Problemas de Mecânica e Ondas 10
|
|
|
- Rosângela Fialho Osório
- 9 Há anos
- Visualizações:
Transcrição
1 Problemas de Mecânica e Ondas 10 P Um comboio rápido de passageiros, viajando inicialmente a uma velocidade de 240 km/h é forçado a realizar uma travagem até uma velocidade de 60 km/h para evitar colidir com um comboio de mercadorias que se desloca na mesma linha. Se a travagem demorar 20 segundos qual a força de inércia sentida por um passageiro de massa igual a 80 kg (especifique o sentido da força de inércia). P Um passageiro de um comboio que se desloca a uma velocidade uniforme deixa cair uma moeda da janela quando o comboio atravessa uma ponte sobre um rio. Escreva as equações da posição da moeda em função do tempo, x(t), z(t) e a respectiva trajectória z(x) quando observada: a) Pelo passageiro do comboio. b) Por um pescador que se encontra em repouso na margem do rio. (considere x/x a direcção horizontal, correspondente ao tabuleiro da ponte (e ao comboio) e z a direcção vertical). P Verifique, utilizando a transformação de Galileu, que a distância entre dois pontos quaisquer do espaço não depende do referencial de inércia em que a posição destes pontos é descrita. P ( Introdução à Física, J. Dias de Deus et al.) Um passageiro num elevador deixa cair uma moeda. a) Se no instante em que esta adquire uma velocidade de 1 m/s em relação ao passageiro se partirem os cabos do elevador, qual o movimento posterior da moeda em relação e este? E que tipo de movimento tem a moeda em relação a uma pessoa que está à espera do elevador no 1º andar? b) Se este passageiro tivesse suspenso na mão um pêndulo a oscilar, no instante em que os cabos se partem, qual passaria a ser a frequência das oscilações? Com que tipo de movimento fica o pêndulo? P ( Introdução à Física, J. Dias de Deus et al.) Um dinamómetro suporta, sem se partir, no máximo, uma massa de 220g. Fixa-se o dinamómetro ao tecto de um elevador... a) Se se quiser suspender uma massa superior a 220g no dinamómetro sem que este se parta, deve fazer-se subir ou descer o elevador? b) Qual a maior massa que o dinamómetro pode suportar, numa subida com uma aceleração dez vezes mais pequena que a aceleração da gravidade? c) Como varia a frequência das oscilações da massa suspensa no dinamómetro quando o elevador é acelerado para subir e quando é acelerado para descer?
2 P ( Introdução à Física, J. Dias de Deus et al.) Numa base espacial encontra-se estacionada uma nave espacial com 20 m de comprimento. A nave parte para uma viagem e quando atinge a velocidade de cruzeiro é medida a partir da base obtendo-se um valor de 10 m de comprimento. a) Com que velocidade se desloca a nave em relação à base espacial? b) Qual o comprimento da nave para os tripulantes que nela se encontram? P ( Introdução à Física, J. Dias de Deus et al.) Qual a contracção do diâmetro da Terra para um astronauta que se encontre em repouso relativamente ao Sol? (considere a Terra como um referencial de inércia num pequeno intervalo de tempo). Dados: Distância média Terra-Sol: 1,496x10 11 m; Raio da Terra: 6,378x10 6 m. P A vida média de um muão (partícula ) é aproximadamente igual a 2,2x10-6 s. a) Calcule o tempo médio de vida desta partícula no referencial do laboratório se esta deslocar à velocidade de 0,99 c. b) Qual o espaço percorrido em média pela partícula a esta velocidade no referencial do laboratório até decair? c) Do ponto de vista da partícula qual a distância percorrida pelo laboratório? d) Verifique que o resultado da alínea c) corresponde ao espaço percorrido na vida média da partícula no seu referencial próprio. P ( Introdução à Física, J. Dias de Deus et al.) As partículas de alta energia são observadas no laboratório pela respectiva trajectória registada pelos detectores. Uma partícula movendo-se à velocidade de 0,995c produz um rasto de 1,25 mm. Qual o tempo de vida da partícula no seu referencial próprio? P ( Introdução à Física, J. Dias de Deus et al.) Um neutrão livre tem um período de semivida de 11,0 minutos (só no núcleo, com outros neutrões e protões é que o neutrão é mais estável) no seu referencial próprio, desintegrandose num protão, num electrão e num neutrino (desintegração ). Considere um feixe de neutrões produzido numa das muitas reacções de fusão nuclear que ocorrem no Sol. a) Quanto tempo deve decorrer no referencial próprio dos neutrões para que o seu número se reduza a 1% do número inicial? (lembre-se da lei do declínio radioactivo: e comece por relacionar o período de semivida com a constante.) b) Suponha que os neutrões se deslocam a uma velocidade média de 10 6 m/s (na realidade a velocidade é menor) e considere que a distância Terra-Sol é de 1,49x10 11 m. Quanto tempo demoraria um neutrão a chegar à Terra para um observador da Terra? c) A partir dos resultados de a) e de b), diga se há perigo de os neutrões solares atingirem a Terra. (lembre-se que só pode comparar grandezas medidas no mesmo referencial!)
3 P Mostre que a expressão correspondente à dilatação do tempo pode ser obtida a partir da transformação de Lorentz, tomando como referência dois acontecimentos A 1 e A 2 num referencial S (que se desloca com velocidade V relativamente ao referencial S do laboratório) correspondentes respectivamente à marcação de dois tempos t 1 =0 e t 2 =t ( 0) de um mesmo relógio colocado na origem do referencial S (x 1 =0 e x 2 =0). P Mostre que a expressão correspondente à contracção do espaço pode ser obtida a partir da transformação de Lorentz, tomando como referência dois acontecimentos A 1 e A 2 num referencial S (que se desloca com velocidade V relativamente ao referencial S do laboratório) correspondentes respectivamente à marcação de duas x 1 =0 e x 2 = ( 0) de uma mesma régua na origem do tempo no referencial S (t 1 =0 e t 2 =0). (nota: lembre-se que a posição x 2 do referencial S, obtida a partir de x 2 e t 2, corresponde à posição da régua no instante t 2 em S (t 2 0) e portanto precisa de subtrair v.(t 2 t 1 ) a (x 2 x 1 ) para obter o valor da régua no referencial S. P Mostre que o intervalo entre dois acontecimentos A e B, com numa transformação de Lorentz., se mantém invariante P Em relatividade restrita o lagrangeano de uma partícula que se desloque com uma velocidade v é dado pela expressão:. a) Mostre que no limite clássico, isto é, para velocidades muito menores que c este Lagrangeano, é compatível com a expressão clássica para uma partícula livre (nota: utilize a aproximação, para ). b) Atendendo às expressões, obtidas anteriormente, para a energia e para o momento linear de uma partícula a partir das simetrias por invariância no tempo e translação no espaço: ;, deduza as conhecidas expressões para o momento linear e para a energia de uma partícula em relatividade restrita:
4 ; c) Mostre que a expressão da energia obtida na alínea anterior apresenta, para baixos valores de v/c, um termo correspondente à energia cinética clássica para além do termo associado à massa da partícula. (nota: utilize a aproximação, para ). d) Definindo o quadri-vector energia-momento com componentes E/c (associada à componente temporal), e (p x, p y, p z ) (associadas à componente espacial) que se transforma numa mudança de referencial de segundo a transformação de Lorentz, mostre que a quantidade é invariante para qualquer mudança de variáveis entre dois referenciais de inércia. P Um núcleo de átomo de hélio é constituído por dois protões e dois neutrões, sendo as massas do protão e do neutrão e a massa do núcleo de átomo de hélio Calcule a energia libertada numa reacção nuclear de fusão (no Sol por exemplo) quando dois protões se ligam a dois neutrões originando um núcleo de hélio. Soluções: P N (no mesmo sentido do andamento do comboio) (equivalente aprox. a um peso de 20 kgf). P Referencial do comboio S, referencial da Terra S. a) No referencial do comboio, considerando que o passageiro se encontra na origem do referencial S : A trajectória é uma linha recta paralela ao eixo z. b) No referencial da Terra (pescador): Logo: (arco de parábola) P a) Movimento uniforme com v=1m/s em relação ao passageiro; movimento uniformemente acelerado em relação à pessoa no 1º andar. b) Não oscila ( = 0). Movimento circular uniforme.
5 P a) Descer. b) 200g. c) Não varia. P a) 0,866 c b) 20 m P ,7cm P a) b) c) d) P ,42 ps (1 ps(picosegundo)= s) P a) 76m 45s b) 41h 23m 20s c) Não. P A energia associada a dois protões e dois neutrões em repouso é aproximadamente : A energia associada ao átomo de hélio em repouso é: A energia libertada na reacção de fusão é:
Problemas de Mecânica e Ondas MEAer 2015 Série 10
Problemas de Mecânica e Ondas MEAer 015 Série 10 P 10.1. Um comboio rápido de passageiros, viaja inicialmente a uma velocidade de 40 km/h, quando é forçado a realizar uma travagem até uma velocidade de
10ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT, LEGM, LMAC
10ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT, LEGM, LMAC 1. A vida média de uma partícula é 100 ns no seu referencial próprio. 1.a) Qual a duração da partícula no laboratório, sabendo
8ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT e LMAC
8ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT e LMAC 1. A vida média de uma partícula é 100 ns no seu referencial próprio. 1.a) Qual a duração da partícula no laboratório, sabendo que
11ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT, LEGM, LMAC
11ª Série de Problemas Mecânica e Ondas (Relatividade) MEBM, MEFT, LEGM, LMAC 1. A vida média de uma partícula é 100 ns no seu referencial próprio. 1.a) Qual a duração da partícula no laboratório, sabendo
RELATIVIDADE EINSTEINIANA (II)
RELATIVIDADE EINSTEINIANA (II) Princípio da invariância da velocidade da luz no vácuo O facto da velocidade da luz ter um valor finito e constante em todos os referenciais de inércia tem consequências:
10 Relatividade de Galileu a Einstein
10.1. Uma massa m está suspensa do tecto de uma carruagem de comboio por um fio. Um passageiro na mesma carruagem regista que, quando o comboio arranca da estação, o fio que suspende a massa faz um ângulo
Séries de Problemas. Mecânica e Ondas LEIC-TP. Pedro Abreu, adaptado de original de Ana Maria Mourão (Coordenadora) e Nuno Pinhão
Mecânica e Ondas LEIC-TP Séries de Problemas Enunciados Pedro Abreu, adaptado de original de Ana Maria Mourão (Coordenadora) e Nuno Pinhão Ano Lectivo: 2016/2017, 1 o semestre Alguns exercícios são seleccionados
Conceitos pré-relativísticos. Transformações de Galileu. Princípio da Relatividade de Galileu. Problema com a dinâmica newtoniana
Vitor Oguri Conceitos pré-relativísticos Transformações de Galileu Princípio da Relatividade de Galileu Problema com a dinâmica newtoniana O espaço-tempo de Einstein Medições de tempo Medições de distância
Mecânica e Ondas 1º Ano -2º Semestre 2º Teste/1º Exame 05/06/ :00h. Mestrado Integrado em Engenharia Aeroespacial
Mestrado Integrado em Engenharia Aeroespacial Mecânica e Ondas 1º Ano -º Semestre º Teste/1º Exame 05/06/013 15:00h Duração do Teste (problemas 3, 4 e 5): 1:30h Duração do Exame: :30h Leia o enunciado
3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.
1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num
Aplicação dos conceitos de posição, velocidade e aceleração. Aplicação de derivadas e primitivas de
Ano lectivo 2010-2011 Engenharia Civil Exercícios de Física Ficha 4 Movimento a uma Dimensão Capítulo 3 Conhecimentos e e capacidades a adquirir a adquirir pelo pelo aluno aluno Aplicação dos conceitos
Graça Ventura Adaptado por Marília Peres por Marília Peres
Física 12º ano Relatividade einsteiniana Graça Ventura Adaptado por Marília Peres Memórias de Einstein... O que aconteceria se alguém cavalgasse um raio luminoso?... Seria capaz de ver a sua imagem num
3. Mecânica de Newton
3. Mecânica de Newton 3.1. Uma partícula carregada com carga q, quando colocada num campo eléctrico E, fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num campo
Adição Simples x = x vt y = y z = z t = t
08-09-00 RELATIVIDADE - Referenciais Referencial - sistema de coordenadas com uma origem (arbitrária). Referencial inercial - não está sob aceleração; as leis de Newton são válidas em tais referenciais
Questões Conceituais
Questões em Sala de Aula Módulo 3 Parte B Questões Conceituais QC.1) Num oscilador harmônico simples, massa-mola, a velocidade do bloco oscilante depende (a) da constante elástica k da mola e da amplitude;
Capítulo 5 DINÂMICA θ α
Capítulo 5 DINÂMICA θ α DISCIPLINA DE FÍSICA CAPÍTULO 5 - DINÂMICA 5.1 Considere um pêndulo cónico com uma massa m 1 suspensa por um cabo de comprimento igual a 2,5 metros. 5.1.1 Determine a velocidade
Problemas de Mecânica e Ondas 3
Problemas de Mecânica e Ondas 3 P 3.1. ( Exercícios de Física, A. Noronha, P. Brogueira, McGraw Hill, 1994) Considere uma esfera de densidade e raio r imersa num fluido de viscosidade e massa específica
Física moderna. Relatividade galileana. Relatividade galileana. Relatividade o que significa? Relatividade o que significa?
Relatividade galileana Física moderna Relatividade galileana Maio, 2011 Caldas da Rainha Luís Perna Relatividade o que significa? O observador junto à árvore diz: o comboio move-se para a frente com velocidade
1. Qual das seguintes grandezas NÃO é vectorial? A Aceleração B Força C Temperatura D Velocidade
República de Moçambique Física Ministério da Educação Exame Extraordinário 12ª Classe / 2013 Conselho Nacional de Exames, Certificação e Equivalências 120 Minutos Esta prova contém 40 perguntas com 4 alternativas
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
m/s. Analise o problema assumindo
5.1. Uma bola com massa m 1 = 1 g colide com um alvo parado de massa m 2. Considere que a colisão é completamente elástica e que a velocidade inicial da bola é v 1 = 1 e x m/s. Analise o problema assumindo
FÍSICA. Física Moderna. Relatividade. Prof. Luciano Fontes
FÍSICA Física Moderna Relatividade Prof. Luciano Fontes Situação Problema: Como pode uma onda eletromagnética se propagar no vácuo? Qual o valor da velocidade da luz emitida de um corpo em movimento? Resposta:
MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 2º teste sumativo de FQA 24. novembro. 2014 Versão 1 11º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Este teste é constituído por 11 páginas
Série IV - Momento Angular (Resoluções Sucintas)
Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme
UNIDADE III FÍSICA MODERNA. 1.1 Relatividade galileana 1.2 Relatividade einsteiniana. 2. Introdução à física quântica
Física Moderna Física -2º ano Marília Peres Programa de Física de 2.º ano UNIDADE III FÍSICA MODERNA. Relatividade id d. Relatividade galileana.2 Relatividade einsteiniana 2. Introdução à física quântica
LISTA UERJ. Bolas Massa (g) Velocidade inicial (m/s) X 5 20 Y 5 10 Z (Uerj 2012) As relações entre os respectivos tempos de queda t x
LISTA UERJ TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Três bolas X, Y e Z são lançadas da borda de uma mesa, com velocidades iniciais paralelas ao solo e mesma direção e sentido. A tabela abaixo mostra as magnitudes
Durante o voo as posições ocupadas pelo avião variam no
Movimento Movimento e Repouso são conceitos relativos. PORQUÊ? 1 Movimento -Referencial Referencial Durante o voo as posições ocupadas pelo avião variam no decurso do tempo x x x x x x Avião está em Movimento
Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 10 Relatividade Física 4 Ref. Halliday Volume4 ...RELATIVIDADE RESTRITA Sumário A relatividade das distâncias Contração do Espaço Transformada de Lorenz A transformação das velocidades Relembrando...
Problemas de Mecânica e Ondas 7
Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição
Mecânica 2007/ ª Série
Mecânica 007/008 ª Série Questões: 1. Se a velocidade média é nula durante um intervalo de tempo t e se v(t) é uma função contínua, mostre que a velocidade instantânea se deve anular em algum instante
CURSO PROFISSIONAL FÍSICA. F = m a MÓDULO 1 FORÇAS E MOVIMENTOS. Prof: Marília Pacheco Ano lectivo
CURSO PROFISSIONAL FÍSICA F = m a MÓDULO 1 FORÇAS E MOVIMENTOS Prof: Marília Pacheco Ano lectivo 2013-14 ÍNDICE 1. A FÍSICA ESTUDA A INTERACÇÃO ENTRE CORPOS... 2 1.1 INTERACÇÕES FUNDAMENTAIS... 2 FORÇAS...
QUESTÃO 16 QUESTÃO 17 PROVA DE FÍSICA II
7 PROVA DE FÍSICA II QUESTÃO 16 Uma barra homogênea de massa 4,0 kg e comprimento 1,0 m está apoiada em suas extremidades sobre dois suportes A e B conforme desenho abaixo. Coloca-se a seguir, apoiada
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)
LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para
Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA
Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação
PRINCIPAIS CAUSAS DE ACIDENTES RODOVIÁRIOS. Falha humana Mau estado da via e sinalização deficiente Mau estado da viatura Más condições atmosféricas
PRINCIPAIS CAUSAS DE ACIDENTES RODOVIÁRIOS Falha humana Mau estado da via e sinalização deficiente Mau estado da viatura Más condições atmosféricas PRINCIPAIS CAUSAS DE ACIDENTES DEVIDO A FALHA HUMANA
Resposta: (A) o traço é positivo (B) o determinante é negativo (C) o determinante é nulo (D) o traço é negativo (E) o traço é nulo.
MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 201/2018 EIC0010 FÍSICA I 1º ANO, 2º SEMESTRE 12 de junho de 2018 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário
CONCEITOS DE RELATIVIDADE RESTRITA
1. Introdução. O Experimento de Michelson-Morley 3. Postulados da Relatividade Restrita 4. Transformações de Lorentz 5. A Dilatação Temporal e a Contração Espacial 6. A Massa, a Energia e o Momento Linear
Lista de Exercícios - OSCILAÇÕES
UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração
Cinemática do ponto material (PM)
Cinemática do ponto material (PM) 1- Determine a velocidade média de um PM nos instantes t=5 s e t=10 s, sendo o seu movimento dado pelo gráfico mostrado a seguir 2- Uma partícula move-se numa dada direcção,
Cap Relatividade
Cap. 37 - Relatividade;Relatividade Os postulados da relatividade; Evento; A relatividade da simultaneidade; A relatividade do tempo; A relatividade das distâncias; Transformações de Lorentz; A relatividade
NOTAS DE AULAS DE FÍSICA MODERNA
NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL Primeira Edição junho de 2005 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1- Introdução 1.2-
SALESIANOS DO ESTORIL - ESCOLA
SALESIANOS DO ESTORIL - ESCOLA FÍSICA E QUÍMICA A 11º ANO 2015/2016 A.P.S.A. F1 Movimentos: caracterização e representação gráfica 1. Selecione a alternativa correta que completa a frase. Uma partícula
8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC
8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 1. Uma mola de constante k = 100 Nm -1 está ligada a uma massa m = 0.6 kg. A massa m pode deslizar sem atrito sobre uma mesa horizontal. Comprime-se
Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 10 Relatividade Física 4 Ref. Halliday Volume4 ...RELATIVIDADE RESTRITA Sumário A relatividade das distâncias Contração do Espaço Transformada de Lorenz A transformação das velocidades Relembrando...
Aula 18. Teoria da Relatividade Restrita (1905) Física Geral IV - FIS503. Parte I
Aula 18 Teoria da Relatividade Restrita (1905) Parte I Física Geral IV - FIS503 1 Documentário - National Geographic Nesta aula: Relatividade das velocidades Próxima aula: Efeito Doppler da Luz Momento
Instituto de Fıśica UFRJ Mestrado em Ensino profissional
Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 3 a Lista de Exercıćios Segundo Semestre de 2008 Prof. A C Tort Problema 1 Transformação de Lorentz I. Em aula vimos
Relatividade Restrita. Adaptação do curso de Sandro Fonseca de Souza para o curso de Física Geral
Relatividade Restrita Adaptação do curso de Sandro Fonseca de Souza para o curso de Física Geral ...na Mecânica Clássica (Transformações de Galileu) As leis básicas da Mecânica assumem sua forma mais simples
6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações:
6.1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações: a) em relação ao eixo que passa pelo centro e é perpendicular ao plano da régua; b) em relação
FIS Cosmologia e Relatividade Thaisa Storchi Bergmann
FIS02012 - Cosmologia e Relatividade Thaisa Storchi Bergmann Relatividade Restrita: Postulados: 1) Princípio da relatividade: As leis da física são as mesmas em todos os referenciais inerciais. Nenhum
Teoria da Relatividade Restrita
DEPARTAMENTO DE MATEMÁTICA E FÍSICA DATA: 1//17 1ª LISTA DE EXERCÍCIOS DE FÍSICA MODERNA I Prof.: Dr. Clóves Gonçalves Rodrigues Teoria da Relatividade Restrita Os Postulados 3) Determine a velocidade
CINEMÁTICA MOVIMENTO RETILÍNEO
CINEMÁTICA MOVIMENTO RETILÍNEO 1 Duas partículas A e B estão do lado oposto de uma reta com 500 m de comprimento. A partícula A desloca-se na direção AB e no sentido de B, com uma velocidade constante
m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio?
1 II.5. Corpo rígido (versão: 20 de Maio, com respostas) 1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações : (a) em relação ao eixo que passa
UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física
UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador
Fundamentos de Mecânica
Fundamentos de Mecânica 45 Lista de exercícios Primeiro semestre de Os exercícios da lista deverão ser todos feitos. Não há necessidade de entregá-los. O conteúdo será cobrado nas provas e provinhas, ao
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015
Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1 prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015 OBS: Quando necessário, considere como dados a aceleração da
Nosso senso comum falha para descrever fenômenos: que envolvem dimensões reduzidas (átomos, moléculas, partículas...) =>> MECÂNICA QUÂNTICA que
Nosso senso comum falha para descrever fenômenos: que envolvem dimensões reduzidas (átomos, moléculas, partículas...) =>> MECÂNICA QUÂNTICA que envolvem altas velocidades (comparadas com a da luz) =>>
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
7. Movimentos Oscilatórios
7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento no plano horizontal
Notação Científica. n é um expoente inteiro; N é tal que:
Física 1 Ano Notação Científica n é um expoente inteiro; N é tal que: Exemplos: Notação Científica Ordem de Grandeza Qual a ordem de grandeza? Distância da Terra ao Sol: Massa de um elétron: Cinemática
Exercícios de Física Movimento Harmônico Simples - MHS
Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o
Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,
Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal
4. Duas partículas, A e B, movem-se numa trajectória recta, de modo que suas posições obedecem às equações: s A
. Um automóvel percorre km em min e imediatamente após percorre 5,8 km em 4 min. Sua velocidade média, em km/h, foi de: A 7 B 9, C 68,8 D 8,8. A velocidade escalar de um automóvel é 6 km/h. A distância
Energia potencial (para um campo de forças conservativo).
UNIVERSIDDE DO PORTO Faculdade de Engenharia Departamento de Engenharia Civil Mecânica II Ficha 5 (V3.99) Dinâmica da Partícula Conceitos F = m a p = m v Princípio fundamental. Quantidade de movimento.
Profº Carlos Alberto
Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,
Exercício 1. Exercício 2.
Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,
5ª Série de Problemas Mecânica e Relatividade MEFT
5ª Série de Problemas Mecânica e Relatividade MEFT 1. Um vagão move-se sem atrito em linha recta sobre um plano horizontal. A sua massa é M=500 kg. No instante t=0, a sua velocidade é de 7 m/s. Nesse instante
Séries de Problemas. Mecânica e Ondas LEIC-TP. Pedro Abreu, adaptado de original de Ana Maria Mourão (Coordenadora) e Nuno Pinhão
Mecânica e Ondas LEIC-TP Séries de Problemas Enunciados Pedro Abreu, adaptado de original de Ana Maria Mourão (Coordenadora) e Nuno Pinhão Ano Lectivo: 2016/2017, 1 o semestre Alguns exercícios são seleccionados
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 7-30/09/2017 TURMA: A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM
FÍSICA IV PROF. PIERRE VILAR DANTAS AULA 7-30/09/2017 TURMA: 0053- A HORÁRIO: 7M PIERREDANTASBLOG.WORDPRESS.COM 1 Teoria da Relatividade 2 Objetivos da Aula Conhecer os dois postulados da teoria da relatividade
IDEIAS - CHAVE. A massa de um corpo é uma medida da sua inércia.
IDEIAS - CHAVE Os corpos interatuam por ação de forças. As interações são devidas ao contacto entre os corpos ou podem ocorrer à distância. Por exemplo, a força gravitacional é uma força de ação à distância.
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção
Escola Secundária de Casquilhos FQA11 - APSA1 - Unidade 1- Correção / GRUPO I (Exame 2013-2ª Fase) 1. (B) 2. 3. 3.1. Para que a intensidade média da radiação solar seja 1,3 x 10 3 Wm -2 é necessário que
Conteúdo: Cinemática Resumo para a Prova. Turma: 9º ano
Conteúdo: Cinemática Resumo para a Prova. Turma: 9º ano A cinemática é a parte da Mecânica que descreve o movimento, determinando a posição, a velocidade e a aceleração de um corpo em cada instante. Os
Lista 12: Oscilações NOME:
Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão
MOVIMENTO UNIFORME E VELOCIDADE MÉDIA APOSTILA 3 CAPÍTULO 12 E 13 DE FÍSICA
MOVIMENTO UNIFORME E VELOCIDADE MÉDIA APOSTILA 3 CAPÍTULO 12 E 13 DE FÍSICA Movimento O que é o movimento? É a variação de posição espacial de um objeto ou ponto material em relação a um referencial no
a) (2 valores) Mostre que o módulo da velocidade de um satélite numa órbita circular em torno da Terra é dado por:
Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Geológica e de Minas Licenciatura em Matemática Aplicada e Computação Mecânica e Ondas 1º Ano -2º Semestre 2º Exame 30/06/2016 8:00h
Escola Básica Vale de Milhaços Teste de avaliação de Físico Química Versão 4
Escola Básica Vale de Milhaços Teste de avaliação de ísico Química Versão 4 Nome Classificação: Enc. de Educação: 9ºano Nº: P Professor: Turma C novembro 2017/2018 1. Nas questões 1.1 e 1.2. seleciona
2ª Ficha de Avaliação de Conhecimentos Turma: 11ºA. Física e Química A - 11ºAno
2ª Ficha de Avaliação de Conhecimentos Turma: 11ºA Física e Química A - 11ºAno Professora Paula Melo Silva Data: 15 de novembro Ano Letivo: 2016/2017 135 min + 15 min 1. Uma bola move-se segundo uma trajetória
Exercícios de Relatividade Restrita
Exercícios de Relatividade Restrita Todos os exercícios foram retirados ou adaptados do livro There once was a classical theory... de David Morin, Harvard, E.U.A., 2003. 1. Um combóio de comprimento 15
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE FÍSICA DE JI-PARANÁ DEFIJI OSCILAÇÕES, ONDAS E FLUIDOS Lista de exercícios - Oscilações Profª.Drª. Queila da Silva Ferreira
Ciências Físico-Químicas 11º ano Ficha de trabalho nº5 Mecânica 5: Forças e movimentos: movimentos retilíneos.
1. Uma criança lança uma bola verticalmente para cima a partir de uma altura de 80 cm, comunicando-lhe uma velocidade inicial de módulo 4,0 ms -1. Considera o referencial com origem no solo e sentido positivo
FEP Física para Engenharia II
FEP196 - Física para Engenharia II Prova REC - Gabarito 1. Considere um cilindro oco de massa, raio externo R e raio interno r. (a) (1,0) Calcule o momento de inércia desse cilindro com relação ao eixo
Aula 10 Relatividade. Física 4 Ref. Halliday Volume4. Profa. Keli F. Seidel
Aula 10 Relatividade Física 4 Ref. Halliday Volume4 Relatividade Relatividade tem a ver com a relação entre valores medidos em referenciais que estão se movendo um em relação ao outro; Teoria da relatividade
CINEMÁTICA MOVIMENTO RETILÍNEO
CINEMÁTICA MOVIMENTO RETILÍNEO 1 Duas partículas A e B estão do lado oposto de uma reta com 500 m de comprimento. A partícula A desloca-se na direção AB e no sentido de B, com uma velocidade constante
6ª Série de Problemas Mecânica e Relatividade MEFT
6ª Série de Problemas Mecânica e Relatividade MEFT 1. Num dia de chuva intensa, mediram-se várias grandezas para caracterizar a pluviosidade. Os resultados foram os seguintes: altitude das nuvens relativamente
