Método do Gradiente Projetado Para Funções Convexas Generalizadas

Tamanho: px
Começar a partir da página:

Download "Método do Gradiente Projetado Para Funções Convexas Generalizadas"

Transcrição

1 Método do Gradiente Projetado Para Funções Convexas Generalizadas Milton Gabriel Garcia dos SANTOS 1. Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP Goiânia, GO, Brasil. matematica_gabriel@yahoo.com.br Palavras chaves: Gradiente Projetado, Quase convexidade, Pseudo Convexidade, Busca de Armijo. 1 Introdução Em 2003, IUSEM (veja [1]]) estudou algumas propriedades de convergência do Método do Gradiente Projetado com a Busca de Armijo sobre as direções viáveis para problemas de otimização convexa, isto é, o problema inicial é: min s.a. x C f(x), (1) onde C R n é não vazio, fechado e convexo e f : R n R é uma função continuamente diferenciável e convexa. O Método do Gradiente Projetado conceitual e apresentado como: Método 1 (Método do Gradiente Projetado com regra de Armijo ). Inicialização. Tome 0 < β < β and x 0 C. Set k = 0. Critério de parada. Se x k é estacionário então PARE. Caso contrário. Passo iterativo. Calcule z k = P C (x k β k f(x k )), x k+1 = x k + γ k (z k x k ), onde {β k } [ β, β] tal que γ k = 2 j(k) sendo que j(k) = { min j N : f(x k+1 ) f(x k ) + σ2 j f(x k ) t z k x k }, e σ (0, 1). e VOLTE para Critério de parada. Foi provado para o caso convexo que: 1 Bolsista CAPES

2 (i) Dada {x k } uma seqüência gerada pelo algoritmo acima, temos que se ela é infinita e, se o problema inicial possui ao menos uma solução, então os pontos de acumulação da seqüência gerada, quando existem, são estacionários. (ii) Sob a hipótese de f ser convexa e supondo que o problema inicial possui solução a seqüência x k infinita gerada pelo algoritmo acima converge a alguma solução do problema. Tendo em mente os resultados expostos acima e baseado então, no artigo [2], nosso trabalho é estudar casos um pouco mais gerais, isto é, no caso que as funções objetivo são quase convexas ou pseudo convexas. Para este caso o Algoritmo continua sendo o mesmo, e a busca segue sendo a Busca de Armijo sob direções viáveis. 2 Resultados e Discussão 2.1 Definições Preliminares Definição 1. Dizemos que um ponto x R n é um ponto estacionário ou crítico para problema inicial, quando f( x), x x 0, x C. Definição 2. (Funções Quase-convexas) Uma função real f definida sobre um conjunto C R n é dita quase-convexa sobre x C (com respeito a C) se para cada x tal que f(x) f( x), a função f não assume um valor maior que f( x) sobre cada ponto da intersecção do segmento fechado [ x, x], ou equivalentemente: x C f(x) f( x) = f[(1 λ) x + λx] f( x). 0 λ 1 (1 λ) x + λx C E dizemos que f é quase-convexa em C se é quase-convexa em cada ponto x C. Quando f : C R é diferenciável e quase-convexa em x, então a definição acima é equivalente a condição: f(y) f(x) f(x), y x 0, x, y C.

3 Definição 3. Seja f uma função real definida sobre algum conjunto aberto do R n contendo o conjunto C, f é dita pseudo-convexa sobre x C (com respeito a C) se é diferenciável sobre x e dado x C temos, f( x), x x 0 f(x) f( x). Dizemos que f é pseudo-convexa sobre C, se é pseudo-convexa sobre cada x C. Teorema 1. Sejam C R n um conjunto convexo, e f uma função real definida em algum conjunto aberto que contém C. Se f é pseudo-convexa em C então f é quase-convexa em C. Demonstração. Veja página 143 de [3]. Seja w R n e C R n não vazio, fechado e convexo. O operador P C : R n C definido por P C (w) := argmin x w, x C, é chamado a Projeção de w sobre o conjunto C. 2.2 Análise de Convergência Proposição 2. Sejam {x k } e {z k } a sequências geradas pelo método (1). i. A iteração x k C para todo k; ii. Se x k não é ponto estaionário, então f(x k ), z k x k < 0; iii. Para cada k, j(k) está bem definido. Proposição 3. Se o problema inicial (1) possui solução. Então todo ponto de acumulação de {x k } é ponto estacionário, onde essa seqüência é gerada pelo método (1). Lema 4. Para todo x C e todo k, nós temos: x k+1 x 2 x k x 2 + η(f(x k ) f(x k+1 )) + 2γ k β k f(x k ), x x k, onde η = 2 β/δ. Corolário 5. Se f é quaseconvexa, x C e f(x) f(x k ) k, então ηf(x) x k+1 x 2 + ηf(x k+1 ) x k x 2 + ηf(x k ), para todo k. Em particular, { x k x 2 + ηf(x k )} e {x k } são sequências convergentes.

4 Teorema 6. [Principal] Assumindo que f é quase convexa. Então temos: i. A sequência {x k } converge para um ponto estacionário, ou ii. O problema inicial não tem solução, lim k xk =, lim f(x k ) = inf{f(x) x C}. k Demonstração. Existe então, dois casos para se analisado. Primeiro caso, quando a sequência possui ao menos um ponto de acumulação e o segundo quando a sequência não possui pontos de acumuulação. 1 o Caso) Seja x um ponto de acumulação de x k, então existe uma subsequência x k j convergindo a x e daí temos que f(x k j ) f( x) e como {f(x k )} é convergente resulta que f(x k ) f( x), o que nos dá f( x) f(x k ) e pelo corolário (5) x k é convergente e pela proposição 3 x é um ponto estacionário. 2 o Caso ) Suponhamos que a sequência x k não possui nenhum ponto de acumulação, ou seja, lim k x k = e suponha que o problema inicial possua um minimizador, isto é, existe x C tal que f( x) f(x k ) para todo k. Pelo corolário 4 x k converge, o que contradiz a hipóteses de lim k x k = e então o problema inicial não possui solução. Além disso, afirmamos que lim k f(x k ) = inf{f(x) : x C} Observamos que se lim k f(x k ) = lim k f(x k ) = inf{f(x) : x C}. Agora se lim k f(x k ) = f inf{f(x) : x C}. Assumimos que f > inf{f(x) : x C}. Pela continuidade de f existe um x tal que f( x) = f e f( x) f(x k ) para todo k, pois essa sequência é decrescente. Isto implica pelo corolário (5) que x k é convergente, contradizendo nossa hipótese inicial, ou seja, lim k f(x k ) = inf{f(x) : x C}. OBS: Provamos então que, se a seqüência possui pontos de acumulação, ela converge para algum desses pontos e o mesmo é estacionário. Se a seqüência não possui pontos de acumulação, o conjunto solução é vazio. Defina T = {x C : f(x) f(x k ) k}, podemos notar que se o conjunto solução do problema inicial não for vazio ou existir pontos de acumulação temos que T

5 Corolário 7. Assumindo que f é pseudo convexa. então o conjunto solução do problema inicial é não vazio se, e somente se, existe ao menos um ponto de acumulação da sequência. Demonstração. Pelo teorema 5 da página 143 de [3], pseudo convexidade nos garante que f é estritamente quase convexa e como f é continua pelo teorema 3 da pagina 139 de [3] f é quase convexa. ( ) Suponha que o conjunto solução é não vazio, isto é, existe um minimizador, x tal que f( x) f(x k ) k pelo corolário 5 x k converge e pelo teorema 6 converge a um ponto estacionário e esse ponto é de acumulação. ( ) Suponha que exista pelo menos um ponto de acumulação x de x k o que implica que f( x) f(x k ) para todo k. Pelo corolário 4 e 5 e o teorema 6, x k converge a um ponto estacionário, isto é, f( x), x x 0, mas pela pseudo convexidade temos que f(x) f( x) para todo x C, logo o conjunto solução é não vazio, o que conclui a demonstração. 3 Conclusões Com este trabalho podemos ver alguns resultados importantes para casos mais gerais, mesmo enfraquecendo a hipóteses de convexidade da nossa função objetivo. Provando boas propriedades de convergência, como a existência de solução somente se a sequência possuir ponto de acumulação, e que se existir esses pontos a sequência gerada pelo Algoritmo converge para algum desses pontos de acumulação, e estes são estacionários. Referências [1] A. N. IUSEM - On the convergence properties of the projected gradient method for convex optimization, Computational and Applied Mathematics, 22, (2003). [2] J.Y. Bello Cruz, L.R. Lucambio Pérez - Convergence of a projected gradient method variant for quasiconvex objectives, Nonlinear Analysis, 10, (2010). [3] Olvi L. Mangasarian - Nonlinear Programming, In Applied mathematics., (1994).

Problemas de Otimização Quase Convexos: Método do Gradiente para Funções Escalares e Vetoriais

Problemas de Otimização Quase Convexos: Método do Gradiente para Funções Escalares e Vetoriais UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA MILTON GABRIEL GARCIA DOS SANTOS Problemas de Otimização Quase Convexos: Método do Gradiente para Funções Escalares e Vetoriais Goiânia

Leia mais

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS TRABALHO DE CONCLUSÃO DE CURSO II

UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS TRABALHO DE CONCLUSÃO DE CURSO II UNIVERSIDADE FEDERAL DO TOCANTINS UNIVERSIDADE FEDERAL DO TOCANTINS CAMPUS UNIVERSITÁRIO DE PALMAS CURSO DE CIÊNCIA DA COMPUTAÇÃO TRABALHO DE CONCLUSÃO DE CURSO II O ALGORITMO DE PONTO PROXIMAL PARA OTIMIZAÇÃO

Leia mais

UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA CONVERGÊNCIA COMPLETA DO MÉTODO DO GRADIENTE COM BUSCA LINEAR EXATA E INEXATA Jeanne Moreira

Leia mais

Método do Gradiente para Funções Convexas Generalizadas

Método do Gradiente para Funções Convexas Generalizadas UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA KELVIN RODRIGUES COUTO Método do Gradiente para Funções Convexas Generalizadas Goiânia 2009 Livros Grátis http://www.livrosgratis.com.br

Leia mais

Uma nova taxa de convergência para o Método do Gradiente

Uma nova taxa de convergência para o Método do Gradiente Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 2, N. 1, 2014. Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. Uma nova taxa de convergência para o Método

Leia mais

Otimização Contínua: Aspectos teóricos e computacionais

Otimização Contínua: Aspectos teóricos e computacionais Otimização Contínua: Aspectos teóricos e computacionais Ademir Alves Ribeiro Elizabeth Wegner Karas Capítulo 3 - Convexidade Ademir Alves Ribeiro, Elizabeth Wegner Karas () Otimização Contínua Capítulo

Leia mais

1 Introdução. Problemas Elípticos Assintoticamente Lineares

1 Introdução. Problemas Elípticos Assintoticamente Lineares Problemas Elípticos Assintoticamente Lineares Caíke da Rocha DAMKE; Edcarlos Domingos da SILVA Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP 74001-970

Leia mais

Lara Thaise Bezerra Lima Souza

Lara Thaise Bezerra Lima Souza MÉTODO DO PONTO PROXIMAL COM DISTÂNCIA DE BREGMAN PARA PROBLEMAS DE MINIMIZAÇÃO QUASE CONVEXOS Lara Thaise Bezerra Lima Souza Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01

Cálculo Numérico / Métodos Numéricos. Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01 Cálculo Numérico / Métodos Numéricos Solução de equações: Método do ponto fixo (iterativo linear - MIL) 15:01 Idéia Seja f(x) uma função continua em [a,b], intervalo que contém a raiz da equação f(x)=0.

Leia mais

Professor: Carlos Eugênio da Costa Teoria Microeconômica II Monitor: Diego Santiago

Professor: Carlos Eugênio da Costa Teoria Microeconômica II Monitor: Diego Santiago Professor: Carlos Eugênio da Costa Teoria Microeconômica II - 2012 Monitor: Diego Santiago EPGE/FGV Introdução matemática 1 Introdução Esta introdução visa familiarizar o aluno com ferramentas matemáticas

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

Método dos gradientes (ou método de máxima descida)

Método dos gradientes (ou método de máxima descida) Método dos gradientes (ou método de máxima descida) Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 14 de setembro de 2010 1 / 16 Método dos gradientes

Leia mais

Convergência do Método Subgradiente para Funções Quase-Convexas

Convergência do Método Subgradiente para Funções Quase-Convexas Universidade Federal do Piauí Centro de Ciências da Natureza Programa de Pós-Graduação em Matemática Mestrado em Matemática Convergência do Método Subgradiente para Funções Quase-Convexas João Carlos de

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

UM CURSO DE OTIMIZAÇÃO. Ademir Alves Ribeiro Elizabeth Wegner Karas

UM CURSO DE OTIMIZAÇÃO. Ademir Alves Ribeiro Elizabeth Wegner Karas UM CURSO DE OTIMIZAÇÃO Ademir Alves Ribeiro Elizabeth Wegner Karas Curitiba 2011 Sumário Prefácio 1 Introdução 2 1 Revisão de Conceitos 4 1.1 Sequências.................................... 4 1.1.1 Definições

Leia mais

INTRODUÇÃO À ANÁLISE CONVEXA E APLICAÇÕES INTRODUCTION TO CONVEX ANALYSIS AND APLICATIONS

INTRODUÇÃO À ANÁLISE CONVEXA E APLICAÇÕES INTRODUCTION TO CONVEX ANALYSIS AND APLICATIONS X CONGRESSO DE INICIAÇÃO CIENTÍFICA DA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE PIBIC/CNPq/UFCG-2013 INTRODUÇÃO À ANÁLISE CONVEXA E APLICAÇÕES João Paulo Formiga de Meneses 1, Jefferson Abrantes dos Santos

Leia mais

UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA UM MÉTODO DE REGULARIZAÇÃO PROXIMAL INEXATO PARA OTIMIZAÇÃO IRRESTRITA CLAUDEILSIO DO NASCIMENTO

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

1 Tópicos em Análise Convexa

1 Tópicos em Análise Convexa Microeconomia II Monitoria do dia 06/05 Prof.: Victor F. Martins-da-Rocha Monitor: Vitor Farinha Luz 1 Tópicos em Análise Convexa A análise convexa constitui um dos grupos de resultados matemáticos com

Leia mais

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série

n=1 a n converge e escreveremos a n = s n=1 n=1 a n. Se a sequência das reduzidas diverge, diremos que a série Séries Numéricas Nosso maior objetivo agora é dar um sentido a uma soma de infinitas parcelas, isto é, estudar a convergência das chamadas séries numéricas. Inicialmente, seja (a n ) uma sequência e formemos

Leia mais

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X.

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X. 1. Redes Quando trabalhamos no R n, podemos testar várias propriedades de um conjunto A usando seqüências. Por exemplo: se A = A, se A é compacto, ou se a função f : R n R m é contínua. Mas, em espaços

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Teoria da Medida e Integração (MAT505) Modos de convergência V. Araújo Mestrado em Matemática, UFBA, 2014 1 Modos de convergência Modos de convergência Neste ponto já conhecemos quatro modos de convergência

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Prof. Doherty Andrade 2005- UEM Sumário 1 Seqüências 2 1.1 O Corpo dos Números Reais.......................... 2 1.2 Seqüências.................................... 5

Leia mais

2 Métodologia para a Resolução do NEP

2 Métodologia para a Resolução do NEP Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. Algoritmos para o Problema de Equilíbrio de Nash Euda Mara da Silva Ferreria Universidade Federal do Paraná, UFPR, Curitiba, PR E-mail: diretoria@facel.com.br

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

Método Proximal Incremental em Otimização Convexa

Método Proximal Incremental em Otimização Convexa Universidade Federal do Piauí Centro de Ciências da Natureza Pós-Graduação em Matemática Mestrado em Matemática Método Proximal Incremental em Otimização Convexa Valéria de Sousa Silva Teresina - 2018

Leia mais

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Seqüências Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 12 de Abril de 2013 Primeiro Semestre de 2013 Turma 2013104 - Engenharia de Computação Seqüências Consideraremos

Leia mais

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B = Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique

Leia mais

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação

Análise Convexa. 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone. 2. Hiperplanos: suporte, separador, teorema da separação Análise Convexa 1. Conjuntos convexos 1.1. Casca convexa, ponto extremo, cone 2. Hiperplanos: suporte, separador, teorema da separação 3. Funções convexas 4. Teoremas de funções convexas 5. Conjunto poliedral

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Teoria Espectral em Espaços de Hilbert

Teoria Espectral em Espaços de Hilbert Teoria Espectral em Espaços de Hilbert Departamento de Análise Instituto de Matemática e Estatística Universidade Federal Fluminense 22 de setembro de 2016 Espaços Vetoriais de Dimensão Finita Sejam V

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Teoria da Medida e Integração (MAT505)

Teoria da Medida e Integração (MAT505) Modos de convergência Teoria da Medida e Integração (MAT505) Modos de convergência. V. Araújo Instituto de Matemática, Universidade Federal da Bahia Mestrado em Matemática, UFBA, 2014 Modos de convergência

Leia mais

Método de Newton truncado

Método de Newton truncado Método de Newton truncado Marina Andretta ICMC-USP 8 de outubro de 2018 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Programa de Pós-graduação em Matemática

Universidade Federal do Amazonas Instituto de Ciências Exatas Programa de Pós-graduação em Matemática Universidade Federal do Amazonas Instituto de Ciências Exatas Programa de Pós-graduação em Matemática Algoritmos Quase-Newton para Otimização Multiobjetivo Osenildo Marques Maciel Manaus - 2016 Universidade

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ OKSANA HERINGER DA SILVA

UNIVERSIDADE FEDERAL DO PARANÁ OKSANA HERINGER DA SILVA UNIVERSIDADE FEDERAL DO PARANÁ OKSANA HERINGER DA SILVA MÉTODOS DE PENALIDADE E O LAGRANGIANO AUMENTADO APLICADO A PROBLEMAS COM RESTRIÇÕES DE IGUALDADE CURITIBA 2017 OKSANA HERINGER DA SILVA MÉTODOS DE

Leia mais

Comparação entre as estratégias de região de confiança e busca linear para controlar o passo em um algoritmo de filtro baseado em PQS

Comparação entre as estratégias de região de confiança e busca linear para controlar o passo em um algoritmo de filtro baseado em PQS Comparação entre as estratégias de região de confiança e busca linear para controlar o passo em um algoritmo de filtro baseado em PQS Gislaine A. Periçaro, Ademir A. Ribeiro UNESPAR - Departamento de Matemática

Leia mais

LAGRANGEANO AUMENTADO QUADRÁTICO E EXPONENCIAL APLICADO A PROBLEMAS DE EQUILÍBRIO

LAGRANGEANO AUMENTADO QUADRÁTICO E EXPONENCIAL APLICADO A PROBLEMAS DE EQUILÍBRIO LAGRANGEANO AUMENTADO QUADRÁTICO E EXPONENCIAL APLICADO A PROBLEMAS DE EQUILÍBRIO Elvis Manuel Rodríguez Torrealba Luiz Carlos Matioli Programa de Pós-Graduação em Matemática - PPGM Universidade Federal

Leia mais

Notas de Aula. Análise Funcional

Notas de Aula. Análise Funcional Notas de Aula Análise Funcional Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do curso Análise Funcional

Leia mais

UM CURSO DE OTIMIZAÇÃO. Ademir Alves Ribeiro Elizabeth Wegner Karas

UM CURSO DE OTIMIZAÇÃO. Ademir Alves Ribeiro Elizabeth Wegner Karas UM CURSO DE OTIMIZAÇÃO Ademir Alves Ribeiro Elizabeth Wegner Karas Curitiba 2011 Sumário Prefácio 1 Introdução 2 1 Revisão de Conceitos 4 1.1 Sequências.................................... 4 1.1.1 Definições

Leia mais

Método do ponto proximal para um problema de otimização multiobjetivo não-convexo

Método do ponto proximal para um problema de otimização multiobjetivo não-convexo Universidade Federal do Piauí Centro de Ciências da Natureza Pós-Graduação em Matemática Mestrado em Matemática Método do ponto proximal para um problema de otimização multiobjetivo não-convexo Ray Victor

Leia mais

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1)

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1) CAPÍTULO 1 Espaços Normados Em princípio, os espaços que consideraremos neste texto são espaços de funções. Isso significa que quase todos os nossos exemplos serão espaços vetoriais de dimensão infinita.

Leia mais

Métodos de Descida em Otimização Multiobjetivo

Métodos de Descida em Otimização Multiobjetivo Métodos de Descida em Otimização Multiobjetivo Publicações Matemáticas Métodos de Descida em Otimização Multiobjetivo L. M. Gran a Drummond FACC UFRJ B. F. Svaiter IMPA 30 o Colóquio Brasileiro de Matemática

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Roberto Imbuzeiro Oliveira 9 de Março de 2009 Resumo Esta lista cobre o básico do básico sobre espaços e distribuições de probabilidade. Pouco

Leia mais

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 MAT 317 - Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 1 Nome : Número USP : Assinatura : Professor : Severino Toscano do Rêgo Melo 2 3 4 5 Total Podem tentar fazer todas as questões.

Leia mais

Método do Ponto Fixo

Método do Ponto Fixo Determinação de raízes de funções: Método do Ponto Fixo Marina Andretta ICMC-USP 07 de março de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

x B A x X B B A τ x B 3 B 1 B 2

x B A x X B B A τ x B 3 B 1 B 2 1. Definição e exemplos. Bases. Dar uma topologia num conjunto X é especificar quais dos subconjuntos de X são abertos: Definição 1.1. Um espaço topológico é um par (X, τ) em que τ é uma colecção de subconjuntos

Leia mais

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática. O Teorema de Arzelá. José Renato Fialho Rodrigues Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática O Teorema de Arzelá José Renato Fialho Rodrigues Belo Horizonte - MG 1994 José Renato Fialho Rodrigues O Teorema

Leia mais

Integral de Aumann em Escalas Temporais

Integral de Aumann em Escalas Temporais Trabalho apresentado no III CMAC - S, Vitória-S, 2015. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Integral de Aumann em scalas Temporais Iguer L. D. Santos 1 Departamento

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Programa de Pós-Graduação em Matemática Instituto de Matemática e Estatística - IME Universidade Federal de Goiás - UFG EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Aluno: 1) Seja G um grupo e a, b G tais

Leia mais

Um Método Ponto Proximal para Minimização da Diferença de Funções Convexas

Um Método Ponto Proximal para Minimização da Diferença de Funções Convexas Universidade Federal do Piauí Centro de Ciências da Natureza Pós-Graduação em Matemática Mestrado em Matemática Um Método Ponto Proximal para Minimização da Diferença de Funções Convexas Fernando Santana

Leia mais

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza².

O TEOREMA DE ARZELÁ ASCOLI. Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza². Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 51 O TEOREMA DE ARZELÁ ASCOLI Osmar Rogério Reis Severiano¹, Fernando Pereira de Souza² ¹Acadêmico do Curso de matemática

Leia mais

Uma Curva de G. de Rham: mais propriedades

Uma Curva de G. de Rham: mais propriedades Uma Curva de G de Rham: mais propriedades Guilherme Henrique de Paula Reis (e-mail: guilhermedwg@gmailcom) Goiânia, 5 de Junho de 20 Resumo No trabalho de iniação científica [2], Uma Curva de G de Rham,

Leia mais

Decimasegunda áula: Conexidade por caminhos, local, e sequências

Decimasegunda áula: Conexidade por caminhos, local, e sequências Decimasegunda áula: Conexidade por caminhos, local, e sequências A definição de espaço conexo traduz matemáticamente a intuição de conjunto feito por um pedaço só. Também podemos considerar um espaço conexo

Leia mais

A Projeção e seu Potencial

A Projeção e seu Potencial A Projeção e seu Potencial Rolci Cipolatti Departamento de Métodos Matemáticos Instituto de Matemática, Universidade Federal do Rio de Janeiro C.P. 68530, Rio de Janeiro, Brasil e-mail: cipolatti@im.ufrj.br

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n 1. Exercícios do livro Análise Real, volume 2, Elon Lages Lima, páginas

Leia mais

Uma condição necessária e suciente para integrabilidade de uma função real

Uma condição necessária e suciente para integrabilidade de uma função real Uma condição necessária e suciente para integrabilidade de uma função real Jonas Renan Moreira Gomes 1 e Fernanda S. P. Cardona (orientadora) 1 Instituto de Matemática e Estatística da Universidade de

Leia mais

Uma condição necessária e suciente para integrabilidade de uma função real

Uma condição necessária e suciente para integrabilidade de uma função real Uma condição necessária e suciente para integrabilidade de uma função real Jonas Renan Moreira Gomes 1 e Fernanda S. P. Cardona (orientadora) 1 Instituto de Matemática e Estatística da Universidade de

Leia mais

Algoritmo do Ponto Proximal Generalizado para o Problema de Desigualdade Variacional em R n

Algoritmo do Ponto Proximal Generalizado para o Problema de Desigualdade Variacional em R n Universidade Federal do Piauí Centro de Ciências da Natureza Pós-Graduação em Matemática Mestrado em Matemática Algoritmo do Ponto Proximal Generalizado para o Problema de Desigualdade Variacional em R

Leia mais

Condições de qualificação, otimalidade e um método tipo lagrangiano aumentado

Condições de qualificação, otimalidade e um método tipo lagrangiano aumentado Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Condições de qualificação, otimalidade e um método

Leia mais

Hellena Christina Fernandes Apolinário

Hellena Christina Fernandes Apolinário MÉTODO DE PONTO PROXIMAL PARA MINIMIZAÇÃO MULTIOBJETIVO QUASE-CONVEXA Hellena Christina Fernandes Apolinário Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia de Sistemas e Computação,

Leia mais

Optimização e Algoritmos (2004/2005)

Optimização e Algoritmos (2004/2005) Optimização e Algoritmos 2004/2005) Instituto Superior Técnico Engenharia Electrotécnica e de Computadores Série de Problemas 4 Minimização sem restrições algoritmos gradiente, Newton, quasi-newton BFGS)

Leia mais

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018

Topologia. Fernando Silva. (Licenciatura em Matemática, 2007/2008) 13-agosto-2018 Topologia (Licenciatura em Matemática, 2007/2008) Fernando Silva 13-agosto-2018 A última revisão deste texto está disponível em http://webpages.fc.ul.pt/~fasilva/top/ Este texto é uma revisão do texto

Leia mais

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS O TEOEMA ESPECTAL PAA OPEADOES AUTO-ADJUNTOS Mariane Pigossi, oberto de A. Prado, Depto. de Matemática e Computação, FCT, UNESP, 19060-900, Presidente Prudente, SP E-mail: marianepigossi@gmail.com, robertoprado@fct.unesp.br

Leia mais

σ-álgebras, geradores e independência

σ-álgebras, geradores e independência σ-álgebras, geradores e independência Roberto Imbuzeiro M. F. de Oliveira 15 de Março de 2009 Resumo Notas sobre a σ-álgebra gerada por uma variável aleatória X e sobre as condições de independência de

Leia mais

Método de restrições ativas para minimização em caixas

Método de restrições ativas para minimização em caixas Método de restrições ativas para minimização em caixas Marina Andretta ICMC-USP 20 de outubro de 2014 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 20 de outubro de 2014 1 / 25 Problema com

Leia mais

1 Espaço Euclideano e sua Topologia

1 Espaço Euclideano e sua Topologia 1 Espaço Euclideano e sua Topologia Topologia é a estrutura básica para a de nição dos conceitos de limite e continuidade de aplicações. O Espaço Euclideano é caracterizado por uma topologia especial,

Leia mais

Trajetória Central, Métodos de Ponto Proximal Generalizado e Trajetória de Cauchy em Variedades Riemannianas

Trajetória Central, Métodos de Ponto Proximal Generalizado e Trajetória de Cauchy em Variedades Riemannianas Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Programa de Pós-Graduação em Matemática Curso de Mestrado em Matemática Trajetória Central, Métodos de Ponto Proximal Generalizado

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

UM MÉTODO TRUST-REGION PARA OTIMIZAÇÃO COM RESTRIÇÕES FAZENDO USO DO MÉTODO DO GRADIENTE PROJETADO

UM MÉTODO TRUST-REGION PARA OTIMIZAÇÃO COM RESTRIÇÕES FAZENDO USO DO MÉTODO DO GRADIENTE PROJETADO Universidade Federal de Minas Gerais Pós Graduação em Matemática Mestrado em Matemática José Luis Almendras Montero UM MÉTODO TRUST-REGION PARA OTIMIZAÇÃO COM RESTRIÇÕES FAZENDO USO DO MÉTODO DO GRADIENTE

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO

Topologia de Zariski. Jairo Menezes e Souza. 25 de maio de Notas incompletas e não revisadas RASCUNHO Topologia de Zariski Jairo Menezes e Souza 25 de maio de 2013 Notas incompletas e não revisadas 1 Resumo Queremos abordar a Topologia de Zariski para o espectro primo de um anel. Antes vamos definir os

Leia mais

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos

MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos MAT 5798 Medida e Integração Exercícios de Revisão de Espaços Métricos Prof. Edson de Faria 30 de Março de 2014 Observação: O objetivo desta lista é motivar uma revisão dos conceitos e fatos básicos sobre

Leia mais

Topologia e Análise Linear. Maria Manuel Clementino, 2013/14

Topologia e Análise Linear. Maria Manuel Clementino, 2013/14 Maria Manuel Clementino, 2013/14 2013/14 1 ESPAÇOS MÉTRICOS Espaço Métrico Um par (X, d) diz-se um espaço métrico se X for um conjunto e d : X X R + for uma aplicação que verifica as seguintes condições,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

Noções (básicas) de Topologia Geral, espaços métricos, espaços normados e espaços com produto interno. André Arbex Hallack

Noções (básicas) de Topologia Geral, espaços métricos, espaços normados e espaços com produto interno. André Arbex Hallack Noções (básicas) de Topologia Geral, espaços métricos, espaços normados e espaços com produto interno André Arbex Hallack Setembro/2011 Introdução O presente texto surgiu para dar suporte a um Seminário

Leia mais

Alexandre L. Madureira

Alexandre L. Madureira Introdução à Análise Real em Uma Dimensão Pós-graduação da EPGE FGV 1 Alexandre L. Madureira Laboratório Nacional de Computação Científica LNCC, Brasil URL: http://www.lncc.br/ alm URL: http://www.lncc.br/

Leia mais

Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso)

Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso) Fundamentos de Controle Não Linear: Conceitos Matemáticos Importantes (em Progresso) Leonardo A. B. Torres PPGEE/UFMG October 2, 2018 Leonardo A. B. Torres (PPGEE/UFMG) FCNL: Conceitos Matemáticos October

Leia mais

Um Método de Descida em Otimização Multiobjetivo

Um Método de Descida em Otimização Multiobjetivo Universidade Federal do Piauí Centro de Ciências da Natureza Pós-Graduação em Matemática Mestrado em Matemática Um Método de Descida em Otimização Multiobjetivo Felipe Marreiros Mesquita Teresina - 2013

Leia mais

2.3- Método Iterativo Linear (MIL)

2.3- Método Iterativo Linear (MIL) .3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que

Leia mais

Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática

Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Programa de Pós-Graduação em Matemática Mario Octavio Vera Campoverde Estudo de um Caso de Equilíbrio de Nash Usando Técnicas de Inequação

Leia mais

Experimentos Numéricos em Algoritmo tipo Projeção para o Problema de Viabilidade Convexa

Experimentos Numéricos em Algoritmo tipo Projeção para o Problema de Viabilidade Convexa UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE INFORMÁTICA HEBERT COELHO DA SILVA Experimentos Numéricos em Algoritmo tipo Projeção para o Problema de Viabilidade Convexa Goiânia 2007 HEBERT COELHO DA SILVA

Leia mais

Sobre a compacidade lógica e topológica

Sobre a compacidade lógica e topológica Sobre a compacidade lógica e topológica Hércules de Araujo Feitosa Mauri Cunha do Nascimento Marcelo Reicher Soares Resumo Os ambientes da Lógica e da Topologia têm a compacidade como uma propriedade importante.

Leia mais

184 Instituto de Matemática UFF

184 Instituto de Matemática UFF 184 Instituto de Matemática UFF Capítulo 4 Aplicações diferenciáveis 1 Diferenciabilidade de uma aplicação Definição 1.1. Uma aplicação f : U R n, definida no aberto U R m, é diferenciável no ponto a U

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

P1 de Análise Real ou Análise I Data: 16 de abril de 2008

P1 de Análise Real ou Análise I Data: 16 de abril de 2008 P1 de Análise Real ou Análise I 2008.1 Data: 16 de abril de 2008 Serão contadas as quatro melhores questões. 1. Seja (a n ) uma seqüência de números reais. Prove que se (a n ) 2 converge então a nn também

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Estimativa de Parte Relevante da Fronteira da Região de Estabilidade usando Função Energia Generalizada

Estimativa de Parte Relevante da Fronteira da Região de Estabilidade usando Função Energia Generalizada Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Estimativa de Parte Relevante da Fronteira da Região

Leia mais

Programação Matemática

Programação Matemática Programação Matemática Docentes: Ana Paula, Franklina e Maristela Instituto de Ciências Matemáticas e de Computação - ICMC Universidade de São Paulo USP (Material Elaborado por Aline Leão modificado por

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais