ONDAS ELETROMAGNÉTICAS

Tamanho: px
Começar a partir da página:

Download "ONDAS ELETROMAGNÉTICAS"

Transcrição

1 ONDS LTROMGNÉTICS J.R. Kashn () Físia Gral primnal III Inrodução ao lromagnismo

2 Inrodução m 864 Jams Clrk Mawll publiou o rabalho Toria Dinâmia do Campo lromagnéio (Dnamial Thor of h lromagni Filds) no qual aprsnou as quaçõs qu unifiavam os ampos lério magnéio. J Li d Gauss Li d Farada Li d Gauss p/ Li d mpr/mawll Mosrou, além disso, qu ais quaçõs prdiiam a isênia d ondas naquls ampos, ou sja, as ondas lromagnéias. Mawll ambém idnifiou ssas ondas omo lu. Sndo assim, as quaçõs d Mawll não somn unifiam os fnômnos lérios magnéios, omo ambém os óios. não, parindo das quaçõs d Mawll, vamos aqui obr as orrspondns quaçõs d onda para os ampos analisar, brvmn, algumas d suas propridads.

3 (, ) Suponhamos a siuação ond: (, ) J,, qu orrspond ao aso simplifiado ond imaginamos sar long das fons d ampo, al qu ls dpndm somn d uma oordnada spaial do mpo, numa rgião sm argas nm orrns. Calulando o divrgn dss ampos, mos: Calulando o roaional, mos: quação d Ondas para os Campos quação d Ondas para os Campos

4 pliando ss rsulados nas quaçõs d Mawll, obmos: () Li d Gauss () Li d Gauss para o ampo magnéio (não isênia d monopolo magnéio) (3) Li d Farada J (4) Li d mpr/mawll

5 não podmos onluir imdiaamn qu são onsans, ou sja, a omponn dos ampos lério magnéio não dpndm da posição nm variam om o mpo. sas onsans são normalmn adoadas omo nulas! Das ouras duas rlaçõs obmos: qu difrm, somn, plas subsiuiçõs - rlação nr rlação nr

6

7

8 Usando o msmo ipo d prodimno qu o adoado anriormn om: Obmos o par d quaçõs:

9 não, parindo das quaçõs d Mawll das suposiçõs fias iniialmn, ou sja, (, ) ) (, J,, obmos: Cons. Cons. ŷ ẑ

10 Rsumidamn, mos para as omponns dos ampos, quaçõs do ipo: f ϑ ϑ f quação da Onda qu orrspond a uma onda s propagando na dirção om vloidad NOT: Vloidad d Propagação Na dirção d propagação rmos ampos onsans, via d rgra onsidrados nulos. Cab salinar as rlação nr os pars (,) (,), prpndiulars nr si ambém a dirção d propagação. Usando os valors numérios d obmos ϑ m/s!!!!

11 Ondas lromagnéias Planas Considrando as prssõs obidas na sção anrior, ou sja, ŷ ẑ Cons. Cons. ond: Somn são d inrss. s dmais omponns são onsidradas nulas. vamos supor, no prsn ono, qu: (,) ( ) (,) ( )

12 Sndo -, mos: Lvando ss rsulados na rspiva quação da onda, obmos: Porano (,) (-) é uma solução da quação da onda. Iso ambém é valido para (,) (-) sua quação d onda.

13 Das rlaçõs nr, obidas no iniio da sção anrior, obmos: Como (,) (-) ambém é solução da quação d onda, mos : Porano, apliando ss rsulados nas rlaçõs obidas aima, obmos: ons. k k ond

14 solhndo k, podmos srvr: finalmn: (, ) ( ) (, ) ( ) ( ) (, ) NOT Rigorosamn falando, (,)(-k)k (,)(-k3)k4 (kn ons.) ambém são soluçõs da quação da onda. Conudo, sas onsans foram igualmn onsidradas omo nulas.

15 solhndo a forma mais simpls para a solução, mos: os(k ω ) os(k ω ) ond é a ampliud ou innsidad da onda, f a frqüênia, T /f o príodo, ω πf, ϕ uma onsan d fas (ϕ), k ω/ o numro d onda λ π/k o omprimno d onda. vidnmn a rlação λf é obida failmn. Visualiando iso, mos:

16 quação d Ondas não Homogêna para os Campos quação d Ondas não Homogêna para os Campos Lmbrando da rlação mamáia,, omando o roaional d ambos os lados da quação (Mawll) ( ) f f f mos: ( ) ( ) ( ) J omo (q. s Mawll), obmos: J J quação d onda não homogêna

17 J J D manira análoga, obmos a quação d onda não homogêna orrspondn ao ampo magnéio. não, finalmn, mos: Na ausênia d argas orrns, obmos as quaçõs ridimnsionais, similars ao aso unidimnsional qu analisamos prviamn. Obr soluçõs ipo ondas planas, nsa siuação (m oordnadas arsianas) não é dmasiadamn difíil. Mas, não s obém informaçõs alm do viso anriormn. Sria muio inrssan obr soluçõs ipo ondas sférias. Conudo, ao srvrmos as quaçõs aima m oordnadas sférias o panorama fia muio ompliado! J No aso sáio, ond ambos ampos, orrns disribuição d argas não variam om o mpo, obmos as quaçõs d Poisson para os ampos (sáios):

18 quação d Ondas para os Poniais quação d Ondas para os Poniais J - Rlmbrando as quaçõs d Mawll sndo J são dados saisfam a quação da oninuidad J, mos: ond ϕ são os poniais vor salar, rspivamn. pliando ss rsulados nas ouras duas quaçõs, obmos: J

19 J Usando novamn a rlação, obmos: ( ) f f f J Tais quaçõs sofrm uma signifiaiva simplifiação ao impor a ondição d Lorn

20 J rsulando, finalmn, nas quaçõs d onda não homogênas: Sndo ϕ os poniais qu fornm os ampos, é fáil dmonsrar qu qualqur solha ϕ do ipo ond γ é uma função salar, obmos o msmo rsulado para os ampos. ssim, sndo não, s ϕ saisfam a ondição d Lorn, ϕ ambém o farão dsd qu γ saisfaça a quação da onda. S por mplo ϕ não saisfirm a ondição d Lorn, podrmos ainda solhr novos poniais ( ϕ ) qu o fam solhndo um γ onvnin qu sja solução da quação d onda não homogêna mosrada aima! γ γ γ ' γ '

21 r r r r Supondo qu ϕ ϕ(r,), a rspiva quação d onda (oord. sférias) fia: Mulipliando ambos os mmbros por r, hamando rϕ(r,) F(r,), obmos: F F Cuja solução gral é do ipo F(r,) F(r-) F(r-), fornndo finalmn: r ) F(r r ) F(r O primiro rmo rprsna uma onda sféria divrgn (fon) o sgundo uma onda sféria onvrgn (sumidouro), s propagando om vloidad.

22 Vrifiação primnal d Hr Hinrih Hr 888 Unrsuhungn Ubr Di usbriung Dr lkrishn Kraf (Invsigaions on h Propagaion of lrial nrg) Hr: Iso não m uso. Somn prova qu o msr Mawll sava ro. Tínhamos sas misriosas onda lromagnéias qu não podíamos vr. Mas las são lá! sudan: o qu vm a sguir?" Hr: Nada! u aho."

23 Rfrnias ibliográfias Curso d Físia ásia, Vol. 3 lromagnismo, H.M. Nussnvig, ap.. Físia, Vol., F.J. Kll, W.. Gs M.J. Skov, ap. 34. Fundamnos da Toria lromagnia, J.R. Ri, F.J. Milford R.W. Chris. lromagni Fild and Wavs, P. Lorrain and D.R. Corson

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

Guias de ondas de seção transversal constante

Guias de ondas de seção transversal constante Guias d ondas d sção transvrsal constant Ants d considrarmos uma aplicação spcífica, suponhamos um tubo rto, oco infinito, fito d matrial condutor idal, com sção transvrsal constant. Vamos considrar qu

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo

18-04-2015. Sumário. Campo e potencial elétrico. Conceito de campo Sumário Unidad II Eltricidad Magntismo 1- - Noção d campo létrico. - Campo létrico criado por uma carga pontual stacionária. - Linhas d campo. APSA 21 Campo létrico. Campo létrico uniform. Concito d campo

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se:

1 - RECORDANDO 2 - INTERSEÇÃO ENTRE RETA E CIRCUNFERÊNCIA. Exercício Resolvido 1: Frente III. na última equação, tem-se: Matmática Frnt III CAPÍTULO 23 POSIÇÕES RELATIVAS ENTRE RETA E CIRCUNFERÊNCIA 1 - RECORDANDO Na aula passada, nós vimos as quaçõs da circunfrência, tanto com cntro na origm ( ) como a sua quação gral (

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

CARGA E DESCARGA DE CAPACITORES

CARGA E DESCARGA DE CAPACITORES ARGA E DESARGA DE APAITORES O assuno dscudo ns argo, a carga a dscarga d capacors, aparcu dos anos conscuvos m vsbulars do Insuo Mlar d Engnhara ( 3). Ns sudo, srão mosradas as dduçõs das uaçõs d carga

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético Dparano d Maáia Ciênias Exprinais Curso d Eduação oração Tipo 6 Nívl Aividad Laboraorial TL 0 Assuno: orça d ario sáio inéio Objivo: Esudar as forças d ario sáio inéio drinando os faors d qu dpnd. Inrodução

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: [email protected]

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 A Teoria dos Jogos Maurício Bugarin. Roteiro Toria dos Joos Prof. auríio Buarin o/unb -II otiro Capítulo : Joos dinâmios om informação omplta. Joos Dinâmios om Informação Complta Prfita. Joos Dinâmios om Informação Complta mas imprfita Informação

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Capítulo 6 Decaimento Radioativo

Capítulo 6 Decaimento Radioativo Física das Radiaçõs Dosimria Capíulo 6 Dcaimno Radioaivo Dra. Luciana Tourinho Campos Programa acional d Formação m Radiorapia Inrodução Inrodução Consan d dcaimno Vida-média mia-vida Rlaçõs nr núclo pai

Leia mais

MEF Aplicado à Análise Estrutural Mecânica

MEF Aplicado à Análise Estrutural Mecânica PR - âna Compaonal para arôna EF Aplado à Análs Esrral âna A aplação mas radonal d EF na vrdad, ond s no é a smlação d srras mânas. Dssa forma os prómos íns abordam ss assno, o al é rmamn mporan para o

Leia mais

Inflação Desemprego 1/31

Inflação Desemprego 1/31 Macroconomia, Aponamnos da 7ª Lição Inflação Dsmprgo O rabalho pioniro d Phillips abarcava a siuação na Grã-Branha d 86 a 957. A rlação qu obv nr a variação dos salários o nívl d dsmprgo dpois d s r ornado

Leia mais

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: .

r R a) Aplicando a lei das malhas ao circuito, temos: ( 1 ) b) A tensão útil na bateria é: = 5. ( 2 ) c) A potência fornecida pela fonte é: . Aula xploraóra 07. Qusão 0: Um rssor d Ω é lgado aos rmnas d uma bara com fm d 6V rssênca nrna d Ω. Drmn: (a) a corrn; (b) a nsão úl da bara (so é, V V ); a b (c) a poênca forncda pla fon da fm ; (d) a

Leia mais

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura.

ATIVIDADES PARA SALA. Capítulo 11 FÍSICA 2. Associação de resistores Associação mista. 2? a série Ensino Médio Livro 3? B Veja a figura. soluçõs apítulo 11 ssociação d rsistors ssociação mista TVES SL 01 Vja a figura. 3 ss modo, vrifica-s qu os rsistors stão associados m parallo. Obtém-s a rsistência, qui- 5 valnt à associação dos rsistors,

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

PRODUÇÃO INDUSTRIAL DO AMONÍACO

PRODUÇÃO INDUSTRIAL DO AMONÍACO PRODUÇÃO INDUSTRIAL DO AMONÍACO A ração d sínts do amoníao é uma ração rvrsívl. As quaçõs químias das raçõs das raçõs rvrsívis ontêm duas stas d sntidos opostos a sparar ragnts produtos d ração. Ragnts

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT 013 - Matemática I Prof.: Leopoldina Cachoeira Menezes UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA MAT - Mamáica I Prof.: Lopoldina Cachoira Mnzs Prof.: Mauricio Sobral Brandão ª Lisa d Ercícios Par I: Funçõs Econômicas

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES PÁGINA 26 16 A) COMBINAÇÃO SIMPLES Bca possui 12 pars d sapatos dos quais la vai scolhr 5 pars. Algumas das maniras são rprsntadas plas imagns abaixo: 5 pars

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Modelos de Estrutura Temporal de Taxas de Juro Mestrado em Matemática Financeira 07/08 IBS e FCUL

Modelos de Estrutura Temporal de Taxas de Juro Mestrado em Matemática Financeira 07/08 IBS e FCUL Modlos d Estrutura Tmporal d Taxas d Juro Mstrado m Matmática Financira 07/08 IBS FCUL /Dz/08 Exam a Época - Rsolução Duração: 3h. (a) A ODE dψ (t t 0 ) σ ψ (t t 0 ) kψ (t t 0 )+μ = dt, pod sr rscrita

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Eduação Univrsidad Tnológia Fdral do Paraná Campus Curiiba Grênia d Ensino Psquisa Dparamno Aadêmio d Mamáia EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Franis Bnvids Equaçõs Difrnias

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(

Leia mais