 02: Estruturas com barras sob corportamento axial
Mecânica dos Sólidos. Prof. Sergio Schneider
Mecânica dos Sólidos Prof. Sergio Schneider REFERÊNCIAS A.C. UGURAL. Mecânica dos Materiais. Rio de Janeiro LTC, 2009, 638p. J.M. GERE. Mecânica dos Materiais. São Paulo: Pioneira Thomson Learning, 2003,
Estruturas de Aço e Madeira Aula 03 Peças de Aço Tracionadas (1)
Estruturas de Aço e Madeira Aula 03 Peças de Aço Tracionadas (1) - Conceito Geral - Área de Seção Transversal Líquida An - Área de Seção Transversal Líquida Efetiva Ae (Coef. Ct) Prof. Juliano J. Scremin
Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2
Programa de Pós-graduação em Engenharia Mecânica da UFABC Disciplina: Fundamentos de Mecânica dos Sólidos II Quadrimestre: 019- Prof. Juan Avila Lista 1) Para as duas estruturas mostradas abaixo, forneça
DIMENSIONAMENTO DE UNIÕES UTILIZANDO CONECTORES METÁLICOS PARAFUSOS
03/12/2015 14:18:18 1 Manaus, 2015 MINICURSO Eng. Civil A SEREM ABORDADOS NESTE MINICURSO: - Contextualização; - Características dos Conectores Metálicos - Parafusos; - Normas; - Princípios básicos da
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano
MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS Prof. Dr. Daniel Caetano 2019-1 Objetivos Conhecer o comportamento dos materiais na tração e compressão Compreender o gráfico de tensão x deformação
Exercícios de flexão pura e composta - prof. Valério SA Universidade de São Paulo - USP
São Paulo, dezembro de 2015. 1. Obter o máximo valor admissível de P para a estrutura abaixo. Admita que o cabo CD esteja preso em C no CG da seção da viga AB. Dados para a viga AB: 250 MPa, 100 MPa. Dados
Mecânica dos Sólidos I Lista de exercícios I Barras e treliças
Mecânica dos Sólidos I Lista de exercícios I arras e treliças (1)Uma biela consiste em três barras de aço de 6.25 mm de espessura e 31.25mm de largura, conforme esquematizado na figura. Durante a montagem,
CAPÍTULO 3 ESFORÇO CORTANTE
CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento
Capítulo 9 Vigas sujeitas às cargas transversais, tensão de corte
Capítulo 9 Vigas sujeitas às cargas transversais, tensão de corte Problema A viga da figura ao lado está sujeita à carga indicada. Calcule: a) A tensão normal máxima b) A tensão de corte máxima c) As tensões
1. Flambagem Introdução
1. Flambagem 1.1. Introdução Flambagem ou encurvadura é um fenômeno que ocorre em peças esbeltas (peças onde a área de secção transversal é pequena em relação ao seu comprimento), quando submetidas a um
Resistência dos Materiais
Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes
Tensões associadas a esforços internos
Tensões associadas a esforços internos Refs.: Beer & Johnston, Resistência dos ateriais, 3ª ed., akron Botelho & archetti, Concreto rmado - Eu te amo, 3ª ed, Edgard Blücher, 00. Esforços axiais e tensões
Mecânica Técnica e Resistência dos Materiais. Irineu Yassuda
Mecânica Técnica e Resistência dos Materiais Irineu Yassuda 2013 Definição de Resistência dos Materiais É um ramo da mecânica que estuda as relações entre cargas externas aplicadas a um corpo deformável
Flexão Vamos lembrar os diagramas de força cortante e momento fletor
Flexão Vamos lembrar os diagramas de força cortante e momento fletor Elementos longos e retos que suportam cargas perpendiculares a seu eixo longitudinal são denominados vigas. Vigas são classificadas
MECSOL34 Mecânica dos Sólidos I
MECSOL34 Mecânica dos Sólidos I Curso Superior em Tecnologia Mecatrônica Industrial 3ª fase Prof.º Gleison Renan Inácio Sala 9 Bl 5 joinville.ifsc.edu.br/~gleison.renan Tópicos abordados Conceito de Tensão
Aula 11 - Propriedades Mecânicas dos Materiais / Coeficiente de Poisson.
Aula 11 - Propriedades Mecânicas dos Materiais / Coeficiente de Poisson. Prof. Wanderson S. Paris, M.Eng. [email protected] Propriedades Mecânicas dos Materiais As propriedades mecânicas de um
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO
ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS LIGAÇÕES COM CONECTORES TIPOS DE CONECTORES Rebites Conectores instalados a quente Aperto muito impreciso e variável
Sistemas Estruturais. Prof. Rodrigo mero
Sistemas Estruturais Prof. Rodrigo mero Aula 2 Cargas que Atuam nas estruturas Índice Forças Vetoriais Geometria das Forças Cargas Quanto a Frequência Levantamento de Cargas Simples Equilíbrio Interno
MAC de outubro de 2009
MECÂNICA MAC010 26 de outubro de 2009 1 2 3 4 5. Equiĺıbrio de Corpos Rígidos 6. Treliças 7. Esforços internos Esforços internos em vigas VIGA é um elemento estrutural longo e delgado que é apoiado em
