ELETRÔNICA INDUSTRIAL II. Parte 1

Tamanho: px
Começar a partir da página:

Download "ELETRÔNICA INDUSTRIAL II. Parte 1"

Transcrição

1 ELETRÔNICA INDUSTRIAL II Parte 1

2 Introdução Conversores CA / CC Os conversores CA-CC são amplamente utilizados, devido à necessidade freqüente de se obter tensões contínuas, a partir de tensões senoidais de entrada. Neste caso são muito comuns circuitos reguladores com transistores operando na região linear. À medida que a potência do conversor cresce, este tipo de projeto torna-se inconveniente, pois os dispositivos semicondutores tipo transistores, quando operam na região linear, apresentam maiores perdas de energia, por dissipação de calor. O uso de técnicas de chaveamento apresenta melhorias na eficiência do conversor uma vez que os dispositivos s semicondutores quando funcionam no modo chaveado, ou seja, corte e saturação, apresentando menores perdas do que quando atuam na região linear. De modo geral, um conversor eletrônico de potência é composto de um estágio de potência conectado a um estágio com circuitos eletrônicos que realiza a função de controle. O estágio de controle gera os pulsos para condução e corte das chaves semicondutoras de potência que podem ser transistores, bipolares, mosfets e IGBT s (Insulated Gate Bipolar Transistor) ou tiristores, tais como SCR(Silicon Controled Rectifier). Retificador Monofásico de Meia Onda a Diodo Retificador monofásico de meia onda alimentando carga resistiva. Para o exemplo em análise, retificador monofásico de meia onda com carga puramente resistiva, a corrente que circula pelo diodo possui a forma apresentada na figura a seguir: 1

3 O diodo encontra-se bloqueado (não conduz) durante o semi-ciclo negativo da tensão alternada de alimentação v(wt). Desse modo, somente os semi-ciclos positivos são aplicados à resistência de carga R. O valor médio da tensão na carga é dado por: 2 V Vo = 2 π Retificador monofásico de meia onda alimentando carga R-L. As formas de onda relativas à carga R-L estão representadas na figura a seguir: Devido a presença da indutância, o diodo não se bloqueia quando ωt=π. O bloqueio ocorre no ângulo β (ângulo de extinção), que é superior a π. Enquanto a corrente de carga não se anula, o 2

4 diodo se mantém em condução e a tensão de carga, para ângulos superiores a π, torna-se instantaneamente negativa. Retificador Monofásico de Onda Completa com Ponto Médio A estrutura do retificador monofásico de onda completa a diodo com ponto médio está representada na figura a seguir: Retificador monofásico de onda completa a diodo com ponto médio. Etapas de funcionamento. Durante o semiciclo positivo da tensão da rede (v), o diodo D 1 conduz e D 2 se mantém bloqueado. Durante o semiciclo negativo da tensão da rede, D 1 bloqueia e D 2 conduz a corrente de carga. As formas de onda correspondentes: 3

5 O valor médio da tensão na carga é dado por: V Vo = 2 π Retificador Monofásico de Onda Completa em Ponte A estrutura do retificador monofásico de onda completa em ponte, alimentando carga resistiva, é apresentada na figura a seguir: Retificador monofásico em ponte a diodos. Etapas de funcionamento. Durante a primeira etapa de funcionamento, a tensão de alimentação é positiva. Os diodos D1 e D4 são polarizados diretamente e conduzem a corrente de carga. Os diodos D2 e D3 encontram-se polarizados reversamente e permanecem bloqueados. 4

6 Durante a segunda etapa de funcionamento, os diodos D1 e D4 ficam bloqueados, enquanto D2 e D3 conduzem a corrente de carga. As formas de onda correspondentes: O valor médio da tensão na carga é dado por: V Vo = 2 π Percebe-se que a tensão média para ponto médio e configuração em ponte são as mesmas. Retificador Trifásico com Ponto Médio A estrutura apresentada na figura a seguir pode se considerada uma associação de três retificadores monofásicos de meia onda. Cada diodo é associado a uma das fases de rede de alimentação. Nesse tipo de retificador é indispensável o emprego do neutro do sistema de alimentação. 5

7 Retificador trifásico com ponto médio. As formas de onda representativas do comportamento da estrutura alimentando uma carga resistiva estão representadas na figura a seguir. Cada diodo do retificador conduz durante um intervalo de tempo que corresponde a 120 graus elétricos da tensão da rede. O valor médio da tensão na carga é dado por: V Vo = 2 π Retificador Trifásico de Onda Completa A ponte de Graetz, uma das estruturas mais empregadas industrialmente, encontra-se representada na figura a seguir: 6

8 Ponte trifásica completa a diodos - Ponte de Graetz. Para efeito de estudo, a ponte de Graetz pode ser considerada como uma associação série de dois retificadores trifásicos de ponto médio. Formas de onda: 7

9 Observando a figura anterior, podemos estabelecer as seguintes conclusões iniciais a respeito da figura. Cada diodo conduz durante um intervalo igual a 120 o ; Existem sempre dois diodos em condução, um no grupo positivo e outro no grupo negativo do conversor; Ocorre uma comutação a cada 60 o ; A freqüência da componente fundamental da tensão é igual a 6 vezes a freqüência das tensões de alimentação. O valor médio da tensão na carga é dado por: 3 2 V Vo = π Retificador Monofásico Controlado de Meia Onda O circuito e as formas de onda do retificador monofásico de meia onda a tiristor estão representados na figura seguinte: Circuito para o Retificador monofásico de meia onda a tiristor. Principais Formas de onda. No intervalo (0,α), o tiristor encontra-se bloqueado. A tensão de carga é nula. No instante ωt=α, o tiristor é disparado, por ação da corrente de gatilho (gate) ig. Assim, no intervalo (α,π), a tensão de carga é igual à tensão da fonte. 8

10 No instante ωt=π a corrente através do tiristor torna-se nula e o tiristor é então bloqueado. No intervalo (π,2π), a tensão da fonte torna-se negativa e o tiristor se mantém bloqueado. Portanto, durante este intervalo, a tensão e corrente de carga permanecem nulas. O valor médio da tensão na carga é dado por: 2 V Vo = (1 + cosα ) 2 π Retificador monofásico Controlado de meia onda alimentando carga R-L. Retificador de meia onda a tiristor alimentando carga R-L. Principais formas de onda. Neste caso, o ângulo de extinção da corrente através do tiristor é igual a β, maior que π. Desta forma, enquanto a corrente através do tiristor (idêntica à corrente de carga) não se anula, a tensão de carga se mantém igual à da fonte. Observa-se neste caso que, sendo o ângulo de extinção β maior que π, a tensão de carga assume valores negativos. Como conseqüência, o valor médio da tensão na carga se reduzirá, em relação àquele para carga puramente resistiva. 9

11 Retificador Monofásico Controlado de Onda Completa A estrutura do retificador monofásico em ponte completa está representada na figura a seguir: Retificador monofásico em ponte completa a tiristores. Retificadores controlados em ponte mista. A estrutura de onda completa com ponto médio está representada na figura a seguir. Para o funcionamento desta estrutura exige-se a presença de um transformador. Retificador monofásico de onda completa, com ponto médio, a tiristores. Todas as estruturas monofásicas de onda completa apresentadas comportam-se do mesmo modo quando alimentam uma carga resistiva. As principais formas de onda estão representadas na figura a seguir. 10

12 Formas de onda para carga resistiva, dos retificadores mostrados nas figuras anteriores. O valor médio da tensão na carga é dado por: 2 V Vo = (1 + cosα ) π Comportamento para Carga Indutiva Formas de onda para cargas R-L. Retificador Trifásico Controlado com Ponto Médio a Tiristor A estrutura do retificador trifásico como ponto médio a tiristor está representada na figura a seguir: Retificador trifásico controlado de ponto médio. 11

13 De acordo com a figura seguinte, na qual é representada a tensão de carga. Observar que para a estrutura trifásica, o ângulo de disparo é nulo quando duas ondas de tensão se interceptam e não quando a tensão passa por zero, como é o caso das estruturas monofásicas. Tensão na carga para α = 0 o Tensão na carga para α = 30 o Tensão na carga para α = 60 o, para o retificador de ponto médio. O valor médio da tensão na carga é dado por: V Vo = cosα 2 π 12

14 Comportamento com Carga Indutiva O valor médio da tensão na carga é dado por: V Vo = cosα 2 π Retificador Trifásico Controlado Configuração em Ponte a Tiristor A ponte de Graetz ou retificador trifásico de onda completa a tiristor, está representada na figura a seguir: Ponte de Graetz a tiristor. 13

15 Formas de onda do funcionamento: 14

16 Tensões de linha da rede, Tensões na carga para: (a) α = 0( ωt = 60 o ); (b) α = π /3( ωt = 120 o ); (c) α > π /3. O valor médio da tensão na carga é dado por: 3 2 V Vo = cosα π Ponte Trifásica Mista Nas aplicações onde não se deseja a operação em dois quadrantes (ou seja, aplicações apenas como retificador), é recomendável o emprego da ponte mista, representada na figura 3.48, em substituição à ponte completa.isto reduz o custo da implementação da estrutura, pelas seguintes razões: Utiliza circuitos de comandos mais simples; Emprega apenas 3 tiristores, associados em ponte a 3 diodos. Ponte trifásica mista. 15

17 Conversores CC-CC Em certas aplicações, algumas vezes é necessário transformar uma tensão cc em outra com magnitude diferente, seja em trens ou metrôs onde uma tensão de cerca de 4000V do sistema de distribuição é transformada em 300V na alimentação de um motor cc, ou um inversor, ou então, a partir de 12V alimentar um equipamento de 120V. Em sistemas de corrente alternada esta operação de baixar, ou elevar a tensão é facilmente feito com um transformador. Em sistemas em cc a situação é bem diferente, e requer o uso de um conversor chaveado. Estruturas estáticas feitas de chaves ativas e idealmente sem perdas que convertem uma tensão contínua em uma outra com certa magnitude. O dispositivo semicondutor opera a uma freqüência alta, quando comparado com variações na tensão de entrada. É possível o uso de filtros passa-baixa para retirar componentes indesejáveis na tensão devido ao chaveamento. Aplicações: Os conversores cc-cc são usados em fontes para computadores, TV, vídeos, aplicam-se também em tração de carros elétricos. Permitem freios regenerativos com economia de energia em sistemas com freqüentes partidas e paradas. Têm ampla aplicação como reguladores de tensão contínua, carregadores de bateria. Aplicados também em sistemas para aproveitamento de energias renováveis. Princípio de Operação Calculo da tensão média: ton Vo = V T 16

18 CONVERSORES CA-CA Veremos os conversores que, a partir de uma tensão de entrada alternada, produzem na saída uma tensão também alternada, mas de potência variável na saída. Como aplicações típicas podem-se citar, dentre outras: aquecimento (controle de temperatura); reguladores de tensão; controle de intensidade luminosa em lâmpadas incandescentes; acionamento de motores CA; partida suave de motores de indução; compensação de reativos em sistemas de potência (RCT, CCT). Os dispositivos semicondutores de potência empregados em tais conversores são, tipicamente tiristores, uma vez que se pode contar com a ocorrência de comutação natural. Em aplicações de baixa potência pode-se fazer uso de TRIACs, enquanto para potência mais elevada utilizam-se 2 SCRs em antiparalelo, como mostra a figura a seguir. Variador de tensão CA (monofásico) com TRIAC e com SCR. Controle Liga-Desliga Este tipo de controle é usado em situações em que a constante de tempo da carga é muito grande em relação ao período da rede CA, como em sistemas de aquecimento. O controle consiste simplesmente em ligar e desligar a alimentação da carga (em geral uma resistência). O intervalo de condução e também o de bloqueio do interruptor é tipicamente de muitos ciclos da rede. Quando a carga é do tipo resistivo, tanto o início da condução quanto seu final podem ocorrer em situações em que tensão e corrente são nulas (início e final de cada semiciclo da rede) tem-se, então, o chamado controle por ciclos inteiros. Sua vantagem é o de praticamente eliminar problemas de Interferência Eletromagnética (IEM) devido a baixos valores de di/dt e dv/dt produzidos por este tipo de modulação. Escolhe-se uma base de tempo contendo muitos ciclos da tensão de alimentação. Dentro do período escolhido, a duração do fornecimento de potência à carga varia desde um número máximo inteiro de semiciclos até zero. A precisão do ajuste depende, assim, da base de tempo utilizada. Por exemplo, numa base de 1 segundo existem 120 semiciclos. O ajuste da tensão aplicada à carga pode ter uma resolução mínima de 1/

19 Um método de se conseguir o controle é usar um gerador de sinal triangular, de freqüência fixa que é comparado com um sinal CC de controle. O sinal dente de serra estabelece a base de tempo do sistema. O sinal de controle CC vem do circuito de controle da temperatura. A potência entregue à carga varia proporcionalmente a este sinal. A figura 10.2 ilustra este funcionamento. Durante n ciclos a carga permanece conectada à alimentação, enquanto fica m desconectada. Tensão sobre a carga Controle de fase No chamado Controle de Fase, em um dado semiciclo da rede, o interruptor (tiristor) é acionado em um determinado instante, fazendo com que a carga esteja conectada à entrada por um intervalo de tempo menor ou igual a um semiciclo. Os valores de tensão, corrente e potência na carga dependerão, não apenas de ângulo de disparo, mas também do tipo de carga alimentada. 18

20 Circuito e forma de onda de variador de tensão CA monofásico alimentando carga resistiva Inversores CC CA O inversor é uma estrutura que possibilita a obtenção de energia processada eletronicamente de forma alternada (CA) a partir de uma fonte de alimentação contínua (CC) e de entregar parte, ou idealmente toda esta energia às mais diferentes formas de carga. Ou seja, através do inversor pode-se realizar uma conversão CC - CA entre o elemento gerador e o elemento consumidor de uma determinada fonte de energia. Conversão DC/AC Através do chaveamento de transistores em um circuito trifásico, vamos fazer uma "prévia", em um circuito monofásico. Observem a figura abaixo, e notem que a estrutura de um inversor trifásico é praticamente igual ao nosso modelo monofásico. A primeira etapa é o módulo de retificação e filtragem, que gera uma tensão DC fixa (barramento DC) e que alimenta os transistores IGBT's. 19

21 Imaginem agora que o circuito de lógica de controle ligue os transistores 2 a 2 na seguinte ordem: Primeiro tempo - transistores Tl e T4 ligados, e T3 e T2 desligados. Nesse caso, a corrente circula no sentido de A para B (figura abaixo): Segundo tempo - transistores T1 e T4 desligados, e T3 e T 2 ligados. Nesse caso, a corrente circula no sentido de B para A (figura abaixo). Ao inverter-se o sentido de corrente, a tensão na carga (motor) passa a ser alternada, mesmo estando conectada a uma fonte DC. Caso aumentemos a freqüência de chaveamento desses transistores, também aumentaremos a velocidade de rotação do motor, e vice-versa. Como os transistores operam como chaves (corte ou saturação), a forma de onda de tensão de saída do inversor de freqüência é sempre quadrada. Na prática, os transistores chaveiam modulando largura de pulso (PWM), a fim de se obter uma forma de onda de tensão mais próxima da senoidal. Curva V/F Como vimos anteriormente, se variarmos a freqüência da tensão de saída no inversor, alteramos na mesma proporção, a velocidade de rotação do motor. Normalmente, a faixa de variação de freqüência dos inversores fica entre 0,5 e 400 Hz, dependendo da marca e modelo. (Obs: para trabalhar em freqüências muito altas, o motor deve ser preparado ). A função do inversor de freqüência, entretanto, não é apenas controlar a velocidade de um motor AC. Ele precisa manter o torque (conjugado) constante para não provocar alterações na rotação quando o motor estiver com carga. Um exemplo clássico desse problema é em uma máquina operatriz. Imaginem um inversor controlando a velocidade de rotação de uma placa (parte da máquina onde a peça a 20

22 ser usinada é fixada) de um torno. Quando introduzimos a ferramenta de corte, uma carga mecânica é imposta ao motor, que deve manter a rotação constante. Caso a rotação se altere, a peça pode apresentar um mau acabamento de usinagem. Para que esse torque realmente fique constante, por sua vez, o inversor deve manter a razão V/F (Tensão Freqüência) constante. Isto é, caso haja mudança de freqüência, ele deve mudar (na mesma proporção) a tensão, para que a razão se mantenha, como por exemplo: F = 50Hz V = 300V V/F = 6 Situação 1: O inversor foi programado para enviar 50 Hz ao motor, e sua curva V/F está parametrizada em 6. Automaticamente, ele alimenta o motor com 300 V; F = 60Hz V = 360V V/F = 6 Situação 2: O inversor recebeu uma nova instrução para mudar de 50 Hz para 60 Hz. Agora a tensão passa a ser 360 V e a razão V/F mantém-se em 6. O valor de V/F pode ser programado (parametrizado) em um inversor, e seu valor dependerá da aplicação. Quando o inversor necessita de um grande torque, porém não atinge velocidade muito alta, atribuímos a ele o maior V/F que o equipamento puder fornecer, e desse modo ele terá um melhor rendimento em baixas velocidades, além de alto torque. Já no caso em que o inversor deva operar com altas rotações e com torques não tão altos, parametrizamos um V/F menor e encontraremos o melhor rendimento para Essa outra situação. Mas, como o inversor pode mudar a tensão V se ela é fixada no barramento DC, através da retificação e filtragem da própria rede? O inversor altera a tensão V oriunda do barramento DC, através da modulação por largura de pulso (PWM). A unidade lógica, além de distribuir os pulsos aos IGBT's do modo já estudado, também controla o tempo em que cada IGBT permanece ligado (ciclo de trabalho). Quando V tem que aumentar,os pulsos são alargados (maior tempo em 0N) Quando V tem que diminuir, os pulsos são estreitados. Dessa forma, a tensão eficaz entregue ao motor pode ser controlada. A frequência de PWM também pode ser parametrizada, e geralmente encontra-se entre 2,5 khz e 16 khz. Na medida do possível, devemos deixá-la próximas do limite inferior, pois, assim Diminuímos as interferências eletromagnéticas geradas pelo sistema (EMI). Inversor Vetorial Podemos classificar os inversores em dois tipos: inversores escalares e vetoriais. Os escalares e vetoriais possuem a mesma estrutura de funcionamento, mas a diferença esta no modo em que o torque é controlado. Nos inversores escalares, como dissemos anteriormente, a curva V/F é fixada (parametrizada), tomando como base o tipo de regime de trabalho em que o inversor irá operar. Existe porém, uma condição problemática que é justamente o ponto crítico de qualquer sistema de acionamento AC: as baixas rotações. O sistema AC não consegue um bom torque com velocidades baixas, devido ao próprio rendimento do motor AC. Para compensar esse fenômeno, desenvolveu-se o inversor de freqüência vetorial. Muito mais caro e complexo que o escalar, ele não funciona com uma curva V/F pré-fixada (parametrizada). 21

23 Na verdade ele varia tensão e freqüência, de modo a otimizar o torque para qualquer condição de rotação (baixa ou alta). É como se ficássemos parametrizando a cada ms, uma nova curva V/F para cada nova situação. O inversor vetorial controla V/F através das correntes de magnetização e rotórica do motor. Normalmente um tacômetro, ou um encoder é utilizado como sensores de velocidade, formando uma "malha fechada" de controle de velocidade. Existem, porém os inversores vetoriais sensorless, que não utilizam sensores de velocidade externos. Modulação PWM Agora que já temos uma boa idéia do motor de corrente alternada, vamos a outro conceito fundamental para entendermos o inversor: a técnica de PWM, que significa "Pulse Width Modulation". Se traduzirmos a sigla PWM para português temos "modulação por largura de pulso". Ela é uma técnica de controle de potência, tensão, ou corrente através da largura do pulso de excitação oriundos dos sistemas de controle. Esse controle é feito através do seu ciclo de trabalho (Duty Cycle). O ciclo de trabalho é uma característica de um sinal quadrado que representa a porcentagem ativa do seu período. Podemos entender melhor o processo através da Figura a seguir. Nela notamos três sinais cuja forma de onda é quadrada. A amplitude dos três também é a mesma, no exemplo, igual a 5 Vcc. Como os três têm mesmo período, então, a freqüência tem o mesmo valor para todos (f = 1=T). Se os sinais têm a mesma forma-de-onda, mesma amplitude, e mesma freqüência, qual a diferença a entre eles? O ciclo de trabalho. O primeiro sinal tem o seu ciclo divido em duas partes iguais: metade "ativa"(on), e metade "desativada"(off ). Nesse caso temos um ciclo de trabalho de 50%, ou 0,5. Já, na segunda situação, apenas 30% do total do período, está em "ON", portanto, temos um ciclo de trabalho igual a 30%. E, naturalmente, na terceira situação um ciclo de 70%. Ciclo de Trabalho "E para que isso serve? "Podemos controlar a tensão sob uma carga através desta técnica. Imaginem, ainda com base no exemplo anterior, que o sinal de ciclo de trabalho de 50% fosse aplicado a uma lâmpada, o de 30% em outra, e o de 70% em uma terceira (todas com as mesmas características). A primeira lâmpada teria um brilho médio, a segunda pouco brilho, e a terceira seria a mais brilhante. 22

24 Como isso aconteceu se não variamos a amplitude? A resposta a esta pergunta é justamente a razão de ser da técnica de controle da potência através da largura de pulso, e não da amplitude. Em outras palavras, variamos sim a tensão, mas a eficaz, e não a tensão da fonte de alimentação. Esta permanece invariável. Com a técnica de PWM, então, podemos alterar a tensão eficaz na carga sem alterar a tensão na fonte. Como isto pode ser feito na prática? A figura a seguir mostra um amplificador operacional em malha aberta (sem realimentação). Desta maneira ele se comporta como um comparador de tensão. Em sua saída, como o ganho é infinito, ou temos toda a tensão da fonte (+ Vcc), ou nada (0 Volt, terra). Depende apenas de qual sinal tem maior amplitude em determinado momento. Conforme se pode observar, tem-se um sinal dente-de-serra na entrada inversora, e um sinal perfeitamente contínuo fixo na entrada não inversora (também conhecida como entrada de referência). O resultado é que entre to e t1 a tensão na entrada não inversora é maior que a inversora, levando a saída do AmpOp para saturação (+ Vcc). Já entre t1 e t2, a tensão dente-de-serra supera a referência, levando agora a saída a zero Volt. Ou seja, a saída do circuito de função da comparação entre os sinais, e a largura do pulso depende do nível da tensão cc de referência. Técnica PWM Na Figura a seguir aumentou-se o valor da entrada não inversora, e, consequentemente, a largura do pulso também, uma vez que se modificou o ponto de intersecção entre o sinal dente-de-serra e o de referência. 23

25 CIRCUITO INTEGRADO DE DISPARO TCA785 A finalidade desse circuito integrado é a de facilitar o projeto de circuitos de disparo e torná-los mais compactos e confiáveis. Podemos dizer que todo circuito de disparo, em retificadores controlados, deve ser sincronizado com a rede, ou ocorrerá o disparo aleatório dos tiristores, uma vez que cada pulso será aplicado num instante diferente, que não está relacionado com a tensão da rede. 24

26 Detector da passagem por zero Um ponto de referência para o sincronismo é a passagem da rede por zero. Isto ocorre a cada 8,33ms, aproximadamente, em redes de 60Hz. No TCA 785, existe um detector da passagem por zero(bloco DPZ), que gera um pulso de sincronismo toda vez que a tensão da rede passa por zero. Referência para detector de passagem por zero A fonte de alimentação para os circuitos internos é de 3,1V, regulada pelo próprio TCA785, a partir da tensão de alimentação do circuito integrado (Vs). Podendo assim a alimentação variar de 8V à 18V. A tensão de 3,1V também está disponível externamente (pino 8). Gerador de rampa O gerador de rampa fornece uma tensão que varia linearmente com o tempo (reta). OU seja, a tensão dobra se o intervalo de tempo dobrar. A característica do sincronismo do gerador de rampa é ajustada através dos pinos 9 e 10 por Rr e Cr. Monitor de descarga Toda vez que tivermos uma descarga do capacitor (momento em que transistor satura) nós teremos um pulso através do monitor de descarga, liberando assim um sinal para memória de sincronização. Comparador de disparo A tensão da rampa Vcr é comparada com a tensão Vc, no pino 11 do TCA785, teremos na subida da rampa (carga do capacitor) nível 1 em Vd, quando a tensão da rampa (Vcr) for maior que a tensão de controle teremos uma mudança de sinal indicando ao bloco lógica de formação de pulsos, que uma um pulso de disparo deve ser acoplado em uma de suas saídas. 25

27 Fonte de corrente constante Proporciona a fonte de corrente para a carga e descarga do capacitor. Transistor de descarga Transistor que quando saturado vai proporcionar a descarga do capacitor de tempo da rampa. Registrador de sincronismo Irá gerar um pulso de sincronismo que saturará o transistor de descarga do capacitor. Para liberar este pulso ele também precisa do pulso de sincronismo com a rede 26

28 27

29 Sensores São dispositivos que mudam seu comportamento, sob a ação de uma grandeza física, podendo fornecer diretamente ou indiretamente um sinal que indica esta grandeza. Quando operam diretamente, convertendo uma forma de energia neutra, são chamados transdutores. Os de operação indireta alteram suas propriedades, como a resistência, a capacitância ou a indutância, sob ação de uma grandeza, de forma mais ou menos proporcional. O sinal de um sensor pode ser usado para detectar e corrigir desvios em sistemas de controle, e nos instrumentos de medição, que freqüentemente estão associados aos SC de malha aberta (não automáticos), orientando o usuário. Características Linearidade: É o grau de proporcionalidade entre o sinal gerado e a grandeza física. Quanto maior, mais fiel é a resposta do sensor ao estímulo. Os sensores mais usados são os mais lineares, conferindo mais precisão ao SC. Os sensores não lineares são usados em faixas limitadas, em que os desvios são aceitáveis, ou com adaptadores especiais, que corrigem o sinal. Faixa de atuação: É o intervalo de valores da grandeza em que pode ser usado o sensor, sem destruição ou imprecisão. Sensores de Temperatura O controle de temperatura é necessário em processos industriais ou comerciais, como a refrigeração de alimentos e compostos químicos, fornos de fusão (produção de metais e ligas, destilação fracionada (produção de bebidas e derivados de petróleo), usinas nucleares e aquecedores e refrigeradores domésticos (fornos elétricos e microondas, freezer e geladeiras)). Termistores NTC Termistores são controladores de modo térmico resistores sensíveis cuja função principal é exibir uma mudança grande, previsível e precisa em resistência elétrica quando um equipamento ou produto sofrer uma mudança na temperatura de corpo. Coeficiente de Temperatura negativo (NTC) (Negative Temperature Coefficient) exibem uma diminuição em resistência elétrica quando submetido a um aumento em temperatura do equipamento e Coeficiente de Temperatura Positivo (PTC) (Positive Temperature Coefficient) exibem um aumento em resistência elétrica quando acontece a um aumento da temperatura do equipamento que está contido o termistor. Os termistores são capazes de operar em temperatura abaixo de -100 a mais de +600 Fahrenheit. Por causa das características muito previsíveis deles e o excelente termo estabilidade longa deles, os termistores são os mais recomendados para medida de temperatura e controle de qualquer equipamento. A característica mais importante de um termistor é, sem dúvida, seu coeficiente de 28

30 temperatura extremamente de resistência alta. Tecnologia de um termistor moderno resulta na produção de dispositivos com resistência extremamente preciso contra características de temperatura, lhes fazendo o sensor mais vantajoso para uma variedade larga de aplicações. O processo de fabricação dos NTCs é semelhante ao de fabricação das cerâmicas. Depois de uma mistura intensiva e do acréscimo de um agregante plástico, a massa é moldada na forma desejada, ou extrusão para obter tarugos ou por pressão para obter discos e aquecida a uma temperatura suficientemente alta, para sintetizar os óxidos constituintes. Depois, os contatos são colocados queimando-se os elementos e utilizando-se pasta de prata. Muitos tipos de encapsulamentos são utilizados conforme, dependendo da aplicação final do componente. Os tipos miniaturas, de menor capacidade térmica e maior prontidão são usados nas medidas de temperatura (NTCs termoelétricos), enquanto que os maiores são usados no controle de dispositivos diversos, por exemplo em alarmes e termostatos. Termistores PTC Termistores PTC O termistor PTC é um resistor termicamente sensível feito de material cerâmico, a base de titanato de bário. Sua resistência elétrica aumenta rapidamente com o aumento da temperatura, depois que uma determinada temperatura (temperatura de referencia ou de transição) tenha sido ultrapassada. Características Elétricas do Termistor PTC: A relação resistência x temperatura em um termistor PTC pode ser considerada em três partes distintas. A região abaixo de zero grau até Rmax apresenta coeficiente de temperatura positivo atingindo valores tão altos quanto 200% /C. Acima de Rmax o coeficiente de temperatura volta a assumir valores negativos. Característica Tensão / Corrente A curva (VxI) de um PTC é fortemente influenciada pelas condições de dissipação de potencia do componente assim como pelas condições ambientes. Normalmente adota-se a temperatura de 25 C sob ar circulante para se levantar a curva (VxI) para o PTC. Aplicações do PTC: - Sensores de Temperatura: Medindo a temperatura de equipamentos - PTC de aquecimento: Utilizado em equipamentos de aquecimentos como chapinhas para cabelos, desumidificador de papel. -PTC de proteção de motores ou termostatos: Usado junto ao enrolamento das bobinas dos motores indicando a temperatura para um rele de proteção. - PTC para surto de corrente: Quando acontece um curto-circuito ou uma condição de elevação de corrente, o PTC sofre uma transição para seu estado de alta resistência ôhmica limitando o fluxo de corrente no circuito, mantendo-o em nível de operação normal. 29

31 Sensores RTD RTD é abreviação inglesa de Resistance Temperature Detector. A base do funcionamento é o conhecido fenômeno da variação da resistência elétrica dos metais com a temperatura. Os metais mais usados são platina, níquel, cobre, ferro, molibdênio e/ou ligas dos mesmos. Embora os sensores vistos nos tópicos anteriores usem princípios similares, em geral eles não são classificados como RTD s, uma vez que os elementos resistivos não são metais, mas sim óxidos e semicondutores. Esboços dos dois tipos comuns de RTD Em (a), o RTD de fio (o fio metálico é enrolado em forma de espiral dentro de um tubo cerâmico com suportes e outros detalhes não mostrados). Em (b), o RTD de filme (um filme metálico é depositado sobre uma placa de cerâmica). O RTD de filme é também colocado no interior de um tubo para proteção. O resultado prático é uma variação bastante pequena de resistência e circuitos adequados devem ser usados. Ver no gráfico a comparação com um termistor típico. É praxe a especificação térmica de um RTD ser dada pelo coeficiente médio (α) de temperatura na faixa de 0 a 100ºC. Pequenas proporções de impurezas ou elementos de liga podem afetar consideravelmente o coeficiente de temperatura. Algumas vezes, impurezas são propositalmente adicionadas para contrabalançar o efeito de impurezas existentes de difícil remoção. Embora, para o caso de RTDs, seja desejável a maior variação possível de resistência com a temperatura, em outros casos deve ser o contrário. Exemplo: uma liga de 84% Cu 12% Mn 4% Ni quase não apresenta variação com a temperatura. É usada para fabricar 30

32 resistores de precisão. Segue tabela comparativa para alguns metais e ligas mais usados. Metal Faixa ºC Alfa Observações Cobre Cu 200/260 0,00427 Baixo custo. Molibdênio Mo 200/200 0,00300 e 0,00385 Opção de menor custo p/ Pt em faixa limitada. Níquel Ni 80/260 0,00672 O custo é baixo, mas a faixa é limitada. Níquelferro Fe Ni- 200/200 0,00518 Baixo custo. Platina Pt 240/660 0,00385 e 0,00392 Boa precisão. Sensores Termopares Os sensores anteriores operam basicamente pela variação da resistência elétrica com a temperatura. Isso significa que uma corrente elétrica deve ser fornecida ao elemento sensor. O termopar opera de modo completamente diverso. Ele gera uma tensão elétrica que tem relação com a diferença de temperaturas entre junções de metais diferentes. A Figura dá o esquema básico do funcionamento. A junção da extremidade é a junção de medição e fica fisicamente no local do qual se deseja medir a temperatura. As duas junções de conexão dos fios para o dispositivo de medição são as junções de referência ou junções frias. Embora sejam duas, na realidade podem ser consideradas únicas, pois o metal em ambos os condutores é o mesmo (cobre normalmente). Além da tensão provocada pela diferença de temperaturas entre junções, há a parcela gerada pelo gradiente de temperatura ao longo dos fios. Ao contrário da primeira, ela tem uma relação quadrática com a temperatura e é responsável pela relação não linear do dispositivo. Notar que junções na mesma temperatura não afetam a saída. Assim, elas podem ser soldadas (as junções produzidas pelo metal da solda estão na mesma temperatura). Vantagens e desvantagens Termopares geram sua própria tensão, não requerem corrente de excitação (isso significa 31

33 que não há erros por auto-aquecimento, que podem ocorrer com os anteriores). São simples, robustos, imunes a vibrações, fáceis de construir, operam em ampla faixa de valores. Por essas características, são amplamente usados em equipamentos industriais. Certamente as principais desvantagens são o baixo nível da saída (valores típicos estão na faixa de 50 mv), a não linearidade e a necessidade de compensação da temperatura da junção de referência. Com níveis tão baixos de tensão, cuidados devem ser tomados para evitar ação de interferências (blindagens, fios trançados, etc). Dois exemplos de arranjos de termopares. Em (a), o elemento é colocado no interior de um tubo (aço inox com peças internas de cerâmica para evitar contato elétrico para temperaturas mais altas). Essa construção dá alguma proteção contra ação do meio. Em (b), o elemento é envolvido por uma barra cerâmica, deixando somente a junção exposta. Há menor proteção, mas as respostas às variações são mais rápidas. A tabela abaixo relaciona alguns tipos de termopares mais usados. Tipo Positivo Negativo Precisão Faixa Observações B Pt 30%Rh Pt 6%Rh 0,5% 50 a >800 C 1820 Para altas temperaturas. C W 5%Re W 26%Re 1% >425 C 0 a 2315 Para temperaturas muito altas. D W 3%Re W 25%Re 1% >425 C 0 a 2315 Para temperaturas muito altas. E Ni 10%Cr Cu 45%Ni 0,5% ou 270 a Uso geral para temperaturas 1,7 C 1000 médias e baixas. G W W 26%Re 1% >425 C 0 a 2315 Para temperaturas muito altas. J Fe Cu 45%Ni 0,75% ou 210 a Alta temperatura em atmosfera 2,2 C 1200 redutora. K Ni 10%Cr Ni 2%Al 2%Mn 1%Si M Ni Ni 18%Mo N Ni 14%Cr 1,5%Si R Pt 13%Rh Pt Ni 4,5%Si 0,1%Mg 0,75% ou 2,2 C 0,75% ou 2,2 C 0,75% ou 2,2 C 0,25% ou 1,5 C 270 a a a a 1768 Uso geral, alta temperatura em atmosfera oxidante. Substituto melhor para o tipo K De precisão, para alta temperatura. 32

34 S Pt 10%Rh Pt 0,25% ou 1,5 C 0,75% ou 1,0 C 50 a a 400 De precisão, para alta temperatura Uso geral p/ baixa temperatura, resistente à umidade T Cu Cu 45%Ni Compensação Conforme já dito, a tensão do termopar é função da diferença de temperaturas das junções de medição e de referência. Por estar junto do equipamento, a temperatura desta última é normalmente acima da temperatura ambiente. E o que se deseja saber é a temperatura da junção de medição e não essa diferença. Um meio de se evitar isso é o uso de cabos especiais, dos mesmos metais dos elementos do termopar ou ligas com características termoelétricas similares. Assim, eletricamente não há a junção de referência. É como se o termopar se estendesse até o dispositivo de medição. Outra possibilidade são circuitos de compensação conforme Figura 03, que dispensam cabos especiais, podendo ser usados condutores de cobre. As junções de referência devem estar em um bloco de material isolante com alguma condutividade térmica, de forma que um sensor (termistor ou RTD) capta a temperatura real da junção. Na medição analógica (a), o sinal do sensor de temperatura é amplificado para um nível tal que o somador compensa a tensão gerada pela junção de referência. No arranjo digital (b) o circuito de medição faz o processamento. É uma solução melhor. Em caso de mudança do tipo de termopar, o ajuste pode ser facilmente executado via software. O circuito de medição também deve compensar a não linearidade da função tensão x temperatura do termopar. Termopares também podem ser ligados em série, formando uma termopilha. Com isso, a tensão de saída é aumentada, amenizando o problema da baixa tensão individual. 33

35 No diagrama da figura acima, a tensão V é proporcional à diferença de temperaturas Ta - Tb. Termopilhas com dezenas ou centenas de termopares são usadas em instrumentos como medidores de fluxo de calor, radiômetros e outros. Podem ser construídas com fios ou outras técnicas como eletrodeposição. O efeito termoelétrico também pode ser usado para gerar energia. Geradores termoelétricos foram usados em algumas sondas espaciais. Com termopilhas e ligas especiais para maximizar a corrente. A fonte de calor é um material radioativo como o plutônio e o resfriamento é dado pela dissipação no espaço. Geradores desse tipo podem fornecer dezenas de watts por vários anos. Entretanto, os perigos da radioatividade impedem o emprego em outras áreas. O termopar pode operar de forma inversa, isto é, se uma corrente é aplicada no mesmo, uma junção aquece e a outra esfria. Isso é chamado efeito Peltier e é usado em pequenos dispositivos de refrigeração. 34

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 Curso Técnico em Eletrônica Eletrônica Industrial Apostila sobre Modulação PWM Prof. Ariovaldo Ghirardello INTRODUÇÃO Os controles de potência,

Leia mais

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA)

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA) ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA) 1. Introdução 1.1 Inversor de Frequência A necessidade de aumento de produção e diminuição de custos faz surgir uma grande infinidade de equipamentos desenvolvidos

Leia mais

CENTRO DE UNIVERSITÁRIO DE ARARAQUARA

CENTRO DE UNIVERSITÁRIO DE ARARAQUARA CENTRO DE UNIVERSITÁRIO DE ARARAQUARA Inversor de frequência Grupo: Energe Introdução FEC Uniara - 2012- Eng. Elétrica O presente trabalho abordará sobre inversor de frequência, um dispositivo capaz de

Leia mais

Eletrônica Analógica e de Potência

Eletrônica Analógica e de Potência Eletrônica Analógica e de Potência Conversores CC-CC Prof.: Welbert Rodrigues Introdução Em certas aplicações é necessário transformar uma tensão contínua em outra com amplitude regulada; Em sistemas CA

Leia mais

Tutorial de Eletrônica Aplicações com 555 v2010.05

Tutorial de Eletrônica Aplicações com 555 v2010.05 Tutorial de Eletrônica Aplicações com 555 v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro.

Introdução. Criar um sistema capaz de interagir com o ambiente. Um transdutor é um componente que transforma um tipo de energia em outro. SENSORES Introdução Criar um sistema capaz de interagir com o ambiente. Num circuito eletrônico o sensor é o componente que sente diretamente alguma característica física do meio em que esta inserido,

Leia mais

Disciplina: Eletrônica de Potência (ENGC48)

Disciplina: Eletrônica de Potência (ENGC48) Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina: Eletrônica de Potência (ENGC48) Tema: Conversores CA-CC Monofásicos Controlados Prof.: Eduardo Simas eduardo.simas@ufba.br

Leia mais

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA 26. Com relação aos materiais semicondutores, utilizados na fabricação de componentes eletrônicos, analise as afirmativas abaixo. I. Os materiais semicondutores

Leia mais

Universidade Paulista - UNIP Instituto de Ciência Exatas e Tecnológicas Curso de Engenharia Elétrica Modalidade Eletrônica. Instrumentação e Controle

Universidade Paulista - UNIP Instituto de Ciência Exatas e Tecnológicas Curso de Engenharia Elétrica Modalidade Eletrônica. Instrumentação e Controle Universidade Paulista - UNIP Instituto de Ciência Exatas e Tecnológicas Curso de Engenharia Elétrica Modalidade Eletrônica Instrumentação e Controle TERMORESISTENCIAS 1.0 TERMORESISTENCIAS 1.1 Introdução

Leia mais

BACHARELADO EM ENGENHARIA ELÉTRICA Disciplina: Instrumentação Eletrônica Prof.: Dr. Pedro Bertemes Filho

BACHARELADO EM ENGENHARIA ELÉTRICA Disciplina: Instrumentação Eletrônica Prof.: Dr. Pedro Bertemes Filho Definição: Termoresistores (RTD) São metais condutores que variam sua resistência ôhmica com a temperatura (dado que sua geometria é bem definida e conhecida). Equação: R T R n a T a T 2 a T n 0 1 1 Onde:

Leia mais

Bloco 3 do Projeto: Comparador com Histerese para Circuito PWM

Bloco 3 do Projeto: Comparador com Histerese para Circuito PWM Bloco 3 do Projeto: Comparador com Histerese para Circuito PWM O circuito de um PWM Pulse Width Modulator, gera um trem de pulsos, de amplitude constante, com largura proporcional a um sinal de entrada,

Leia mais

ni.com Série de conceitos básicos de medições com sensores

ni.com Série de conceitos básicos de medições com sensores Série de conceitos básicos de medições com sensores Medições de temperatura Renan Azevedo Engenheiro de Produto, DAQ & Teste NI Henrique Sanches Marketing Técnico, LabVIEW NI Pontos principais Diferentes

Leia mais

Disciplina Eletrônica de Potência (ENGC48) Tema: Conversores de Corrente Contínua para Corrente Alternada (Inversores)

Disciplina Eletrônica de Potência (ENGC48) Tema: Conversores de Corrente Contínua para Corrente Alternada (Inversores) Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina Eletrônica de Potência (ENGC48) Tema: Conversores de Corrente Contínua para Corrente Alternada (Inversores)

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS

ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS ABAIXO ENCONTRAM-SE 10 QUESTÕES. VOCÊ DEVE ESCOLHER E RESPONDER APENAS A 08 DELAS 01 - Questão Esta questão deve ser corrigida? SIM NÃO Um transformador de isolação monofásico, com relação de espiras N

Leia mais

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos CONVERSORES E CONTROLADORES DE FASE Um conversor é um equipamento utilizado para converter potência alternada em potência contínua. Num conversor simples, que usa somente diodos retificadores, a tensão

Leia mais

Inversor de Freqüência

Inversor de Freqüência Descrição do Funcionamento. Inversor de Freqüência Atualmente, a necessidade de aumento de produção e diminuição de custos, se fez dentro deste cenário surgir a automação, ainda em fase inicial no Brasil,

Leia mais

SENSORES DISCIPLINA DE MATERIAIS ELÉTRICOS. ALUNOS: André Sato Érico Noé Leandro Percebon

SENSORES DISCIPLINA DE MATERIAIS ELÉTRICOS. ALUNOS: André Sato Érico Noé Leandro Percebon SENSORES DISCIPLINA DE MATERIAIS ELÉTRICOS ALUNOS: André Sato Érico Noé Leandro Percebon Indrodução SENSORES são dispositivos que mudam seu comportamento sob a ação de uma grandeza física, podendo fornecer

Leia mais

Filtros de sinais. Conhecendo os filtros de sinais.

Filtros de sinais. Conhecendo os filtros de sinais. Filtros de sinais Nas aulas anteriores estudamos alguns conceitos importantes sobre a produção e propagação das ondas eletromagnéticas, além de analisarmos a constituição de um sistema básico de comunicações.

Leia mais

3 Transdutores de temperatura

3 Transdutores de temperatura 3 Transdutores de temperatura Segundo o Vocabulário Internacional de Metrologia (VIM 2008), sensores são elementos de sistemas de medição que são diretamente afetados por um fenômeno, corpo ou substância

Leia mais

Técnico em Eletrotécnica

Técnico em Eletrotécnica Técnico em Eletrotécnica Caderno de Questões Prova Objetiva 2015 01 Em uma corrente elétrica, o deslocamento dos elétrons para produzir a corrente se deve ao seguinte fator: a) fluxo dos elétrons b) forças

Leia mais

Imprimir. Influência das Harmônicas na Alimentação de Dispositivos Eletrônicos: Efeitos, e como eliminá-los

Imprimir. Influência das Harmônicas na Alimentação de Dispositivos Eletrônicos: Efeitos, e como eliminá-los 1/ 9 Imprimir PROJETOS / Energia 20/08/2012 10:20:00 Influência das Harmônicas na Alimentação de Dispositivos Eletrônicos: Efeitos, e como eliminá-los Na primeira parte deste artigo vimos que a energia

Leia mais

Motores de Indução ADRIELLE DE CARVALHO SANTANA

Motores de Indução ADRIELLE DE CARVALHO SANTANA ADRIELLE DE CARVALHO SANTANA Motores CA Os motores CA são classificados em: -> Motores Síncronos; -> Motores Assíncronos (Motor de Indução) O motor de indução é o motor CA mais usado, por causa de sua

Leia mais

MANUAL DE INSTRUÇÕES EFA72C35-A/00

MANUAL DE INSTRUÇÕES EFA72C35-A/00 Histórico N. Doc. Revisão Data Descrição Aprovado 601165 A 24/01/14 Inicial Faria Executado: Edson N. da cópia: 01 Página 1 de 7 SUMÁRIO 1- INTRODUÇÃO 2- CARACTERÍSTICAS ELÉTRICAS E MECÂNICAS 2.1 - Entrada

Leia mais

Distância de acionamento. Distância sensora nominal (Sn) Distância sensora efetiva (Su) Distância sensora real (Sr) 15/03/2015

Distância de acionamento. Distância sensora nominal (Sn) Distância sensora efetiva (Su) Distância sensora real (Sr) 15/03/2015 Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Sensores São dispositivos que

Leia mais

Eletrônica Aula 07 CIN-UPPE

Eletrônica Aula 07 CIN-UPPE Eletrônica Aula 07 CIN-UPPE Amplificador básico Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar um sinal de

Leia mais

Eletrônica Diodo 01 CIN-UPPE

Eletrônica Diodo 01 CIN-UPPE Eletrônica Diodo 01 CIN-UPPE Diodo A natureza de uma junção p-n é que a corrente elétrica será conduzida em apenas uma direção (direção direta) no sentido da seta e não na direção contrária (reversa).

Leia mais

Circuitos de Comando para MOSFETs e IGBTs de Potência

Circuitos de Comando para MOSFETs e IGBTs de Potência Universidade Federal do Ceará PET Engenharia Elétrica Fortaleza CE, Brasil, Abril, 2013 Universidade Federal do Ceará Departamento de Engenharia Elétrica PET Engenharia Elétrica UFC Circuitos de Comando

Leia mais

Circuitos Retificadores

Circuitos Retificadores Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo

Leia mais

dv dt Fig.19 Pulso de tensão típico nos terminais do motor

dv dt Fig.19 Pulso de tensão típico nos terminais do motor INFLUÊNCIA DO INVERSOR NO SISTEMA DE ISOLAMENTO DO MOTOR Os inversores de freqüência modernos utilizam transistores (atualmente IGBTs) de potência cujos os chaveamentos (khz) são muito elevados. Para atingirem

Leia mais

Sensores e Atuadores (2)

Sensores e Atuadores (2) (2) 4º Engenharia de Controle e Automação FACIT / 2009 Prof. Maurílio J. Inácio Atuadores São componentes que convertem energia elétrica, hidráulica ou pneumática em energia mecânica. Através dos sistemas

Leia mais

3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010

3 - Sistemas em Corrente Alternada. 1 Considerações sobre Potência e Energia. Carlos Marcelo Pedroso. 18 de março de 2010 3 - Sistemas em Corrente Alternada Carlos Marcelo Pedroso 18 de março de 2010 1 Considerações sobre Potência e Energia A potência fornecida a uma carga à qual está aplicada um tensão instantânea u e por

Leia mais

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor 225 Aplicações com OpAmp A quantidade de circuitos que podem ser implementados com opamps é ilimitada. Selecionamos aqueles circuitos mais comuns na prática e agrupamos por categorias. A A seguir passaremos

Leia mais

Pontifícia Universidade Católica do RS Faculdade de Engenharia

Pontifícia Universidade Católica do RS Faculdade de Engenharia Pontifícia Universidade Católica do RS Faculdade de Engenharia LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIENCIA N 11: GRADADORES MONOFÁSICOS OBJETIVO Verificar qualitativa e quantitativamente o funcionamento

Leia mais

Introdução à Eletrônica de Potência

Introdução à Eletrônica de Potência Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Introdução à Eletrônica de Potência Florianópolis, setembro de 2012. Prof.

Leia mais

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA

GERADORES MECÂNICOS DE ENERGIA ELÉTRICA GERADORES MECÂNICOS DE ENERGIA ELÉTRICA Todo dispositivo cuja finalidade é produzir energia elétrica à custa de energia mecânica constitui uma máquina geradora de energia elétrica. O funcionamento do

Leia mais

Figura 1 - Diagrama de Bloco de um Inversor Típico

Figura 1 - Diagrama de Bloco de um Inversor Típico Guia de Aplicação de Partida Suave e Inversores CA Walter J Lukitsch PE Gary Woltersdorf John Streicher Allen-Bradley Company Milwaukee, WI Resumo: Normalmente, existem várias opções para partidas de motores.

Leia mais

Projetos de Eletrônica Básica II

Projetos de Eletrônica Básica II Projetos de Eletrônica Básica II MUITO CUIDADO NA MONTAGEM DOS CIRCUITOS, JÁ QUE SE ESTÁ TRABALHANDO COM A REDE ELÉTRICA. Projete um sistema para uma casa inteligente, com as seguintes características:

Leia mais

Sensores de Temperatura

Sensores de Temperatura Sensores de Temperatura Principais tipos: RTD (altas temperaturas) Termopar (altas temperaturas) NTC / PTC (alta sensibilidade) Junções semicondutoras (facilidade de uso) Temperatura - RTD RTD Resistance

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS MEDIÇÃO DE TEMPERATURA TERMÔMETROS DE RESISTÊNCIA Introdução O uso de termômetros de resistência esta se difundindo rapidamente devido a sua precisão e simplicidade

Leia mais

Inversores de freqüência. Introdução

Inversores de freqüência. Introdução Inversores de freqüência Introdução Desde que os primeiros motores surgiram, os projetistas perceberam uma necessidade básica, controlar sua velocidade, várias técnicas foram utilizadas ao longo dos anos

Leia mais

Aula 4 Instrumentos de Temperatura. Prof. Geronimo

Aula 4 Instrumentos de Temperatura. Prof. Geronimo Aula 4 Instrumentos de Temperatura Prof. Geronimo Os medidores de temperatura mais usados na indústria são os termômetros baseados em bimetal e os sensores do tipo termopar e termorresistência, que servem

Leia mais

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DEE CURSO DE ENGENHARIA ELÉTRICA LABORATÓRIO 6: Máquina Síncrona em Barramento Infinito Objetivo: Verificar, experimentalmente, como é feita a ligação de um gerador síncrono no barramento infinito. Teoria: As necessidades de energia elétrica

Leia mais

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010

EE531 - Turma S. Diodos. Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 EE531 - Turma S Diodos Laboratório de Eletrônica Básica I - Segundo Semestre de 2010 Professor: José Cândido Silveira Santos Filho Daniel Lins Mattos RA: 059915 Raquel Mayumi Kawamoto RA: 086003 Tiago

Leia mais

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento

Circuitos Elétricos 1º parte. Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Circuitos Elétricos 1º parte Introdução Geradores elétricos Chaves e fusíveis Aprofundando Equação do gerador Potência e rendimento Introdução Um circuito elétrico é constituido de interconexão de vários

Leia mais

PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013

PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013 CURSO/CICLO DE FORMAÇÃO: Técnico de Instalações Elétricas DISCIPLINA: Eletricidade / Eletrónica N.º TOTAL DE MÓDULOS: 8 PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013 N.º 1 30 Corrente Contínua Identificar

Leia mais

Aula 4 Corrente Alternada e Corrente Contínua

Aula 4 Corrente Alternada e Corrente Contínua FUNDMENTOS DE ENGENHI ELÉTIC PONTIFÍCI UNIVESIDDE CTÓLIC DO IO GNDE DO SUL FCULDDE DE ENGENHI ula 4 Corrente lternada e Corrente Contínua Introdução Corrente lternada e Corrente Contínua Transformadores

Leia mais

PROGRAMAÇÃO FÁCIL DO. Micro Master. Midi Master

PROGRAMAÇÃO FÁCIL DO. Micro Master. Midi Master 1 PROGRAMAÇÃO FÁCIL DO Micro Master E Midi Master Preparado por ASI 1 PS 2 1. PARAMETRIZAÇÃO BÁSICA INICIAL...3 1.1 AJUSTES INICIAIS DO APARELHO...3 1.2 AJUSTE DE TEMPOS DE ACELERAÇÃO E DESACELERAÇÃO...3

Leia mais

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas

Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas Os capacitores são componentes largamente empregados nos circuitos eletrônicos. Eles podem cumprir funções tais como o armazenamento de cargas elétricas ou a seleção de freqüências em filtros para caixas

Leia mais

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores IF-UFRJ Elementos de Eletrônica Analógica Prof. Antonio Carlos Santos Mestrado Profissional em Ensino de Física Aula 7: Polarização de Transistores Este material foi baseado em livros e manuais existentes

Leia mais

Levantamento da Característica de Magnetização do Gerador de Corrente Contínua

Levantamento da Característica de Magnetização do Gerador de Corrente Contínua Experiência IV Levantamento da Característica de Magnetização do Gerador de Corrente Contínua 1. Introdução A máquina de corrente contínua de fabricação ANEL que será usada nesta experiência é a mostrada

Leia mais

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO

DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO DIAGRAMA DE BLOCOS DE UMA FONTE DE TENSÃO Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro Essa deficiência presente nos retificadores é resolvida pelo emprego de um filtro

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010 UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010 FILTRO ATIVO DE POTÊNCIA SÉRIE PARALELO APRESENTADOR: MÁRCIO STEFANELLO,

Leia mais

Strain Gages e Pontes de Wheatstone. Disciplina de Instrumentação e Medição Prof. Felipe Dalla Vecchia e Filipi Vianna

Strain Gages e Pontes de Wheatstone. Disciplina de Instrumentação e Medição Prof. Felipe Dalla Vecchia e Filipi Vianna Strain Gages e Pontes de Wheatstone Disciplina de Instrumentação e Medição Prof. Felipe Dalla Vecchia e Filipi Vianna Referência Aula baseada no material dos livros: - Instrumentação e Fundamentos de Medidas

Leia mais

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 TUTORIAL Fonte Estabilizada de 5 Volts Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006 PdP Pesquisa e Desenvolvimento de Produtos http://www.maxwellbohr.com.br

Leia mais

Automação industrial Sensores

Automação industrial Sensores Automação industrial Sensores Análise de Circuitos Sensores Aula 01 Prof. Luiz Fernando Laguardia Campos 3 Modulo Feliz aquele que transfere o que sabe e aprende o que ensina Cora Coralina O que são sensores?

Leia mais

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1

RECEPTOR AM DSB. Transmissor. Circuito Receptor AM DSB - Profº Vitorino 1 RECEPTOR AM DSB Transmissor Circuito Receptor AM DSB - Profº Vitorino 1 O receptor super-heteródino O circuito demodulador que vimos anteriormente é apenas parte de um circuito mais sofisticado capaz de

Leia mais

Projeto de um Controlador de Temperatura Proporcional, Analógico, com Sensor de Temperatura Usando Transistor Bipolar

Projeto de um Controlador de Temperatura Proporcional, Analógico, com Sensor de Temperatura Usando Transistor Bipolar Projeto de um Controlador de Temperatura Proporcional, Analógico, com Sensor de Temperatura Usando Transistor Bipolar Introdução O objetivo deste Laboratório de EE-641 é proporcionar ao aluno um ambiente

Leia mais

Termistor. Termistor

Termistor. Termistor Termistor Aplicação à disciplina: EE 317 - Controle e Automação Industrial Este artigo descreve os conceitos básicos sobre termistores. 1 Conteúdo 1 Introdução:...3 2 Operação básica:...4 3 Equação de

Leia mais

Escola de Educação Profissional SENAI Visconde de Mauá

Escola de Educação Profissional SENAI Visconde de Mauá Escola de Educação Profissional SENAI Visconde de Mauá Automação Industrial Porto Alegre, Maio de 2014 Revisão: A Prof Vander Campos Conhecer os princípios básicos do inversor de frequência; Saber interpretar

Leia mais

I Retificador de meia onda

I Retificador de meia onda Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica é alternada ao passo que os dispositivos eletrônicos operam com tensão contínua. Então é necessário retificá-la

Leia mais

Exercícios Leis de Kirchhoff

Exercícios Leis de Kirchhoff Exercícios Leis de Kirchhoff 1-Sobre o esquema a seguir, sabe-se que i 1 = 2A;U AB = 6V; R 2 = 2 Ω e R 3 = 10 Ω. Então, a tensão entre C e D, em volts, vale: a) 10 b) 20 c) 30 d) 40 e) 50 Os valores medidos

Leia mais

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores

www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores www.corradi.junior.nom.br - Eletrônica Básica - UNIP - Prof. Corradi Informações elementares - Projetos práticos. Circuitos retificadores Introdução A tensão fornecida pela concessionária de energia elétrica

Leia mais

Eletrônicos PAE. Componente Curricular: Práticas de Acionamentos. 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08

Eletrônicos PAE. Componente Curricular: Práticas de Acionamentos. 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08 1 Componente Curricular: Práticas de Acionamentos Eletrônicos PAE 5.ª Prática Inversor de Frequência Vetorial da WEG CFW-08 OBJETIVO: 1) Efetuar a programação por meio de comandos de parametrização para

Leia mais

Teoria Princípio do Capacitor

Teoria Princípio do Capacitor Teoria Princípio do Capacitor Um capacitor consiste de dois pratos eletrodos isolados de cada lado por um dielétrico médio. As características de um capacitor são dependentes da capacitância e da tensão.

Leia mais

Boletim Te cnico. Tema: BT002 Fontes para lâmpadas UV

Boletim Te cnico. Tema: BT002 Fontes para lâmpadas UV Boletim Te cnico Tema: BT002 Fontes para lâmpadas UV As fontes para lâmpadas ultravioleta são os circuitos de potência responsáveis pela alimentação das lâmpadas de média pressão. São também conhecidas

Leia mais

Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech cassiano@ieee.org

Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech cassiano@ieee.org Eletrônica de Potência II Capítulo 1 cassiano@ieee.org 1 Componentes semicondutores em Eletrônica de Potência Diodo MOSFET IGBT GTO 2 Introdução Eletrônica de Potência é uma ciência aplicada que aborda

Leia mais

Equipamentos Elétricos e Eletrônicos de Potência Ltda.

Equipamentos Elétricos e Eletrônicos de Potência Ltda. Equipamentos Elétricos e Eletrônicos de Potência Ltda. Confiança e economia na qualidade da energia. Recomendações para a aplicação de capacitores em sistemas de potência Antes de iniciar a instalação,

Leia mais

Controle universal para motor de passo

Controle universal para motor de passo Controle universal para motor de passo No projeto de automatismos industriais, robótica ou ainda com finalidades didáticas, um controle de motor de passo é um ponto crítico que deve ser enfrentado pelo

Leia mais

CHAVEAMENTO COM SCR S

CHAVEAMENTO COM SCR S ELE-59 Circuitos de Chaveamento Prof.: Alexis Fabrício Tinoco S. INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA DEPARTAMENTO DE ELETRÔNICA APLICADA 1. INTRODUÇAO CHAVEAMENTO COM

Leia mais

Como funciona o Reed-Switches (MEC089)

Como funciona o Reed-Switches (MEC089) Como funciona o Reed-Switches (MEC089) Escrito por Newton C. Braga Um componente de grande utilidade que pode ser usado como sensor em muitas aplicações mecatrônicas, robóticas e de automação é o reed-switch

Leia mais

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica Instituição Escola Técnica Sandra Silva Direção Sandra Silva Título do Trabalho Fonte de Alimentação Áreas Eletrônica Coordenador Geral Carlos Augusto Gomes Neves Professores Orientadores Chrystian Pereira

Leia mais

CORRENTE CONTÍNUA E CORRENTE ALTERNADA

CORRENTE CONTÍNUA E CORRENTE ALTERNADA CORRENTE CONTÍNUA E CORRENTE ALTERNADA Existem dois tipos de corrente elétrica: Corrente Contínua (CC) e Corrente Alternada (CA). A corrente contínua tem a característica de ser constante no tempo, com

Leia mais

Motores Síncronos ADRIELLE C SANTANA

Motores Síncronos ADRIELLE C SANTANA Motores Síncronos ADRIELLE C SANTANA Motores Síncronos Possuem velocidade fixa e são utilizados para grandes cargas, (em função do seu alto custo que faz com que ele não seja viável para aparelhos menores)

Leia mais

Funções de Posicionamento para Controle de Eixos

Funções de Posicionamento para Controle de Eixos Funções de Posicionamento para Controle de Eixos Resumo Atualmente muitos Controladores Programáveis (CPs) classificados como de pequeno porte possuem, integrados em um único invólucro, uma densidade significativa

Leia mais

Capítulo IV. Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração. Aterramento do neutro

Capítulo IV. Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração. Aterramento do neutro 60 Capítulo IV Aterramento de sistemas elétricos industriais de média tensão com a presença de cogeração Paulo Fernandes Costa* Nos três capítulos anteriores, foram discutidos os aspectos da escolha e

Leia mais

MOTORES ELÉTRICOS Princípios e fundamentos

MOTORES ELÉTRICOS Princípios e fundamentos MOTORES ELÉTRICOS Princípios e fundamentos 1 Classificação 2 3 Estator O estator do motor e também constituido por um núcleo ferromagnético laminado, nas cavas do qual são colocados os enrolamentos alimentados

Leia mais

RECUPERAÇÃO DE ENERGIA

RECUPERAÇÃO DE ENERGIA FRENAGEM RECUPERAÇÃO DE ENERGIA Em certos trabalhos efetuados por motores elétricos, há ocasiões em que o motor deixa de ser necessário e há energia de sobra a qual poderá, porventura ser aproveitada.

Leia mais

SENSOR DE VELOCIDADE Hudson Pinheiro de Andrade

SENSOR DE VELOCIDADE Hudson Pinheiro de Andrade UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA INSTRUMENTAÇÃO ELETRÔNICA PROFESSOR: LUCIANO CAVALCANTI SENSOR DE VELOCIDADE Hudson Pinheiro de Andrade

Leia mais

Como funciona o motor de corrente contínua

Como funciona o motor de corrente contínua Como funciona o motor de corrente contínua Escrito por Newton C. Braga Este artigo é de grande utilidade para todos que utilizam pequenos motores, principalmente os projetistas mecatrônicos. Como o artigo

Leia mais

Controle II. Estudo e sintonia de controladores industriais

Controle II. Estudo e sintonia de controladores industriais Controle II Estudo e sintonia de controladores industriais Introdução A introdução de controladores visa modificar o comportamento de um dado sistema, o objetivo é, normalmente, fazer com que a resposta

Leia mais

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo 1 FET - Transistor de Efeito de Campo Introdução Uma importante classe de transistor são os dispositivos FET (Field Effect Transistor). Transistor de Efeito de Campo. Como nos Transistores de Junção Bipolar

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Trabalho sobre No-breaks

Trabalho sobre No-breaks Trabalho sobre No-breaks Grupo: Leandro Porto Cristiano Porto Diego Martins Diogo Rubin Os nobreaks protegem os equipamentos contra quatro problemas principais causados pela variação da energia elétrica.

Leia mais

Introdução: Inversor de Freqüência: Princípios Básicos:

Introdução: Inversor de Freqüência: Princípios Básicos: Introdução: Inversor de Freqüência: Atualmente, a necessidade de aumento de produção e diminuição de custos, se fez dentro deste cenário surgir a automação, ainda em fase inicial no Brasil, com isto uma

Leia mais

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de

Capítulo 1: Eletricidade. Corrente continua: (CC ou, em inglês, DC - direct current), também chamada de Capítulo 1: Eletricidade É um fenômeno físico originado por cargas elétricas estáticas ou em movimento e por sua interação. Quando uma carga encontra-se em repouso, produz força sobre outras situadas em

Leia mais

EXPERIÊNCIA Nº 2 1. OBJETIVO

EXPERIÊNCIA Nº 2 1. OBJETIVO Universidade Federal do Pará - UFPA Faculdade de Engenharia da Computação Disciplina: Laboratório de Eletrônica Analógica TE - 05181 Turma 20 Professor: Bruno Lyra Alunos: Adam Dreyton Ferreira dos Santos

Leia mais

ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 1 DIODOS RETIFICADORES

ASSOCIAÇÃO EDUCACIONAL DOM BOSCO CAPÍTULO 1 DIODOS RETIFICADORES INTRODUÇÃO CPÍTULO DIODOS RETIFICDORES O diodo é um dispositivo semi-condutor muito simples e é utilizado nas mais variadas aplicações. O uso mais freqüente do diodo é como retificador, convertendo uma

Leia mais

1 Medição de temperatura

1 Medição de temperatura 1 Medição de temperatura 1.1 Medidores de temperatura por dilatação/expansão 1.1.1 Termômetro à dilatação de líquido Os termômetros à dilatação de líquidos baseiam -se na lei de expansão volumétrica de

Leia mais

Universidade de Coimbra. Biosensores e Sinais Biomédicos (2007-2008)

Universidade de Coimbra. Biosensores e Sinais Biomédicos (2007-2008) Universidade de Coimbra Biosensores e Sinais Biomédicos (2007-2008) Trabalho Prático N 1 ESTUDO DO COMPORTAMENTO DE SENSORES DE TEMPERATURA: Objectivo TERMOPARES E TERMÍSTORES Determinação da resposta

Leia mais

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso.

São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. Luciano de Abreu São componentes formados por espiras de fio esmaltado numa forma dentro da qual pode ou não existir um núcleo de material ferroso. É um dispositivo elétrico passivo que armazena energia

Leia mais

Materiais usados em resistores

Materiais usados em resistores Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Engenharia Elétrica Materiais usados em resistores EEL7051 Laboratório de Materiais Elétricos Aluno: Cristiano P. Costa Neves Turma:

Leia mais

Física Experimental B Turma G

Física Experimental B Turma G Grupo de Supercondutividade e Magnetismo Física Experimental B Turma G Prof. Dr. Maycon Motta São Carlos-SP, Brasil, 2015 Prof. Dr. Maycon Motta E-mail: m.motta@df.ufscar.br Site: www.gsm.ufscar.br/mmotta

Leia mais

INVERSOR DE FREQUÊNCIA ESCALAR DE BAIXO CUSTO PARA MOTORES MONOFÁSICOS

INVERSOR DE FREQUÊNCIA ESCALAR DE BAIXO CUSTO PARA MOTORES MONOFÁSICOS 26 a 29 de outubro de 2010 ISBN 978-85-61091-69-9 INVERSOR DE FREQUÊNCIA ESCALAR DE BAIXO CUSTO PARA MOTORES MONOFÁSICOS Gustavo Peloi da Silva 1 ; Abel Fidalgo Alves 2 RESUMO: O avanço da eletronica de

Leia mais

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens.

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens. Chave eletrônica Introdução O transistor, em sua aplicação mais simples, é usado como uma chave eletrônica, ou seja, pode ser usado para acionar cargas elétricas. A principal diferença entre o transistor

Leia mais

- Para se aumentar a quantidade de líquido (W), para o mesmo copo de chopp, deve-se reduzir a quantidade de espuma (VAr). Desta forma, melhora-se a

- Para se aumentar a quantidade de líquido (W), para o mesmo copo de chopp, deve-se reduzir a quantidade de espuma (VAr). Desta forma, melhora-se a 6. FATOR DE POTÊNCIA O fator de potência é uma relação entre potência ativa e potência reativa, conseqüentemente energia ativa e reativa. Ele indica a eficiência com a qual a energia está sendo usada.

Leia mais

Nomes: Augusto, Gabriel Vaz e Monique.

Nomes: Augusto, Gabriel Vaz e Monique. Nomes: Augusto, Gabriel Vaz e Monique. O filtro de linha é um elemento de proteção para equipamentos eletrônicos. Ele atenua as impurezas da rede elétrica que causam interferências eletromagnéticas (EMI)

Leia mais