As bases da Dinâmica Molecular - 7

Tamanho: px
Começar a partir da página:

Download "As bases da Dinâmica Molecular - 7"

Transcrição

1 As bases da Dinâmica Molecular - 7 Alexandre Diehl Departamento de Física - UFPel

2 Considere um sistema com N partículas monoatômicas, que interagem através de um potencial do tipo Lennard-Jones (LJ). Tomando o parâmetro de distância ij = 1.0 e de energia ij = 1.0, construa um programa em FORTRAN 90 que faça o que se pede: 1. Insira as N partículas de forma aleatória (use a função ran2) dentro de uma caixa cúbica de lado L. A menor separação centro-centro entre quaisquer duas partículas durante a inserção deve ser 1.5. Caso não seja possível inserir as N partículas, o programa deve ser interrompido. 2. Atribua velocidades aleatórias para as partículas, mantendo a velocidade do CM igual à zero. 3. Faça um loop de MD, a fim de acompanhar a evolução temporal do sistema (use velocity-verlet como integrador) durante um certo tempo. A saída do programa deve fornecer a energia cinética energia potencial por partícula, além da velocidade do CM, todas em função do tempo de simulação. IDMSF2017 2

3 Algumas propriedades IDMSF2017 3

4 Algumas propriedades Energia cinética por por partícula Energia potencial por por partícula IDMSF2017 4

5 Etapas de uma simulação em MD produção termalização IDMSF2017 5

6 Etapas de uma simulação em MD termalização produção Termalização também chamada de etapa de equilibração. usada para o sistema perder a memória da configuração inicial. não calculamos propriedades nesta etapa. O número de passos de MD na etapa depende dos parâmetros da simulação (densidade, temperatura, etc). IDMSF2017 6

7 Etapas de uma simulação em MD termalização produção Produção as propriedades de interesse flutuam em torno de valores médios. O sistema é dito em equilíbrio. calculamos as propriedades nesta etapa. O número de passos é definido de tal forma a minimizar as flutuações em torno dos valores médios. IDMSF2017 7

8 Média aritmética simples dos valores instantâneos Média temporal sobre os M valores da propriedade A, calculada para cada intervalo de tempo de MD. O valor de M neste caso é igual ao número de passos de MD usados na etapa de produção. As sucessivas medidas A i estão separadas por t. Como t em geral é pequeno, as medidas A i estão fortemente correlacionadas, o que impacta negativamente no valor da média (os A i não são independentes). IDMSF2017 8

9 Médias de blocos [Flyvbjerg e Petersen. J. Chem. Phys. 91, 461 (1989)] Dividimos a etapa de produção em um dado número de blocos. Cada bloco é separado dos demais por um dado número de passos de MD. Cada passo de MD dentro de um bloco tem comprimento t. IDMSF2017 9

10 Médias de blocos [Flyvbjerg e Petersen. J. Chem. Phys. 91, 461 (1989)] Dividimos a etapa de produção em um dado número de blocos. Cada bloco é separado dos demais por um dado número de passos de MD. Cada passo de MD dentro de um bloco tem comprimento t. O número de blocos em geral não é grande (10, por exemplo). As propriedades de interesse são calculadas dentro de cada bloco e reunidas nas médias destas propriedades por bloco. Se o número de passos entre dois blocos sucessivos é grande o suficiente, dizemos que as médias por bloco estão descorrelacionadas (são independentes). IDMSF

11 Médias de blocos [Flyvbjerg e Petersen. J. Chem. Phys. 91, 461 (1989)] Ao final da etapa de produção reunimos as médias por bloco para calcular o valor médio da propriedade de interesse na simulação. Como as médias por blocos estão descorrelacionadas (são independentes) esta média final pode ser calculada como uma média aritmética simples. Queremos estimar também o erro (incerteza) na medida desta propriedade. Em geral o número de blocos é pequeno, o que inviabiliza o uso do desvio padrão como uma medida da incerteza do resultado da simulação. Devemos usar a distribuição t de Student para ter uma medida da incerteza (ou da confiança no resultado). IDMSF

12 Distribuição t de Student Student. "The Probable Error of a Mean." Biometrika 6, 1-25 (1908) Usada quando queremos obter a média de uma população a partir de uma amostra menor desta população. A população é constituída de um número muito grande variáveis aleatórias e independentes x i, que seguem uma distribuição normal (gaussiana). Em geral não se sabe o valor médio ou o desvio padrão da população, mas ela deve ser normal. Tomamos uma amostra menor de N membros independentes da população. IDMSF

13 Distribuição t de Student Student. "The Probable Error of a Mean." Biometrika 6, 1-25 (1908) O valor médio e o desvio padrão desta amostra podem ser calculados facilmente. Quando o número de membros da amostra cresce, obtemos o resultado da população estudada. A diferença normalizada entre a média da amostra e o valor médio real da amostra é definida pela variável t. onde IDMSF

14 Distribuição t de Student Student. "The Probable Error of a Mean." Biometrika 6, 1-25 (1908) A variável aleatória t tem uma distribuição t de Student com N-1 graus de liberdade. Número de graus de liberdade Função Gamma IDMSF

15 Distribuição t de Student Student. "The Probable Error of a Mean." Biometrika 6, 1-25 (1908) O teste t de Student é usado como um teste de hipótese, usando conceitos estatísticos para rejeitar ou não uma hipótese nula, desde que o objeto de teste siga uma distribuição t de Student. A hipótese é testada com um dado grau (ou porcentagem) de confiança (confidence). O intervalo de confiança (95%, por exemplo) dos resultados de uma amostra com N elementos é calculado como IDMSF

16 Distribuição t de Student Student. "The Probable Error of a Mean." Biometrika 6, 1-25 (1908) Os valores críticos t crit são calculados para um dado número de graus de liberdade e nível de significância. Mede o nível de confiança Se o nível de confiança é de 95%, por exemplo, = Os valores t crit de são obtidos de tabelas, especialmente preparadas para este fim, para um dado número de graus de liberdade e níveis de confiança. IDMSF

17 IDMSF

18 Valor Valor médio Desvio padrão IDMSF

19 TAREFA 5: Considere um sistema com N partículas monoatômicas, que interagem através de um potencial do tipo Lennard-Jones (LJ). Tomando o parâmetro de distância ij = 1.0 e de energia ij = 1.0, construa um programa em FORTRAN 90 que faça o que se pede: 1. Insira as N partículas de forma aleatória (use a função ran2) dentro de uma caixa cúbica de lado L. As velocidade devem ser aleatórias e de mesmo módulo, com velocidade do CM igual a zero. 2. Calcule o valor médio da energia potencial e cinética por partícula, usando médias de 10 blocos. Data limite de entrega: 04/06/2017 (mandar o arquivo.f90 para o [email protected]) IDMSF

As bases da Dinâmica Molecular - 3

As bases da Dinâmica Molecular - 3 As bases da Dinâmica Molecular - 3 Alexandre Diehl Departamento de Física - UFPel x sistemas macroscópicos Sistemas finitos e sistemas macroscópicos em MD Sistemas finitos O número de partículas é pequeno.

Leia mais

As bases da Dinâmica Molecular - 6

As bases da Dinâmica Molecular - 6 As bases da Dinâmica Molecular - 6 Alexandre Diehl Departamento de Física - UFPel Sistemas finitos x sistemas macroscópicos Sistemas finitos e sistemas macroscópicos em MD Sistemas finitos O número de

Leia mais

As bases da Dinâmica Molecular - 9

As bases da Dinâmica Molecular - 9 As bases da Dinâmica Molecular - 9 Alexandre Diehl Departamento de Física - UFPel Termostato de Berendsen [J. Chem. Phys. 81, 3684 (1984)] Não simula o sistema em contato com um banho térmico (temperatura

Leia mais

As bases da Dinâmica Molecular - 8

As bases da Dinâmica Molecular - 8 As bases da Dinâmica Molecular - 8 Alexandre Diehl Departamento de Física - UFPel Hipóteses fundamentais da teoria cinética Qualquer porção pequena do gás contém um número N enorme de moléculas. Número

Leia mais

As bases da Dinâmica Molecular - 1

As bases da Dinâmica Molecular - 1 As bases da Dinâmica Molecular - 1 Alexandre Diehl Departamento de Física - UFPel Um pouco de história... IDMSF2017 2 Um pouco de história... A pré-história da Dinâmica Molecular A ideia da Dinâmica Molecular

Leia mais

As bases da Dinâmica Molecular - 3

As bases da Dinâmica Molecular - 3 As bases da Dinâmica Molecular - 3 Alexandre Diehl Departamento de Física - UFPel Sistemas finitos x sistemas macroscópicos Sistemas finitos O número de partículas é pequeno. Sistemas finitos em MD O sistema

Leia mais

As bases da Dinâmica Molecular - 2

As bases da Dinâmica Molecular - 2 As bases da Dinâmica Molecular - 2 Alexandre Diehl Departamento de Física - UFPel J. Chem. Phys. 76, 637 (1982) IDMSF2017 2 Derivação, usando as equações de Verlet (1) (2) Da equação (2) temos Que substituída

Leia mais

As bases da Dinâmica Molecular - 2

As bases da Dinâmica Molecular - 2 As bases da Dinâmica Molecular - 2 Alexandre Diehl Departamento de Física - UFPel Um pouco de história... SCEF 2 Um pouco de história... A pré-história da Dinâmica Molecular A ideia da Dinâmica Molecular

Leia mais

Fundamentos da modelagem Molecular - 1

Fundamentos da modelagem Molecular - 1 Fundamentos da modelagem Molecular - 1 Departamento de Física UFPel Introdução Rotas para a pesquisa Conexão entre experimento, simulação e teoria Sistema real Fazer modelos do sistema Fazer experimentos

Leia mais

Fundamentos da modelagem Molecular - 1

Fundamentos da modelagem Molecular - 1 Fundamentos da modelagem Molecular - 1 Departamento de Física UFPel ufpellogo Introdução Rotas para a pesquisa Conexão entre experimento, simulação e teoria Sistema real Fazer modelos do sistema Fazer

Leia mais

Testes de Hipótese PARA COMPUTAÇÃO

Testes de Hipótese PARA COMPUTAÇÃO Testes de Hipótese MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Testes de Hipóteses Um teste de hipótese é uma técnica de análise usada para estimar se uma hipótese sobre a população está correta,

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2010 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

ESTUDO DO COMPORTAMENTO DE UM GÁS POR DINÂMICA MOLECULAR.

ESTUDO DO COMPORTAMENTO DE UM GÁS POR DINÂMICA MOLECULAR. ESTUDO DO COMPORTAMENTO DE UM GÁS POR DINÂMICA MOLECULAR. João Paulo Smykaluk (ICV-UNICENTRO), Eduardo Vicentini (Orientador), e-mail: [email protected]. Universidade Estadual do Centro-Oeste, Setor

Leia mais

Enrico A. Colosimo Depto. Estatística UFMG

Enrico A. Colosimo Depto. Estatística UFMG Bioestatística F Conceitos de Teste de Hipóteses Enrico A. Colosimo Depto. Estatística UFMG http://www.est.ufmg.br/~enricoc/ f(x).4.35.3.25.2.15.1.5 Tabela Normal Padronizada Distribuicao Gaussiana com

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de agosto de 2011 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Aula II Estatística Aplicada à Instrumentação Industrial -Avaliação da Incerteza de Medição

Aula II Estatística Aplicada à Instrumentação Industrial -Avaliação da Incerteza de Medição Aula II Estatística Aplicada à Instrumentação Industrial -Avaliação da Incerteza de Medição Universidade Federal da Bahia Escola Politécnica Disciplina: Instrumentação e Automação Industrial I(ENGF99)

Leia mais

Planejamento e Otimização de Experimentos

Planejamento e Otimização de Experimentos Planejamento e Otimização de Experimentos Um Pouco de Estatística Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Populações, Amostras e Distribuições População Amostra

Leia mais

12. o ano - Física

12. o ano - Física 12. o ano - Física - 2002 Ponto 115-2. a chamada I Versão 1 Versão 2 1. (B) (D) 2. (C) (C) 3. (A) (B) 4. (B) (A) 5 (A) (E) 6. (B) (C) II 1. 1.1 Figura 1: Legenda: N - reacção normal (força aplicada pela

Leia mais

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824

Introdução às Medidas em Física a Aula. Nemitala Added Prédio novo do Linac, sala 204, r. 6824 Introdução às Medidas em Física 4300152 3 a Aula Nemitala Added [email protected] Prédio novo do Linac, sala 204, r. 6824 Experiência I: Medidas de Tempo e o Pêndulo Simples Objetivos: Realizar medidas

Leia mais

Estatística. O que é: Conceitos: Divisão da estatística: 2. Estatística indutiva

Estatística. O que é: Conceitos: Divisão da estatística: 2. Estatística indutiva Estatística O que é: É a ciência que coleta, organiza e interpreta dados colhidos entre um grupo aleatório de pessoas. Divisão da estatística: Estatística geral Visa elaborar métodos gerais aplicáveis

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Algoritmos - 3. Alexandre Diehl. Departamento de Física - UFPel

Algoritmos - 3. Alexandre Diehl. Departamento de Física - UFPel Algoritmos - 3 Alexandre Diehl Departamento de Física - UFPel Estrutura sequencial Estrutura condicional Estrutura de repetição PCF2017 2 Estrutura sequencial As ações ao longo do algoritmo são executadas

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Métodos Computacionais em Física

Métodos Computacionais em Física Métodos Computacionais em Física Tatiana G. Rappoport [email protected] 2014-1 Integração usando o método da rejeição Queremos calcular a integral Definimos um retângulo de altura H que contenha a

Leia mais

7 Resultados de Medições Diretas. Fundamentos de Metrologia

7 Resultados de Medições Diretas. Fundamentos de Metrologia 7 Resultados de Medições Diretas Fundamentos de Metrologia Motivação definição do mensurando procedimento de medição resultado da medição condições ambientais operador sistema de medição Como usar as informações

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de janeiro de 2009 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução 6.2- Equação

Leia mais

Testes de Hipóteses: Média e proporção

Testes de Hipóteses: Média e proporção Testes de Hipóteses: Média e proporção Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 12 de setembro de 2018 Londrina 1 / 27 Viu-se a construção de intervalos de confiança

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER Edição de junho de 2014 CAPÍTULO 5 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 5.1- Introdução 5.2- Equação

Leia mais

Estatística Não Paramétrica

Estatística Não Paramétrica Estatística Não Paramétrica Como construir testes de hipóteses para uma amostra Como construir testes de hipóteses para duas amostras dependentes Como construir testes de hipóteses para duas amostras independentes

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 6 MECÂNICA QUÂNTICA DE DE SCHRÖDINGER Primeira Edição junho de 2005 CAPÍTULO 6 MECÂNICA QUÂNTICA DE SCHRÖDINGER ÍNDICE 6.1- Introdução

Leia mais

Teoria Cinética dos Gases

Teoria Cinética dos Gases CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II Teoria Cinética dos Gases Prof. Bruno Farias Introdução Termodinâmica é o estudo das transformações

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

TESTES DE HIPÓTESES. Lucas Santana da Cunha Universidade Estadual de Londrina

TESTES DE HIPÓTESES. Lucas Santana da Cunha     Universidade Estadual de Londrina TESTES DE HIPÓTESES Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de setembro de 2016 Introdução Viu-se a construção de intervalos

Leia mais

Teste para a Média Populacional com Variância Conhecida

Teste para a Média Populacional com Variância Conhecida Teste para a Média Populacional com Variância Conhecida Quando o desvio padrão σ for conhecido, a estatística do teste é: x µ z obs = σ n onde: x é a média amostral; µ é a média populacional testada (sob

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de

Leia mais

Planejamento e Otimização de Experimentos

Planejamento e Otimização de Experimentos Planejamento e Otimização de Experimentos Um Pouco de Estatística Descritiva Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br [email protected] Populações, Amostras e Distribuições População

Leia mais

Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 12 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 2017

Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 12 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 2017 Prof. Dr. Marcone Augusto Leal de Oliveira UFJF CURSO INTRODUTÓRIO DE 2 HORAS OFERECIDO PARA A PÓS-GRADUAÇÃO DA UFABC EM NOVEMBRO DE 207 SUMÁRIO - BREVE DESCRIÇÃO, FUNDAMENTOS, CONCEITOS, CARACTERÍSTICAS,

Leia mais

Tratamento Estatístico de dados em Física Experimental

Tratamento Estatístico de dados em Física Experimental Tratamento Estatístico de dados em Física Experimental Prof. Zwinglio Guimarães 2 o semestre de 2017 Tópico 6 - Testes estatísticos (Chi-quadrado, z e t ) O método dos mínimos quadrados (revisão) O método

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

1 Teoria da Decisão Estatística

1 Teoria da Decisão Estatística 1 Teoria da Decisão Estatística 1.1 Teste de Hipótese É uma metodologia estatística que permite tomar decisão sobre uma ou mais populações baseando no conhecimento de informações da amostra. Ao tentarmos

Leia mais

Física Experimental II. Exercícios

Física Experimental II. Exercícios Física Experimental II Lista de exercícios e problema preparatório para a Prova P2 Exercícios 1) Foi realizado um experimento para determinar o tipo de movimento de um corpo. Mediu-se a posição deste corpo

Leia mais

AULA 04 Teste de hipótese

AULA 04 Teste de hipótese 1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: I. Dados da Tabela t de Student com ν graus de liberdade. P (t > t α ) = α ν 0,05 0,025 4 2,132 2,776 5 2,015 2,571 6 1,943 2,447

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] TESTES PARA COMPARAÇÃO DE MÉDIAS O teste F permite tirar conclusões muito gerais relacionadas com os

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 221171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida

Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Testes de Hipóteses para Mèdia de Populações Normais- Variância conhecida e desconhecida Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Considerando variância conhecida 1. Introdução

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires [email protected] Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

5ª Experiência: Equilíbrio Estático do Corpo Rígido - Escada

5ª Experiência: Equilíbrio Estático do Corpo Rígido - Escada 5ª Experiência: Equilíbrio Estático do Corpo Rígido - Escada Objetivo Estudar as condições de equilíbrio de corpos rígidos, através da tração em uma mola que une os dois lados de uma escada articulada.

Leia mais

Experimento 3 Rolamento

Experimento 3 Rolamento Experimento 3 Rolamento Determinar os tempos de queda de objetos cilíndricos rolando sem escorregamento em um plano inclinado e relacioná-los com a distribuição de massa dos objetos. Introdução Considere

Leia mais

EXPERIMENTO I MEDIDAS E ERROS

EXPERIMENTO I MEDIDAS E ERROS EXPERIMENTO I MEDIDAS E ERROS Introdução Na leitura de uma medida física deve-se registrar apenas os algarismos significativos, ou seja, todos aqueles que a escala do instrumento permite ler mais um único

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Física estatística. Teoria cinética dos gases MEFT, IST

Física estatística. Teoria cinética dos gases MEFT, IST Física estatística Teoria cinética dos gases MEFT, IST Life is a series of collisions with the future; it is not the sum of what we have been, but what we yearn to be. Jose Ortega y Gasset (1883-1955)

Leia mais

Mais Informações sobre Itens do Relatório

Mais Informações sobre Itens do Relatório Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Vamos começar com um exemplo: Temos abaixo uma amostra do tempo de serviço de 10 funcionários de uma companhia de seguros e o número de clientes que cada um possui. Será que existe

Leia mais

A teoria Cinética dos Gases

A teoria Cinética dos Gases CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II A teoria Cinética dos Gases Prof. Bruno Farias Gases Um gás é formado de átomos (isolados

Leia mais

Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo

Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo Sexta Lista: Geração de Números Pseudo-Aleatórios e Método de Monte Carlo Antônio Carlos Roque da Silva Filho e Cristiano R. F. Granzotti 26 de junho de 2017 Os exercícios desta lista devem ser resolvidos

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Introdução à probabilidade e estatística II

Introdução à probabilidade e estatística II Introdução à probabilidade e estatística II Testes de hipóteses para duas médias populacionais Prof. Alexandre G Patriota Sala: 98A Email: [email protected] Site: www.ime.usp.br/ patriota Testes de hipóteses

Leia mais

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção

Introdução à Probabilidade e à Estatística (BCN ) Prova 2 (A) 16/08/2018 Correção Introdução à Probabilidade e à Estatística (BCN0406-1) Prova 2 (A) 16/08/2018 Correção (1.pt) 1. Dadas as seguintes probabilidades associadas à variável aleatória X: -1 1 2 p() 1/2 1/3 1/6 a) Calcule a

Leia mais

FÍSICA TÉRMICA. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1

FÍSICA TÉRMICA. Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1 FÍSICA TÉRMICA Prof. Neemias Alves de Lima Instituto de Pesquisa em Ciência dos Materiais Universidade Federal do Vale do São Francisco 1 Domínio da Física Térmica Como pode água aprisionada ser ejetada

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS

ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir

Leia mais

08/12/97 Luiz Feijó Jr.

08/12/97 Luiz Feijó Jr. Cálculo da Incerteza da medição guia prático A Medição A palavra medição tem múltiplos significados: pode ser o processo de quantificação pode ser o número resultante Resultado de uma medição Para um leigo:

Leia mais

12/06/14. Estatística Descritiva. Estatística Descritiva. Medidas de tendência central. Medidas de dispersão. Separatrizes. Resumindo numericamente

12/06/14. Estatística Descritiva. Estatística Descritiva. Medidas de tendência central. Medidas de dispersão. Separatrizes. Resumindo numericamente Resumindo numericamente Para resumir numericamente dados quantitativos o objetivo é escolher medidas apropriadas de locação (``qual o tamanho dos números envolvidos?'') e de dispersão (``quanta variação

Leia mais