Trocadores de Calor. Prof. Dr. Félix Monteiro Pereira

Tamanho: px
Começar a partir da página:

Download "Trocadores de Calor. Prof. Dr. Félix Monteiro Pereira"

Transcrição

1 Trocadores de Calor Prof. Dr. Félix Monteiro Pereira

2 Trocadores de Calor Os trocadores de calor são equipamentos que facilitam a transferência de calor entre dois ou mais fluidos em temperaturas diferentes. Foram desenvolvidos muitos tipos de trocadores de calor para emprego em diversos níveis de complicação tecnológica e de porte como: usinas elétricas a vapor; usinas de processamento químico; aquecimento e condicionamento de ar em edifícios; refrigeradores domésticos; radiadores de automóveis,etc.

3 Trocadores de Calor Classificação CLASSIFICAÇÃO DOS TROCADORES DE CALOR: Os trocadores de calor são feitos em tantos tamanhos, tipos, configurações e disposições de escoamento que uma classificação, mesmo arbitrária, é necessária para o seu estudo. Na discussão seguinte serão consideradas as classificações de acordo com: o processo de transferência; a compacticidade; o tipo de construção; a disposição das correntes; o mecanismo da transferência de calor.

4 Trocadores de Calor Classificação pelo Processo de Transferência Os trocadores de calor podem ser classificados como de contato direto e de contato indireto. No tipo de contato direto, a transferência de calor ocorre entre dois fluidos imiscíveis, como um gás e um líquido, que entram em contato direto. As torres de resfriamento (figura), condensadores com nebulização para vapor de água e outros vapores, utilizando pulverizadores de água, são exemplos típicos de trocadores por contato direto. Nos trocadores de calor de contato indireto, como nos trocadores de calor casco e tubos (figura), os fluidos quente e frio estão separados por uma superfície impermeável, e recebem o nome de trocadores de calor de superfície. Não há mistura dos dois fluidos. Contato direto Contato indireto

5 Trocadores de Calor Classificação de acordo com a compacticidade A razão entre a área da superfície de transferência de calor, num dos lados do trocador de calor, e o volume pode ser empregada como medida da compacticidade do trocador de calor: Um trocador de calor com densidade de área superficial, em um dos lados, maior do que cerca de 700 m 2 /m 3 é classificado, arbitrariamente, como trocador calor compacto, independentemente de seu projeto estrutural. Por exemplo, os radiadores de automóvel, com uma densidade de área superficial da ordem de m 2 /m 3, e os trocadores de calor de cerâmica vítrea, de certos motores a turbina de gás, que têm uma densidade de área superficial da ordem de m 2 /m 3, são trocadores de calor compactos. Os pulmões humanos, com uma densidade de área da ordem de m 2 /m 3, são os trocadores de calor e de massa mais compactos. O miolo do regenerador do motor Stirling, de finíssima estrutura, tem uma densidade de área que se aproxima da densidade de área do pulmão humano.

6 Trocadores de Calor Classificação pelo tipo de construção Os trocadores de calor também podem ser classificados de acordo com as características construtivas. Por exemplo, existem trocadores tubulares, de placa, de placa aletada, de tubo aletado e regenerativos..

7 Trocadores de Calor Classificação pelo tipo de construção Trocadores de calor tubulares. Os trocadores de calor tubulares são amplamente usados e fabricados em muitos tamanhos, com muitos arranjos de escoamento e em diversos tipos. Podem operar em um extenso domínio de pressões e de temperaturas. A facilidade de fabricação e o custo relativamente baixo constituem a principal razão para seu emprego disseminado nas aplicações de engenharia.

8 Trocadores de Calor Classificação pelo tipo de construção Trocadores de calor de placa. Como o nome indica, os trocadores de calor são geralmente construídos de placas delgadas. As placas podem ser lisas ou onduladas. Já que a geometria da placa não pode suportar pressões ou diferenças de temperaturas tão altas quanto um tubo cilíndrico, são ordinariamente projetados para temperaturas ou pressões moderadas. A compacticidade nos trocadores de placa se situa entre 120 e 230 m 2 /m 3.

9 Trocadores de Calor Classificação pelo tipo de construção Trocadores de calor de placa aletada. O fator de compacticidade pode ser aumentado significativamente(até cerca de m 2 /m 3 ) com os trocadores de calor de placa aletada.

10 Trocadores de Calor Classificação pelo tipo de construção Trocadores de calor de tubo aletado. Quando se precisa de um trocador que opere em alta pressão, ou de uma superfície extensa de um lado, utilizam-se os trocadores de tubo aletado. A Fig. 8.6 ilustra duas configurações típicas, uma com tubos cilíndricos e outra com tubos chatos. Os trocadores de tubo aletado podem ser utilizados em um largo domínio de pressão do fluido nos tubos, não ultrapassando cerca de 30 atm, e operam em temperaturas que vão desde as baixas, nas aplicações criogênicas, até cerca de 870 C. A densidade máxima de compacticidade é cerca de 330 m 2 /m 3, menor que a dos trocadores de placa aletada. Os trocadores de calor de tubo aletado são empregados em turbinas de gás, em reatores nucleares, em automóveis e aeroplanos, em bombas de calor, em refrigeração, eletrônica, criogenia, em condicionadores de ar e muitas outras aplicações.

11 Trocadores de Calor Classificação pelo tipo de construção Trocadores de calor regenerativos. Os trocadores de calor regenerativos podem ser ou estáticos ou dinâmicos. O tipo estático não tem partes móveis e consiste em uma massa porosa (por exemplo, bolas, seixos, pós etc.) através da qual passam alternadamente fluidos quentes e frios. Uma válvula alternadora regula o escoamento periódico dos dois fluidos. Durante o escoamento do fluido quente, o calor é transferido do fluido quente para o miolo do trocador regenerativo. Depois, o escoamento do fluido quente é interrompido, e principia o escoamento do fluido frio. Durante a passagem do fluido frio, transfere-se calor do miolo para o fluido frio. Os regeneradores de tipo estático podem ser pouco compactos, para o uso em alta temperatura (900 a C), como nos pré aquecedores de ar, na fabricação de coque e nos tanques de fusão de vidro. Podem, porém, ser regeneradores compactos para uso em refrigeração, no motor Stirling, por exemplo.

12 Trocadores de Calor Classificação Segundo a Disposição das Correntes Correntes paralelas. Os fluidos quente e frio entram na mesma extremidade do trocador de calor, fluem na mesma direção, e deixam juntos a outra extremidade.

13 Trocadores de Calor Classificação Segundo a Disposição das Correntes Contracorrente. Os fluidos quente e frio entram em extremidades opostas do trocador de calor e fluem em direções opostas.

14 Trocadores de Calor Classificação Segundo a Disposição das Correntes Correntes cruzadas. No trocador com correntes cruzadas, em geral os dois fluidos fluem perpendicularmente um ao outro, como está na figura. Na disposição com correntes cruzadas, o escoamento pode ser misturado ou não misturado, dependendo do projeto.

15 Trocadores de Calor Classificação Segundo a Disposição das Correntes Escoamento multipasse. A configuração de escoamento com passes múltiplos é empregada frequentemente no projeto de trocadores de calor, pois a multipassagem intensifica a eficiência global, acima das eficiências individuais. É possível grande variedade de configurações das correntes com passes múltiplos. A Fig 8.10 ilustra disposições típicas. O trocador de calor da (a) tem "um passe no casco e dois passes nos tubos", e recebe o nome de trocador de calor "um-dois". A Fig. (b) mostra a configuração "dois passes no casco, quatro passes nos tubos", e a Fig. (c), a configuração "três passes no casco, seis passes no tubo".

16 Trocadores de Calor Classificação pelo Mecanismo de Transferência de Calor As possibilidades para o mecanismo de transferência de calor incluem uma combinação de quaisquer dois entre os seguintes: 1. Convecção forçada ou convecção livre monofásica; 2. Mudança de fase (ebulição ou condensação); 3. Radiação ou convecção e radiação combinadas Em todos os casos discutidos anteriormente, consideramos a convecção forçada monofásica em ambos os lados do trocador de calor. Condensadores, caldeiras e radiadores de usinas de força espaciais incluem mecanismos de condensação, de ebulição e de radiação, respectivamente, sobre uma das superfícies do trocador de calor.

17 Trocadores de Calor Trocadores de Calor com Mudança de Fase Condensadores. Os condensadores são utilizados em várias aplicações, como usinas de força a vapor de água, plantas de processamento químico e usinas nucleares elétricas de veículos espaciais. Os principais tipos incluem os condensadores de superfície, os condensadores a jato e os condensadores evaporativos. O tipo mais comum é o condensador de superfície, que tem a vantagem de o condensado ser devolvido à caldeira através do sistema de alimentação de água.

18 Trocadores de Calor Trocadores de Calor com Mudança de Fase Condensadores.

19 Trocadores de Calor Trocadores de Calor com Mudança de Fase Condensadores: A Fig mostra um corte através de um condensador de superfície, de dois passes, de uma grande turbina a vapor em uma usina de força. Uma vez que a pressão do vapor, na saída da turbina, é de somente 1,0 a 2,0 polegadas de mercúrio absolutas, a densidade do vapor é muito baixa e a vazão do fluido é extremamente grande. Para minimizar a perda de carga, na transferência do vapor da turbina para o condensador, o condensador é montado ordinariamente abaixo da turbina e ligado a ela. A água de resfriamento flui horizontalmente no interior dos tubos, enquanto o vapor flui verticalmente para baixo, entrando por uma grande abertura na parte superior, e passa transversalmente sobre os tubos. Observe que há dispositivo de aspiração do ar frio das regiões que ficam exatamente acima do centro do poço quente. Este dispositivo é importante, pois a presença de gás não condensável no vapor reduz o coeficiente de transferência de calor na condensação.

20 Trocadores de Calor Trocadores de Calor com Mudança de Fase Caldeiras. As caldeiras a vapor de água constituem uma das primitivas aplicações dos trocadores de calor. O termo gerador de vapor é muitas vezes aplicado às caldeiras nas quais a fonte de calor é uma corrente de fluido quente em vez de produtos da combustão. Uma enorme variedade de caldeiras já foi construída. Existem caldeiras em pequenas unidades, para aquecimento doméstico, até unidades gigantescas, complexas e caras, para as modernas usinas de força.

21 Trocadores de Calor Distribuição de Temperaturas: Exemplos para Passe Único Trocador de calor em contracorrente no qual a elevação da temperatura do fluido frio é igual à queda da temperatura do fluido quente. A diferença de temperatura ΔT, entre o fluido quente e o fluido frio, é constante, em todos os pontos.

22 Trocadores de Calor Distribuição de Temperaturas: Exemplos para Passe Único Fluido quente se condensa e transfere calor para o fluido frio, fazendo com que sua temperatura se eleve ao longo do percurso.

23 Trocadores de Calor Distribuição de Temperaturas: Exemplos para Passe Único Líquido frio evapora e resfria o fluido quente ao longo do seu percurso.

24 Trocadores de Calor Distribuição de Temperaturas: Exemplos para Passe Único Configuração de escoamento paralelo, na qual ambos os fluidos se deslocam na mesma direção, com o fluido frio experimentando uma elevação de temperatura e o fluido quente, uma queda de temperatura.

25 Trocadores de Calor Distribuição de Temperaturas: Exemplos para Passe Único Configuração em contracorrente na qual os fluidos se deslocam em sentidos opostos.

26 Trocadores de Calor Distribuição de Temperaturas: Exemplo para 1 Passe no Casco e 2 Passes no Tubo 1 passe no casco e 2 passes no tubo.

27 Trocadores de Calor Distribuição de Temperaturas: Exemplo para Correntes Cruzadas Correntes cruzadas com fluidos não misturados.

28 Diferença de Temperatura Média Logarítmica -DTML MÉTODO DTML PARA ANÁLISE DOS TROCADORES DE CALOR Na análise térmica dos trocadores de calor, a taxa total de transferência de calor Q através do trocador é uma quantidade de interesse primordial. Concentraremos nossa atenção nos trocadores de calor de passe único, que têm configuração de escoamento do tipo ilustrado na Fig É evidente, segundo esta figura, que a diferença de temperatura D T, entre os fluidos quente e frio, não é em geral constante; varia com a distância ao longo do trocador de calor. Na análise da transferência de calor nos trocadores de calor, é conveniente estabelecer uma diferença ΔT m, entre o fluido quente e o frio, de modo que a taxa total de transferência de calor Q entre os fluidos possa ser determinada pela seguinte expressão simples: Q =AU Δ T m

29 Diferença de Temperatura Média Logarítmica -DTML

30 Diferença de Temperatura Média Logarítmica -DTML

31 Coeficiente Global de Transferência de calor em trocadores de calor Nas aplicações de trocadores de calor, o coeficiente global de transferência de calor é, ordinariamente, baseado na superfície externa do tubo de diâmetro externo D o e interno D o, levando em conta os coeficientes de convecção (h i e h o ) a condutividade térmica do material do tubo (k) e os fatores de incrustação (F i e F o ): U 0 = 1/{(D o /D i )(1/h i )+D o F i /D i +[D o /(2k)]ln(D o /D i )+F o +1/h o } Intervalos típicos de U o : Trocadores de calor de água para óleo: 60 a 350 W/(m² C); Trocadores de gás para gás: 60 a 600 W/(m² C); Condensadores de amônia: 800 a 1400 W/(m² C); Condensadores de vapor de água: 1500a 5000W/(m² C).

32 Fator de incrustação

33 Coeficiente de convecção - correlações As tabelas resumindo as correlações para convecção forçada no escoamento no interior de dutos, para a convecção forçada no escoamento sobre corpos. Uma relação comumente utilizada para a determinação do coeficiente de convecção (ou de película) no interior dos tubos em trocadores de calor é a equação de Dittus-Boelter (válida para 0,7<Pr<160; Re>10000; L/D>60 e tubos lisos: Nu=hD/k=0,023Re 0,8 Pr n n = 0,4 no aquecimento; n = 0,3 no resfriamento Re=4m. /( D ) Outras correlações podem ser vistas nas Tabelas 7.5 e 8.6 do livro de transferência de calor do Ozisik.

34 Correção da Diferença de Temperatura Média Logarítmica - Correntes Cruzadas e Multipasse A diferença de temperatura média logarítmica (DTML ou LMTD), não se aplica à análise da transferência de calor em trocadores de correntes cruzadas e multipasse. As diferenças efetivas de temperatura foram determinadas nos escoamentos de correntes cruzadas e também multipasse, mas as expressões resultantes são muito complicadas. Por isso, nessas situações, é costume introduzir um fator de correção F de modo que a DTML simples possa ser ajustada para representar a diferença efetiva de temperatura ΔT corr para a disposição de correntes cruzada e multipasse na forma: T ( ) corr = F Tln contracorrente

35 Correção da Diferença de Temperatura Média Logarítmica - Correntes Cruzadas e Multipasse Fator de correção (um passe no casco e dois nos tubos): T = F T corr ln

36 Correção da Diferença de Temperatura Média Logarítmica - Correntes Cruzadas e Multipasse Fator de correção (dois passes no casco e quatro passes nos tubos, ou múltiplos de 4 passes nos tubos):

37 Correção da Diferença de Temperatura Média Logarítmica - Correntes Cruzadas e Multipasse Fator de correção (correntes cruzadas, um só passe e fluidos não misturados):

38 Método ε-nut para a Análise dos Trocadores de Calor Se as temperaturas de entrada e de saída do fluido quente e do fluido frio, assim como o coeficiente da transferência de calor global, forem especificadas, o método da DTML, com ou sem a correção, pode ser empregado para resolver o problema do cálculo térmico ou do dimensionamento. Em algumas situações são dadas apenas as temperaturas de entrada e as vazões dos fluidos quente e frio, e o coeficiente de transferência de calor global pode ser estimado. Em tais casos, a temperatura média logarítmica não pode ser determinada, pois as temperaturas de saída não são conhecidas. Por isso, o método da DTML na análise térmica dos trocadores de calor envolverá iterações tediosas para se determinar o valor próprio da DTML que satisfaça a exigência de o calor transferido no trocador de calor ser igual ao calor arrastado pelo fluido.

39 Método ε-nut para a Análise dos Trocadores de Calor A análise pode ser significativamente simplificada se usarmos o método ε NUT ou o método da efetividade, desenvolvido originalmente por Kays e Londor. Neste método, a efetividade e é definida como: Q = Q A taxa máxima possível de transferência de calor Q max é obtida num trocador em contracorrente se a variação de temperatura do fluido que tiver o valor mínimo de mc p for igual à diferença entre as temperaturas de entrada dos fluidos quente e frio. max ( ) ( ) p h af c af Q = mc T T max min,.,.

40 Método ε-nut para a Análise dos Trocadores de Calor Relação ε-nut. Neste método, a efetividade e é definida como: Por conveniência, nas aplicações práticas, define-se um parâmetro adimensional, o númerode unidades de transferência (de calor) (NUT ou N) como sendo a relação entre a capacidade calorífica do trocador e a capacidade calorifica das correntes: N = AU m C Onde A é a área de transferência de calor, U m é o coeficiente médio de transferência de calor e C min é o valor mínimo de mc p, sendo C=mc p. min

41 Método ε-nut para a Análise dos Gráficos ε-nut Trocadores de Calor

42 Método ε-nut para a Análise dos Gráficos ε-nut Trocadores de Calor

43 Método ε-nut para a Análise dos Gráficos ε-nut Trocadores de Calor

44 Método ε-nut para a Análise dos Gráficos ε-nut Trocadores de Calor

45 Método ε-nut para a Análise dos Relações ε-nut Trocadores de Calor

46 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS PROJETO TÉRMICO CONDIÇÕES DE PROCESSO Condensadores: trocadores nos quais o vapor de processo é, total ou parcialmente, liquefeito. Normalmente o fluido frio utilizado é água de resfriamento. Resfriadores/Aquecedores: trocadores de calor em que um fluido de processo é resfriado/aquecido sem mudança de fase. Evaporadores: utilizados com a finalidade de concentrar soluções aquosas pela evaporação de parte da água da solução. Vaporizadores: finalidade principal de converter líquidos em vapores. Os refervedores se constituem na principal fonte de suprimento de calor de vaporização para a maioria das torres de destilação, e as caldeiras de recuperação. Refervedores: podem atuar como vaporizadores totais (caldeiras) ou parciais termosifão.

47 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS TEMPERATURAS DE OPERAÇÃO Determinadas pelas condições de processo. Para a água salgada e água doce costuma-se adotar como temperaturas máximas recomendáveis, 50 a 55 C (120 a 130 F), respectivamente. a escolha dos materiais a serem utilizados na construção do trocadores de calor dependerá das temperaturas de operação e das características dos fluidos.

48 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS PROPRIEDADES FÍSICAS DOS FLUIDOS Propriedades físicas mais importantes: viscosidade e condutividade térmica; Outras propriedades necessárias: calor específico e densidade; Normalmente, são considerados os valores das propriedades físicas nas temperaturas médias dos fluidos.

49 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS PERDAS DE CARGA As perdas de carga normalmente recomendadas variam conforme o tipo de fluido: Para gases e vapores costuma-se adotar valores entre 0,15 a 0,7 bar para pressões de operação intermediárias e altas. Para gases e vapores operando em vácuo, ou pressões próximas da atmosfera costuma-se adotar valores entre 0,02 a 0,15 bar. Para líquidos os valores admissíveis são mais elevados, variando entre 0,7 a 1,7 bar.

50 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS VELOCIDADES DE CIRCULAÇÃO DOS FLUIDOS Velocidades mínimas: definidas para evitar problemas de deposição de sólidos que possam ocorrer nos fluidos de trabalho. Velocidades máximas: definidas visando minimizar os problemas de erosão e corrosão. Líquidos: velocidades máximas de 3 a 4,5 m/s, e mínima de 0,9 m/s, sendo normal a utilização de 1,5 a 1,8 m/s. Gases ou vapores: velocidades recomendadas maiores, sendo normais a utilização de velocidades de 25 a 30 m/s.

51 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS LOCAÇÃO DOS FLUIDOS NO TROCADOR Levando em conta fatores econômicos e a facilidade de manutenção e limpeza, o fluido com a característica em posição mais alta na lista seguinte é geralmente, locado dentro dos tubos: água de resfriamento. fluidos corrosivos, ou fluidos que possam provocar depósitos e incrustações. o fluido menos viscoso. o fluido operando à temperatura e pressão mais elevadas. o fluido com menor vazão. vapores de água condensando; no entanto, para outros vapores, dá-se preferência à sua circulação pelo casco. se a diferença entre as temperaturas de entrada e saída de um fluido for muito elevada (maior que 150 C), este fluido usualmente circulará pelo casco, se houver mais que um passe no lado dos tubos. Este procedimento minimizará os problemas de construção, causados por expansão térmica.

52 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS LOCAÇÃO DOS FLUIDOS NO TROCADOR Levando em conta fatores econômicos e a facilidade de manutenção e limpeza, o fluido com a característica em posição mais alta na lista seguinte é geralmente, locado dentro dos tubos: água de resfriamento. fluidos corrosivos, ou fluidos que possam provocar depósitos e incrustações. o fluido menos viscoso. o fluido operando à temperatura e pressão mais elevadas. o fluido com menor vazão. vapores de água condensando; no entanto, para outros vapores, dá-se preferência à sua circulação pelo casco. se a diferença entre as temperaturas de entrada e saída de um fluido for muito elevada (maior que 150 C), este fluido usualmente circulará pelo casco, se houver mais que um passe no lado dos tubos. Este procedimento minimizará os problemas de construção, causados por expansão térmica.

53 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS COEFICIENTES TRANSFERÊNCIA DO LADO DO TUBO calculados de acordo com correlações usuais apresentadas na literatura de operações unitárias e de transferência de calor; deve ser estimado e avaliado em primeiro lugar se a resistência do lado do tubo é dominante; o cálculo inicial dos coeficientes do lado do tubo pode eliminar os procedimentos complexos para a estimativa do lado do casco.

54 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS COEFICIENTES DO LADO DO CASCO Não podem ser obtidas com exatidão, correlações apresentadas na literatura; mesmo a partir das deve ser determinado inteiramente a partir de dados experimentais (trajetória do fluido continuamente mutável devido a presença de chicanas e a variações nas áreas de escoamento); No caso da necessidade de se estimar o coeficiente do lado do casco, várias correlações são apresentadas na literatura, essas correlações são baseadas, em sua maioria, na literatura: Tinker, T. Proceedings of general discussion on heat transfer, IME-ASME (1951), pp Uma metodologia para a estimativa dos coeficientes no lado do casco está apresentada em:

55 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS DISPOSIÇÃO DOS TUBOS Não podem ser obtidas com exatidão, mesmo a partir das correlações apresentadas na literatura; Quadrangular: facilita a limpeza externa dos tubos, menor turbulência o que reduz a perda de carga, porém também reduz o coeficiente de transferência de calor; Triangular: aumenta turbulência -> maior coeficiente de transferência de calor, porém maior perda de carga e maior dificuldade de limpeza da superfície dos tubos.

56 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS ESTIMATIVA COEFICIENTES E FATOR DE ATRITO DO LADO DO CASCO Como dito anteriormente, várias correlações são apresentadas na literatura. O livro Princípios de operações unitárias (Foust et al., 2015) apresenta um exemplo de gráfico para a estimativa dos coeficientes e do fator de atrito, que pode vir a ser útil no projeto de trocadores de calor casco e tubos.

57

58 PROJETO TERMO-HIDRÁULICO DE TROCADORES DE CALOR TIPO CASCO E TUBOS Simulação computacional Diversos simuladores para vários tipos e configurações de trocadores de calor estão disponíveis. Existem simuladores específicos e mais genéricos. Alguns softwares de simulação de processos, como o Aspen Plus e o Aspen Hysys apresentam blocos de simulação de trocadores de calor casco e tubos...

59 Trocadores de calor de placas

60 Trocadores de calor de placas Um trocador de calor de placa gaxeta consiste de uma pilha de chapas finas espaçadas presas juntas a um quadro. Aplicações Operações rápidas; Operações com água do mar; Indústria de alimentos; Indústria de polímeros.

61 Trocadores de calor de placas Vantagens Fácil de montar e desmontar; Fácil limpeza química e mecânica; Ocupa menos da metade do espaço ocupado por um TC casco-tubos; Permite mudança de operação variando apenas o número de placas.

62 Trocadores de calor de placas Desvantagens Alta perda de carga; Pressão > 300 psi; Não opera com suspensões de partículas grandes; Má distribuição dos fluidos se operado com baixas vazões; Temperatura limitada a 250 C.

63 Especificações de trocadores de calor de placas As placas têm normalmente entre 0,5 e 3 mm de espessura e o espaço entre elas é de 1,5 a 5 mm. As áreas da superfície da placa variam de 0,03 a 1,5 m², com uma relação largura da placa: comprimento de 2,0 a 3,0 A vazão máxima do fluido é limitada a cerca de 2500 m³/ h. A disposição básica e o arranjo de fluxo para um trocador de calor de placa com junta são mostrados na próxima página.

64 Operação de um trocador de calor de placas

65 Sistema de passes

66 Sistema de passes

67 Fluido quente Sistema de passes

68 Fluido quente Sistema de passes

69 Fluido quente Sistema de passes

70 Fluido quente Sistema de passes

71 Fluido quente Sistema de passes

72 Sistema de passes Fluido frio Fluido quente

73 Sistema de passes Fluido frio Fluido quente

74 Sistema de passes Fluido frio Fluido quente

75 Sistema de passes Fluido frio Fluido quente

76 Sistema de passes Fluido frio Fluido quente Número de passes quente / frio : 1 / 1

77 Sistema de passes Fluido frio Fluido quente Número de passes quente / frio : 2 / 2

78 Sistema de passes Fluido frio Fluido quente Número de passes quente / frio : 2 / 2

79 Sistema de passes Fluido frio t 2 Fluido t 1 quente T 1 T 2 Número de passes quente / frio : 2 / 2

80 Sistema de passes t 2 Fluido quente T 1 T 2 Fluido frio t1 Número de passes quente / frio : 2 / 2

81 Sistema de passes t 2 Fluido quente T 1 T 2 Fluido frio t1 Número de passes quente / frio : 2 / 2

82 Sistema de passes t 2 Fluido quente T 1 T 2 Fluido frio t1 Número de passes quente / frio : 2 / 2

83 Sistema de passes t 2 Fluido quente T 1 T 2 Fluido frio t1 Número de passes quente / frio : 2 / 2

84 Projeto de trocadores de calor de placas Não é possível fornecer métodos de projeto exatos para trocadores de calor de placas. Normalmente, os métodos mais precisos pertencem aos fabricantes proprietários, sendo normalmente necessária a consulta prévia desses fabricantes. Informações sobre o desempenho dos vários padrões de placa utilizados geralmente não estão disponíveis. O método aproximado para dimensionar um trocador de placas leva em conta a comparação com trocadores de calor casco e tubos.

85 Projeto de trocadores de calor de placas O procedimento de projeto é semelhante ao dos trocadores de casco e tubo. 1. Calcular a taxa de transferência de calor necessária. 2. Se a especificação estiver incompleta, determinar a temperatura desconhecida do fluido ou a taxa de fluxo do fluido a partir de um balanço de energia. 3. Calcular T ln. 4. Determine o fator de correção F; 5. Calcular a diferença de temperatura média corrigida; 6. Estimar o coeficiente global de transferência de calor (ver tabela a seguir; 7. Calcular a área total requerida; 8. Calcular o número de placas = A total /A placa; 9. Decidir o arranjo e o sistema de passes (considerando perda de carga e taxa de transferência de calor).

86 Projeto de trocadores de calor de placas Coeficientes globais de transferência de calor em trocadores de placas.

87 Projeto de trocadores de calor de placas Estimativa do fator de correção (NTU= T m / T ln ) T m maior diferença de temperatura em uma das correntes de fluido, diferença entre entrada e saída da corrente.

88

89 Projeto de trocadores de calor de placas 10. Calcular os coeficientes de convecção (ou coeficientes de película). A equação para transferência de calor convectiva forçada em conduítes pode ser usado para trocadores de calor de placas: Nu = hd c k = CRea Pr b μ O valor das constante C, a, b e c dependem do tipo de placa usado. Valores típicos são apresentados na equação: Nu = hd k = 0,26Re0,65 Pr 0,4 No caso dos trocadores de calor de placas: o diâmetro hidráulico (D) é considerado como o dobro o espaçamento entre as placas; Re = GD μ = ρud ; G=m/A μ s ; m = fluxo mássico por canal (kg/s); A s =área da seção (m²); u = m é a velocidade no canal (m/s); Pr = número de Prandtl, N ρan c é o c número de canais (N c =(N placas -1)/2 -> para 1 passe, corrigir se necessário para obter número inteiro). μ w μ μ w 0,14

90 Projeto de trocadores de calor de placas Obs. As ondulações nas placas aumentam a área da placa projetada e reduzem o intervalo efetivo entre as placas. Para o dimensionamento aproximado, em que o projeto real da placa não é conhecido, esse aumento pode ser negligenciado. A largura do canal é igual ao passo da placa menos a espessura da placa. Não há transferência de calor através das placas terminais, portanto, o número de placas efetivas será o número total de placas menos duas.

91 Projeto de trocadores de calor de placas 11. Calcule o coeficiente global, permitindo fatores de incrustação. 1 U = 1 + F h 1 + e 1 k + F h 2 Fatores de incrustação em trocadores de placas: Fluido 1/F (W/m2 C) F (m2 C/W) Água de processo ,00003 Água de reúso leve ,00007 Água de reúso pesada Água de refrigeração Água do mar Óleo Lubrificante Orgânicos leves Fluidos de processo

92 Projeto de trocadores de calor de placas 12. Compare a taxa de transferência de calor com a desejada para o processo. Se satisfatório. Se insatisfatório, retorne ao passo 8 e aumente ou diminua o número de placas. 13. Verifique a queda de pressão para cada fluxo (perda de carga).

93 Perdas de pressão A perda de carga (pressão) distribuída pode ser estimada a partir da equação: P d = 8fLρu2 2D Onde f é o fator de atrito, L é o comprimento do percurso do fluido (comprimento da placa*numero de passes). O fator de atrito depende das condições de projeto. Como uma primeira aproximação pode-se utilizar a seguinte correlação para fluxo turbulento: f = 0,6Re 0,3

94 Perdas de pressão A perda de carga (pressão) localizada nas entradas dos passes pode ser estimada a partir da equação: P l = 1,3ρu e 2 N p 2 Onde u e = m/(ρa e ) é a velocidade nas entradas de cada passe é o fator de atrito, A e = πd e /4 é área de entrada de cada passe d e é o diâmetro do canal de entrada década passe e N p é o número de passes. A transição do fluxo laminar para turbulento ocorrerá normalmente em um número de Reynolds de 100 a 400, dependendo do projeto da placa. Com alguns projetos, a turbulência pode ser alcançada com números muito baixos de Reynolds, o que torna os trocadores de calor de placas muito adequados para uso com fluidos viscosos. A queda de pressão devido às perdas de contração e expansão através dos orifícios nas placas deve ser adicionada à perda de atrito para se obter a perda de pressão total no trocador de calor.

95 Exemplo Investigue o uso de um trocador de calor de placa com junta. Refrigeração de metanol usando água salobra como refrigerante. Placas de titânio devem ser especificadas, para resistir à corrosão pela água salgada. Resfriar kg / h de metanol de 95 C a 40 C, carga térmica 4340 kw. Temperatura de admissão da água de refrigeração 25 C e temperatura de saída 40 C. Vazões: metanol 27,8 kg / s, água 68,9 kg / s. diferença de temperatura média logarítmica 31 C. área de placa efetiva de 0,75 m 2, comprimento efetivo de 1,5 m e largura de 0,5 m; estas são dimensões típicas da placa; espaçamento entre placas de 3 mm, diâmetro de abertura das entradas das placas de 100 mm. Propriedades: Metanol Água Densidade, kg/m³ Viscosidade, Pa*s Prandtl

96 Solução NTU, com base na diferença máxima de temperatura: NTU= T m / T ln= (95-40) /31=1.8 Tentando um arranjo de 1: 1. Da Figura 2, F = 0,96 Na Tabela 3, tomar o coeficiente global, água orgânica leve, como sendo 2000 Wm -2 0 C -1. Então, área requerida A t =Q/(UF T ln )=(4340 * 10 3 ) / (2000 * 0,96 * 31) = 72,92 m² Selecione uma área de placa efetiva de 0,75 m 2, comprimento efetivo de 1,5 m e largura de 0,5 m; estas são dimensões típicas da placa. O tamanho real da placa será maior para acomodar a área e as entradas. Número de placas = área total de transferência de calor / área efetiva de uma placa N placas =A t /A p =72,92 / 0,75 = 97 placas

97 Solução Não há necessidade de ajustar isso, 97 fornecerá um número par de canais por passagem, permitindo uma placa final. Número de canais por passagem N c =(N placas -1)/2= (97-1) / 2 = 48 Tome o espaçamento entre placas como 3 mm, um valor típico, então: área transversal do canal=largura*espaçamento = 3 * 10-3 * 0,5 = 0,0015 m 2 e diâmetro médio hidráulico D = 2*espaçamento= 2 * 3 *10-3 = 6 * 10-3 m

98 Solução Coeficientes de convecção: Metanol Velocidade do canal = u = Re = ρud μ m ρan c = = , = , = 0,51m/s Nu = hd = k 0,26Re0,65 Pr 0,4 μ 0,14 = 0, ,65 5,1 0,4 = 153,8 μ w h = 153,8 *0,19 / 6 * 10-3 = 4870 Wm -2 o C -1 Água salobra Velocidade do canal = u = Re = ρud μ m ρan c = = , = , = 0,96m / s Nu = hd = k 0,26Re0,65 Pr 0,4 μ 0,14 = 0, ,65 5,7 0,4 = 162,8 μ w h = 162,8 * 0,59 /6 * 10-3 = Wm -2 o C -1

99 Solução Coeficiente global: A partir da Tabela 1, tome os fatores de incrustação (coeficientes) como: água salobra (água do mar) 6000 Wm 2 o C -1 e metanol (orgânico leve) Wm 2 o C -1. Considerações: a espessura da placa como 0,75 mm; condutividade térmica do titânio 21 Wm -1 o C U = 1 + F h 1 + e 1 k + F h 2 1 = , , , U = 1744 Wm -2 o C -1 Q=1744*72,92*31=3893 kw muito menor que 4340 deve-se aumentar a área. A t > /(1744*31)>80m² supondo 90,75 m² N placas =A t /A p =90,75/ 0,75 = 121 placas, N c =(121-1)/2=60 canais

100 Solução Então, velocidade do canal de metanol = 0,51 * (48/60) = 0,41 m / s e Re = 6750*0.41/0,51=5426. Nu = hd k = 0, ,65 5,1 0,4 =133,5 h = 133,5 *0,19 / 6 * 10-3 = 4227,5 Wm -2 o C -1 Velocidade do canal de água de resfriamento = 0,96 * (48/60) = 0,77 m/s e Re = 6876*0,77/0,96=5501. Nu = hd k = 0, ,65 5,7 0,4 =140,8 h = 140,8 *0,59 / 6 * 10-3 = Wm -2 o C -1 1 U = 1 0, , , , Que dá um coeficiente global de 1627 Wm 2 oc-1. Q=1627*90.75*31= 4577 kw mais próximo e maior que 4340 kw O conjunto com 121 placas satisfaz os requisitos de transferência de calor.

101 Solução quedas de pressão Metanol f = 0,60 * (5400) -0,3 = 0,046 Comprimento do caminho = comprimento da placa = número de passes = 1,5 * 1 = 1,5 m. ΔP d = 8 * 0,046 * (1,5 / 6 * 10-3 ) * 750 * ((0,412) / 2) = 5799N / m 2 Perda de pressão localizada, tome o diâmetro da entrada como 100 mm, área = 0,00785 m 2. Velocidade através da entrada = (27,8 / 750) / 0,00785 = 4,72m / s, ΔP l = 1,3 * ((750 * 4,722) / 2) = N / m 2 Queda de pressão total = ,860 = 16,659 N / m 2, 0,16 bar.

102 Solução quedas de pressão Água f = 0,60 * (5501) -0,3 = 0,045 Comprimento do caminho = comprimento da placa * número de passes = 1,5 * 1 = 1,5 m. ΔP d = 8 * 0,045 * (1,5 / 6 * 10-3) * 995 * (0,772 / 2) = 26547N / m 2 Velocidade através da porta = (68,9 / 995) /0,0078 = 8,88 m / s ΔP l = 1,3 * (995 * 8,88) / 2 = 50999N / m 2 Queda de pressão total = = N / m 2, 0,78 bar Poderia aumentar o diâmetro da porta para reduzir a queda de pressão. O projeto do teste deve ser satisfatório, portanto, um trocador de calor a placas pode ser considerado para esta tarefa.

103 Material para aprofundamento dos estudos/projetos envolvendo trocadores de calor de placas /publico/Tese_Jorge_A_W_Gut.pdf MIQ14020.pdf

Classificação de Trocadores de Calor

Classificação de Trocadores de Calor Trocadores de Calor Trocadores de Calor Equipamento usados para implementar a troca de calor entre dois ou mais fluidos sujeitos a diferentes temperaturas são denominados trocadores de calor Classificação

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A PLACAS - ANÁLISE DE TROCADORES: MLDT E NUT Profa. Dra. Milena Martelli Tosi TROCADOR DE CALOR A PLACAS http://rpaulsingh.com/animations/plateheat

Leia mais

EN 2411 Aula 13 Trocadores de calor Método MLDT

EN 2411 Aula 13 Trocadores de calor Método MLDT Universidade Federal do ABC EN 24 Aula 3 Trocadores de calor Método MLDT Trocadores de calor São equipamentos utilizados para promover a transferência de calor entre dois fluidos que se encontram sob temperaturas

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A

OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A OPERAÇÕES UNITÁRIAS II AULA 4: - DIMENSIONAMENTO DE TROCADORES DE CALOR A PLACAS - ANÁLISE DE TROCADORES: MLDT E NUT Profa. Dra. Milena Martelli Tosi TROCADOR DE CALOR A PLACAS http://rpaulsingh.com/animations/plateheat

Leia mais

Modelagem de equipamentos térmicos Trocadores de calor

Modelagem de equipamentos térmicos Trocadores de calor Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Modelagem de equipamentos térmicos Trocadores de calor Introdução Trocadores de calor Equipamentos que realizam

Leia mais

29/11/2010 DEFINIÇÃO:

29/11/2010 DEFINIÇÃO: Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS TÉRMICAS AT-056 M.Sc. Alan Sulato de Andrade alansulato@ufpr.br 1 DEFINIÇÃO: Trocadores de calor são dispositivo utilizados

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Trocadores de Calor 2 Trocadores de Calor Introdução Os trocadores de calor são dispositivos que facilitam a transferência

Leia mais

ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor

ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE Capítulo 11 Trocadores de Calor ENG 3006 TRANSFERÊNCIA DE CALOR E MASSA 1 o SEMESTRE DE 2015 Capítulo 11 Trocadores de Calor Tópicos Tipos de trocadores de calor; O coeficiente global de transferência de calor; Análise térmica de trocadores

Leia mais

PROJETO TÉRMICO. Dimensionamento do Trocador de Calor

PROJETO TÉRMICO. Dimensionamento do Trocador de Calor PROJETO TÉRMICO Dimensionamento do Trocador de Calor Requisitos a serem observados O primeiro passo no projeto de um trocador de calor, antes do dimensionamento termohidráulico, consiste no estabelecimento

Leia mais

) (8.20) Equipamentos de Troca Térmica - 221

) (8.20) Equipamentos de Troca Térmica - 221 onde: v = &m = Cp = h lv = U = A = T = t = volume específico vazão em massa (Kg/h) calor específico calor latente de vaporização coeficiente global de troca térmica área de transmissão de calor temperatura

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Trocadores de Calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz

Leia mais

3. CONVECÇÃO FORÇADA INTERNA

3. CONVECÇÃO FORÇADA INTERNA 3. CONVECÇÃO FORÇADA INTERNA CONVECÇÃO FORÇADA NO INTERIOR DE TUBOS Cálculo do coeficiente de transferência de calor e fator de atrito Representa a maior resistência térmica, principalmente se for um gás

Leia mais

Sistemas térmicos. Engenharia Mecânica. Profa. Jacqueline Copetti Sala C02-239

Sistemas térmicos. Engenharia Mecânica. Profa. Jacqueline Copetti  Sala C02-239 Sistemas térmicos Engenharia Mecânica Profa. Jacqueline Copetti www.professor.unisinos.br/jcopetti Sala C02-239 1. INTRODUÇÃO AOS TROCADORES DE CALOR Trocadores de calor Equipamentos que realizam a troca

Leia mais

Capítulo 4 TROCADORES DE CALOR: INTRODUÇÃO 08/2010

Capítulo 4 TROCADORES DE CALOR: INTRODUÇÃO 08/2010 Capítulo 4 TROCADORES DE CALOR: INTRODUÇÃO 08/2010 1 Capítulo 4 4.1. Conceito 4.2. Classificação 4.3. Seleção 2 4.1. Conceito Trocadores de calor são equipamentos destinados a promover a transferência

Leia mais

Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens:

Utilizado quando se necessita rejeitar calor a baixas temperaturas. O uso do AR como meio de resfriamento tem as seguintes vantagens: TROCADORES DE CALOR ALETADOS E/OU COMPACTOS Utilizado quando se necessita rejeitar calor a baixas temperaturas. Pode-se utilizar como meios de resfriamento: ÁGUA ou AR O uso do AR como meio de resfriamento

Leia mais

Trocadores de Calor Método MLDT. Prof. Simões

Trocadores de Calor Método MLDT. Prof. Simões Trocadores de Calor Método MLDT Prof. Simões Objetivos Identificar como se classificam os trocadores Identificar os elementos necessários para o dimensionamento de um trocador Entender o que é Média Logarítimica

Leia mais

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Capítulo 11 Material Suplementar 11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Embora as condições de escoamento em trocadores

Leia mais

Figura Refervedor tipo caldeira.

Figura Refervedor tipo caldeira. Euipamentos de Troca Térmica - 215 Torre de destilação Fluido de auecimento Figura 3.18 - Refervedor tipo caldeira. 8.4.2.2 Refervedor tipo termosifão O nome termosifão provém do fato do escoamento originar-se

Leia mais

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS

ÁREA DE ESTUDO: CÓDIGO 16 TERMODINÂMICA APLICADA, MECÂNICA DOS FLUIDOS E OPERAÇÕES UNITÁRIAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ DIRETORIA DE GESTÃO DE PESSOAS COMISSÃO COORDENADORA DE CONCURSOS CONCURSO PÚBLICO PROFESSOR EFETIVO EDITAL Nº 10/DGP-IFCE/2010 ÁREA DE ESTUDO:

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Condensadores Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de

Leia mais

Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi

Operações Unitárias II Lista de Exercícios 1 Profa. Dra. Milena Martelli Tosi 1. Vapor d água condensado sobre a superfície externa de um tubo circular de parede fina, com diâmetro interno igual a 50 mm e comprimento igual a 6 m, mantém uma temperatura na superfície externa uniforme

Leia mais

Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2

Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 Lista de exercícios Caps. 7 e 8 TMEC-030 Transferência de Calor e Massa Período especial 2017/2 1. (Incropera et al., 6 ed., 7.2) Óleo de motor a 100ºC e a uma velocidade de 0,1 m/s escoa sobre as duas

Leia mais

Convecção Forçada Externa

Convecção Forçada Externa Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma

Leia mais

TRANSFERÊNCIA DE CALOR

TRANSFERÊNCIA DE CALOR UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas FBT0530 - Física Industrial TRANSFERÊNCIA DE CALOR A maioria dos processos que acontecem nas indústrias farmacêutica e de alimentos envolve

Leia mais

Classificaçã. ção o dos trocadores de vaporizaçã. ção. Trocadores de vaporização com circulação forçada. Vaporização na carcaça. Vaporização nos tubos

Classificaçã. ção o dos trocadores de vaporizaçã. ção. Trocadores de vaporização com circulação forçada. Vaporização na carcaça. Vaporização nos tubos Classificaçã ção o dos trocadores de vaporizaçã ção Trocadores de vaporização com circulação forçada. Vaporização na carcaça vaporizador ou refervedor com bomba com ebulição isotérmica. vaporizador ou

Leia mais

U = 1.5 m/s T m,e = 20 o C T p < 200 o C

U = 1.5 m/s T m,e = 20 o C T p < 200 o C Ex. 7-32 Ar deve ser usado para resfriar um material sólido no qual ocorre geração interna de calor. Furos de 1cm de diâmetro foram feitos no material. A espessura da placa é de 8 cm e a condição térmica

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

Capítulo 7: Escoamento Interno

Capítulo 7: Escoamento Interno Capítulo 7: Escoamento Interno Trocadores de calor Temperatura de mistura Tm é a temperatura que se obtêm ao retirar uma amostra de fluido na seção transversal do duto, colocar em um copo e fazer uma mistura.

Leia mais

EVAPORADORES. Este capítulo é uma introdução ao tema do projeto termo-hidráulico de trocadores de calor envolvendo a vaporização de substâncias puras.

EVAPORADORES. Este capítulo é uma introdução ao tema do projeto termo-hidráulico de trocadores de calor envolvendo a vaporização de substâncias puras. EVAPORADORES Este capítulo é uma introdução ao tema do projeto termo-hidráulico de trocadores de calor envolvendo a vaporização de substâncias puras. INTRODUÇÃ ÇÃO Ciclos de geração de potência Ciclos

Leia mais

Dispositivos com escoamento em regime permanente

Dispositivos com escoamento em regime permanente Dispositivos com escoamento em regime permanente Bocais e difusores Os bocais e difusores normalmente são utilizados em motores a jato, foguetes, ônibus espaciais e até mesmo em mangueiras de jardim. Um

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Mecanismos Físicos A condensação ocorre quando a temperatura de um vapor é reduzida para abaixo da temperatura de saturação. Em equipamentos industriais o processo normalmente decorre do contato entre

Leia mais

Transferência de Calor em Geradores de Vapor

Transferência de Calor em Geradores de Vapor ransferência de Calor em Geradores de Vapor Considerações gerais O dimensionamento térmico das paredes d água e dos feixes de tubos deve: Minimizar investimentos em material Otimizar o aproveitamento da

Leia mais

PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico. Gabarito da Prova 3

PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico. Gabarito da Prova 3 PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2015 Profs. Bruno Souza Carmo e Antonio Luiz Pacífico Gabarito da Prova 3 Questão 1: Um tubo de parede delgada, com diâmetro de 6 mm e comprimento

Leia mais

ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR

ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR ROTEIRO DO PROJETO: DIMENSIONAMENTO DE UM TROCADOR DE CALOR 1. OBJETIVOS DO PROJETO Comparar a área de troca térmica obtida a partir do dimensionamento usando a equação de projeto ( ) com a área real (exemplo

Leia mais

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção natural Convecção forçada Convecção natural A transmissão de calor por convecção natural ocorre sempre quando um corpo é

Leia mais

Trocador de calor casco e tubos Feixe de tubos

Trocador de calor casco e tubos Feixe de tubos Trocador de calor casco e tubos Feixe de tubos conexões espelho bocais casco Tubos saída Casco entrada Chicanas Cabeçote estacionário - frontal Cabeçote posterior ou de retorno tubos casco Casco saída

Leia mais

Transferência de Calor 1

Transferência de Calor 1 Transferência de Calor Guedes, Luiz Carlos Vieira. G94t Transferência de calor : um / Luiz Carlos Vieira Guedes. Varginha, 05. 80 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World

Leia mais

Condensação

Condensação Condensação Condensação Condensação Condensação Condensação Condensação em Filme Tal como no caso de convecção forçada, a transferência de calor em condensação depende de saber se o escoamento é laminar

Leia mais

Operações Unitárias II Prof a. Dr a. Simone de Fátima Medeiros. 2 Semestre

Operações Unitárias II Prof a. Dr a. Simone de Fátima Medeiros. 2 Semestre Operações Unitárias II Prof a. Dr a. Simone de Fátima Medeiros 2 Semestre - 2017 Ementa: Trocadores de calor; Trocadores de calor tubulares; Trocadores de calor de placas; Sistemas se troca de calor com

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção

Leia mais

TROCADOR DE CALOR BITUBULAR

TROCADOR DE CALOR BITUBULAR UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA QUÍMICA E PETRÓLEO INTEGRAÇÃO I TROCADOR DE CALOR BITUBULAR Alunos : Rodrigo da Silva Rosa Adriano Matielo Stulzer Niterói,

Leia mais

4. Redução de dados Modelo matemático

4. Redução de dados Modelo matemático 4. Redução de dados Modelo matemático 4.1. Coeficiente global de Troca de calor o balanço de resistências térmicas para um elemento no trocador, tem-se. 1 1 1 eplac 1 1 = + + + + (19) U h R k R h 1 F 1

Leia mais

LOQ4086-OPERAÇÕES UNITÁRIAS II. Trocadores de Calor. Profª Lívia Chaguri

LOQ4086-OPERAÇÕES UNITÁRIAS II. Trocadores de Calor. Profª Lívia Chaguri LOQ4086-OPERAÇÕES UNITÁRIAS II Trocadores de Calor Profª Lívia Chaguri LOQ4086-OPERAÇÕES UNITÁRIAS II Projeto de Trocadores de Calor a) Método Bell-Delaware b) Método Kern c) Exercício de aplicação Profª

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Aula 08 Convecção Forçada Escoamento Interno Parte III 2 Laminar Região Plenamente Desenvolvida Região plenamente desenvolvida;

Leia mais

Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos

Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos Exame de Admissão 2016/1 Prova da área de termo fluidos Conhecimentos específicos 1ª. Questão (1 ponto) Considere uma bomba centrífuga de 20 kw de potência nominal, instalalada em uma determinada planta

Leia mais

TRANSMISSÃO DE CALOR resumo

TRANSMISSÃO DE CALOR resumo TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo

Leia mais

Nota: Campus JK. TMFA Termodinâmica Aplicada

Nota: Campus JK. TMFA Termodinâmica Aplicada TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização

Leia mais

Lista de Exercícios para P2

Lista de Exercícios para P2 ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 2 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

Máquinas Térmicas. Transferência de Calor na Caldeira

Máquinas Térmicas. Transferência de Calor na Caldeira Máquinas Térmicas Transferência de Calor na Caldeira Dimensionamento térmico Objetivo: minimizar investimentos em material e buscar o aproveitamento racional da eneria. Abordaem: combinação de fundamentos

Leia mais

PG0054 Transferência de Calor B

PG0054 Transferência de Calor B PG0054 Transferência de Calor B Prof. Dr. Thiago Antonini Alves thiagoaalves@utfpr.edu.br http://pessoal.utfpr.edu.br/thiagoaalves/ Aula 4 Convecção Forçada em Escoamento Externo (Parte 2/2) Sumário Cilindro

Leia mais

EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos

EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos Universidade Federal do ABC EN 2411 Aula 8 Escoamento externo. Escoamento através de bancos de tubos roca térmica entre um feixe de tubos e um fluido externo: Fluido escoando pelo interior dos tubos; Fluido

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Ciclo de Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia

Leia mais

Efetividade do Trocador de Calor:

Efetividade do Trocador de Calor: Efetividade do Trocador de alor: Assim, a efetividade,, de um T é definida como: q q max Taxa de transferência de calor real Máxima taxa de Tpossível A taxa real de transferência de calor pode ser determinada

Leia mais

Convecção Forçada Interna a Dutos

Convecção Forçada Interna a Dutos Convecção Forçada Interna a Dutos Vicente Luiz Scalon Faculdade de Engenharia/UNESP-Bauru Disciplina: Transmissão de Calor Sumário Escoamento no interior de dutos Velocidade Média Região de Entrada Hidrodinâmica

Leia mais

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS

TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO ÍNDICE DE REVISÕES DESCRIÇÃO E / OU FOLHAS ATINGIDAS GOPE CAT. : ÁREA DE ATIVIDADE: SERVIÇO: TÍTULO : TRANSP. BRAS. GAS. BOLÍVIA-BRASIL GERAL SIMULAÇÃO de 9 METODOLOGIA DE CÁLCULO DO COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR REV. ÍNDICE DE REVISÕES DESCRIÇÃO

Leia mais

Modelagem de equipamentos térmicos Trocadores de calor

Modelagem de equipamentos térmicos Trocadores de calor Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Modelagem de equipamentos térmicos rocadores de calor Método de projeto térmico Diferença de temperatura

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Sobre uma Placa Plana Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

EVAPORAÇÃO. Profa. Marianne Ayumi Shirai EVAPORAÇÃO

EVAPORAÇÃO. Profa. Marianne Ayumi Shirai EVAPORAÇÃO Universidade Tecnológica Federal do Paraná Campus Londrina Operações Unitárias na Indústria de Alimentos EVAPORAÇÃO Profa. Marianne Ayumi Shirai EVAPORAÇÃO É a remoção parcial da água de mistura de líquidos,

Leia mais

Aula 6 de FT II. Prof. Gerônimo

Aula 6 de FT II. Prof. Gerônimo Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por

Leia mais

Lista de Exercícios Solução em Sala

Lista de Exercícios Solução em Sala Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros.

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros. AULA 4 Volume I do Livro Texto CONTEÚDO: Capítulo 7 Purgadores de Vapor, Separadores Diversos e Filtros. 1 LINHAS DE VAPOR Nas linhas de vapor sempre haverá água líquida (condensado) resultante da condensação

Leia mais

UNIVRSIDADE EDUARDO MONDLANE Faculdade de Engenharia. 3º ano

UNIVRSIDADE EDUARDO MONDLANE Faculdade de Engenharia. 3º ano UNIVRSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano 14. Termopermutadores de Calor Classificação Coeficiente Global de Transferência de Calor Método da Diferença Média Logarítmica

Leia mais

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor

Leia mais

PME 3344 Exercícios - Ciclos

PME 3344 Exercícios - Ciclos PME 3344 Exercícios - Ciclos 13) Exercícios sobre ciclos 1 v. 2.0 Exercício 01 Água é utilizada como fluido de trabalho em um ciclo Rankine no qual vapor superaquecido entra na turbina a 8 MPa e 480 C.

Leia mais

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE Os exercícios e figuras deste texto foram retirados de diversas referências bibliográficas listadas no programa da disciplina 1 FENÔMENOS DE TRANSPORTE Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO

Leia mais

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície

h coeficiente local de transferência de calor por convecção h coeficiente médio de transferência de calor por convecção para toda a superfície \CONVECÇÃO FORÇADA EXTERNA " Fluxo térmico: q h(tsup T ) h coeficiente local de transferência de calor por convecção Taxa de transferência de calor q ha sup (T sup T ) h coeficiente médio de transferência

Leia mais

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica

Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica Universidade do Vale do Rio dos Sinos PPGEM Programa de Pós-Graduação de Engenharia Mecânica SIMULAÇÃO DE CICLO TÉRMICO COM DUAS CALDEIRAS EM PARALELO: COMBUSTÃO EM GRELHA E EM LEITO FLUIDIZADO Herson

Leia mais

Modelagem de equipamentos térmicos Trocadores de calor

Modelagem de equipamentos térmicos Trocadores de calor Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Modelagem de equipamentos térmicos Trocadores de calor Método da efetividade - NUT Método (efetividade) -

Leia mais

SISTEMAS TÉRMICOS DE POTÊNCIA

SISTEMAS TÉRMICOS DE POTÊNCIA SISTEMAS TÉRMICOS DE POTÊNCIA PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 2 Caldeira de vapor é todo equipamento que utilizando a energia química liberada durante a combustão de um combustível

Leia mais

Universidade Federal de Sergipe, Departamento de Engenharia Química 2

Universidade Federal de Sergipe, Departamento de Engenharia Química 2 ELABORAÇÃO DE FERRAMENTA DE CÁLCULO PARA A DETERMINAÇÃO DO COEFICIENTE CONVECTIVO EM EXPERIMENTOS DE CONVECÇÃO FORÇADA AO REDOR DE UM CORPO SUBMERSO E ALETAS TORRES, F. C. O. 1, BARBOSA NETO, A. M. 2 1

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO. Profa. Dra. Milena Martelli Tosi

OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO. Profa. Dra. Milena Martelli Tosi OPERAÇÕES UNITÁRIAS II AULA 9: EVAPORAÇÃO EM SIMPLES EFEITO Profa. Dra. Milena Martelli Tosi EVAPORAÇÃO EM SIMPLES EFEITO Características da evaporação e do líquido a ser evaporado Principais tipos de

Leia mais

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 2 Coeficiente de Performance do Ciclo (COP) - É um parâmetro importante na análise das instalações

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análise através de volume de controle Segunda lei da termodinâmica Conversão de energia EM-54 Fenômenos de Transporte Variação de entropia em um sistema Num sistema termodinâmico a equação

Leia mais

Trocadores de Calor Método da Efetividade (NUT) Prof. Simões

Trocadores de Calor Método da Efetividade (NUT) Prof. Simões Trocadores de Calor Método da Efetividade (NUT) Prof. Simões Objetivos Aplicar o método da MLDT para um caso em que não temos as temperaturas de saída Identificar a dificuldade dessa utilização Entender

Leia mais

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue:

3. Um gás ideal passa por dois processos em um arranjo pistão-cilindro, conforme segue: 1. Um arranjo pistão-cilindro com mola contém 1,5 kg de água, inicialmente a 1 Mpa e título de 30%. Esse dispositivo é então resfriado até o estado de líquido saturado a 100 C. Calcule o trabalho total

Leia mais

4. Resultados Parâmetros de desempenho Variáveis de controle Tipo de nanopartícula

4. Resultados Parâmetros de desempenho Variáveis de controle Tipo de nanopartícula 4. Resultados No presente capítulo serão discutidos os resultados da simulação do ciclo de refrigeração por compressão de vapor utilizando nanofluidos como fluido secundário no evaporador. 4.1. Parâmetros

Leia mais

Máquinas Térmicas. Transferência de Calor na Caldeira

Máquinas Térmicas. Transferência de Calor na Caldeira Máquinas érmicas ransferência de Calor na Caldeira Dimensionamento térmico Objetivo: minimizar investimentos em material e buscar o aproveitamento racional da eneria. Abordaem: combinação de fundamentos

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 LABORATÓRIOS DE ENGENHARIA QUÍMICA I 2009/2010 1. Objectivo Determinação do coeficiente de convecção natural e

Leia mais

Sistemas e Componentes II

Sistemas e Componentes II Sistemas e Componentes II Alberto Hernandez Neto -Direitos autorais reservados - É proibida a reprodução deste material sem a autorização expressa do autor 1 Serpentina de resfriamento e desumidificação

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Cruzado Sobre Matrizes Tubulares Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Colégio Técnico de Lorena (COTEL)

Colégio Técnico de Lorena (COTEL) Colégio Técnico de Lorena (COTEL) Operações Unitárias Transferência de Calor Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a

Leia mais

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio

Leia mais

1. Introdução Motivação

1. Introdução Motivação 1. Introdução 1.1. Motivação O gelo é considerado um material de armazenamento de energia térmica efetivo, para temperaturas ao redor de 0 C, conseguindo reduzir os volumes de armazenamento de frio num

Leia mais

Diferença Média de Temperatura entre os Fluidos

Diferença Média de Temperatura entre os Fluidos 5.3..3 ierença Média de Temperatura entre os Fluidos Equipamentos de Troca Térmica - 134 A equação básica de transerência de calor a ser usada no projeto de trocadores de calor é: U U T da (5.3) A As temperaturas

Leia mais

2 Fundamentos Teóricos

2 Fundamentos Teóricos Fundamentos Teóricos.1.Propriedades Físicas dos Fluidos Fluidos (líquidos e gases) são corpos sem forma própria; podem se submeter a variações grandes da forma sob a ação de forças; quanto mais fraca a

Leia mais

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA

MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA MOTORES TÉRMICOS AULA 3-7 SISTEMAS DE POTÊNCIA A VAPOR PROF.: KAIO DUTRA Modelando Sistemas de Potência a Vapor A grande maioria das instalações elétricas de geração consiste em variações das instalações

Leia mais

No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações:

No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações: Enunciados de problemas de condução do livro: Fundamentals of Heat and Mass Transfer, F.P. Incropera e D.P. DeWitt, Ed. Wiley (numeros de acordo com a 5ª Edição). Introdução à Convecção 6.10 - No escoamento

Leia mais

Prof. Dr. Félix Monteiro Pereira

Prof. Dr. Félix Monteiro Pereira OPERACÕES UNITÁRIAS II Evaporadores Prof. Dr. Félix Monteiro Pereira Evaporação A evaporação é a operação de se concentrar uma solução mediante a eliminação do solvente por ebulição (McCabe, 1982). O objetivo

Leia mais

Mecanismos de transferência de calor

Mecanismos de transferência de calor Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade

Leia mais

Dimensionamento básico de um trocador de calor. 01/15 Prof. Paul Fernand Milcent. DIMENSIONAMENTO BÁSICO DE UM TROCADOR DE CALOR.

Dimensionamento básico de um trocador de calor. 01/15 Prof. Paul Fernand Milcent. DIMENSIONAMENTO BÁSICO DE UM TROCADOR DE CALOR. DIMENSIONAMENTO BÁSICO DE UM TROCADOR DE CALOR. EXEMPLO NUMÉRICO: Efetuar o dimensionamento básico de um trocador de calor, para os seguintes dados de processo: Fluido frio: água destilada no estado líquido.

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Convecção Forçada Escoamento Externo 2 Convecção Forçada: Escoamento Externo Escoamento Externo É definido como um escoamento

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

EM34B Transferência de Calor 2

EM34B Transferência de Calor 2 EM34B Transferência de Calor 2 Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Convecção Forçada Escoamento Externo Parte II 2 Convecção Forçada: Escoamento Externo Cilindro em escoamento cruzado Um

Leia mais

Vazão. Conceito de Vazão

Vazão. Conceito de Vazão Vazão Conceito de Vazão Quando se toma um ponto de referência, a vazão é a quantidade do produto ou da utilidade, expressa em massa ou em volume, que passa por ele, na unidade de tempo. A unidade de vazão

Leia mais

ANÁLISE E SIMULAÇÃO DO FUNCIONAMENTO DE TROCADORES DE CALOR SOB CONDIÇÃO DE ENTUPIMENTO

ANÁLISE E SIMULAÇÃO DO FUNCIONAMENTO DE TROCADORES DE CALOR SOB CONDIÇÃO DE ENTUPIMENTO ANÁLISE E SIMULAÇÃO DO FUNCIONAMENTO DE TROCADORES DE CALOR SOB CONDIÇÃO DE ENTUPIMENTO André Scaranto Cardoso ascaranto@hotmail.com Resumo. O seguinte trabalho se propõe a analisar o efeito na capacidade

Leia mais