Capítulo 9 Fontes de radiação

Tamanho: px
Começar a partir da página:

Download "Capítulo 9 Fontes de radiação"

Transcrição

1 Capítulo 9 Fontes de radiação Primeira versão As fontes de radiação que estaremos interessados aqui são aquelas originadas em processos atômicos e nucleares, além da radiação emitida por partículas aceleradas, como e o caso da radiação sincrotron. No primeiro caso, elas podem ser portadora de carga (elétrons rápidos e íons ) ou não (radiação eletromagnética e fótons) Os elétrons rápidos incluem partículas beta (positiva ou negativa) emitidas em um decaimento nuclear ou em outro processo. Partículas carregadas pesadas (íons) estão relacionadas com todos os íons com massa de uma unidade de massa atômica (próton) ou maior, como partículas alfa e produtos de fissão. A radiação eletromagnética de interesse inclui os raios X emitidos no rearranjo de elétrons nas camadas internas dos átomos e raios gama que tem origem em transições dentro do núcleo. Nêutrons podem ser gerados em vários processos nucleares e podem ser divididos ainda em lentos ou rápidos. A faixa de energia de interesse vai de alguns 10 ev ate dezenas de MeV. Existem ainda as fontes naturais de radiação. Alguns materiais como argila, gás natural e granito, por exemplo, contêm uma pequena quantidade de substâncias radioativas naturais que emitem radiação. Esta quantidade varia de acordo com o local de origem do material. Na África, existiu ha cerca de 1,7 bilhões de anos um reator natural. Depósitos naturais de urânio transformam água em vapor, gerando vários quilowatts de energia por séculos [1]. Hoje em dia, devido ao decaimento do urânio através de milhões de anos, estes reatores não são mais encontrados. A radiação natural (não produzida ou modidficada pelo homem) é responsável por mais da metade da exposição a que uma pessoa está sujeita (vide Tabela I). Devido ao fato de não ser localizada, mas difundida no planeta, a radiação natural não é tão nociva quanto uma fonte localizada. Somos constantemente bombardeados por raios cósmicos e esta aumenta quando viajamos de avião. No Brasil há 123

2 cidades como Araxá, Guarapari, Poços de Caldas, e outras também apresentam um alto índice de radioatividade natural. Fonte de radiação % Radiação Natural 67,6 Irradiação médica 30,7 Precipitação 0,6 Fontes diversas 0,5 Exposição ocupacional 0,45 Efluentes de Instalações nucleares 0,15 Tabela I Exposição relativa do homem à radiação ionizante média no ano de 1981, estimada pela Agência Internacional de Energia Atômica [1]. Alguns alimentos como o leite, peixes, carnes, cerveja e água contém traços mínimos de radioisótopos. Das exposições devido à fontes não naturais, os raios X de uso médico são responsáveis por 90 %. Se ministradas com cuidado, os benefícios contrabalançam os riscos, embora estudos indiquem que uma fração significativa dos exames são desnecessários (sem contar que muitas maquinas não estão calibradas!). As armas nucleares são responsáveis pelos restantes 10 %. A radioterapia é uma técnica utilizada no tratamento de câncer e disfunções como o hipertoroidismo onde utiliza-se o iodo radioativo. A Dra. Elisabeth Almeida [1] lembra " aqueles que sustentam os grandes riscos dessas fontes de radiação não recebem uma parcela proporcionalmente grande dos benefícios. Mineiros que lidam com o urânio, que é utilizado como combustível numa usina nuclear, podem estar sujeitos a um risco aumentado de câncer de pulmão, mas sua parte nos benefícios a eletricidade gerada pelos reatores nucleares não é maior que as de outras pessoas". Devemos lembrar que nenhum dos avanços modernos existe sem sua parcela de risco. Isto vale para aviões, remédios, etc.. Não podemos apontar com certeza a radiação como causa de uma determinada doença desenvolvida por um individuo, isto por que seus efeitos biológicos são indistiguiveis dos efeitos de outros agentes como produtos químicos ou vírus.os cálculos sobre riscos da radiação à saúde são muito inexatos, cheios de incertezas. Podemos sim fazer estimativas ("adivinhações educadas"), mesmo que grosseiras, da probabilidade de 124

3 desenvolver um tipo de câncer numa população exposta à radiação. Uma destas estimativas diz que uma única exposição de 1 rad (equivalente a 40 radiografias) gera um probabilidade de 0,027 a 0,1 % de desenvolver um câncer. Cerca de 30 % destes casos seriam fatais. Alguns profissionais, como os radiologistas entre as décadas de 20 e 40 e as mulheres que pintavam mostradores de relógio e que molhavam a língua com material radioativo, pagaram um preço muito alto para que aprendêssemos os riscos da radiação. Todos os tipos de radiação ionizante levam a efeitos similares, embora alguns sejam mais potentes que outros. Quando a radiação atinge uma célula, ela pode passar sem causar qualquer dano, pode danificar a célula, que pode reparar o dano, ou pode ainda danificar de modo que a célula não consiga reparar o dano e ainda se reproduza de forma não correta por um longo período de tempo, levando ao desenvolvimento de um câncer ou mutações genéticas. Finalmente, a radiação pode ainda causar a morte da celular. Os efeitos da radiação variam de acordo com a região do corpo atingida. Tecidos compostos por células que se dividem rapidamente são mais sensívei, como a medula óssea. Células musculares e nervosas, por outro lado, são menos sensíveis. Unidades e definições A probabilidade p(t), de um núcleo sofrer decaimento radioativo dentro de um intervalo de tempo t, é proporcinal somente a este intervalo de tempo se ele é suficientemente pequeno de modo que p(t)<<1. A constante de proporcionalidade ou constante de decaimento λ, é dada por p(t) = λ t A probabilidade de sobrevivência de um núcleo durante um intervalo de tempo, t, pode ser achado dividindo-se t em n intervalos iguais de duração t. A probabilidade de sobrevivência no primeiro intervalo é dado por no segundo intervalo [1-p(t)] 125

4 [1-p(t)] 2 no n-ésimo intervalo [1-p(t)] n Assim, a probabilidade de sobrevivência de um núcleo durante um intervalo de tempo t é lim n λt n 1 = n t ( 1 λ λ t) = e A atividade de uma fonte radioisotopota é definida com a taxa de decaimento e é dada pela lei fundamental do decaimento radioativo, que é válida desde que o grupo inicial não seja abastecido por outros decaimentos é dn dt = λn (1) n integrando desde t =0 com N (0)=N o até um tempo t, temos ou ainda N N o dn N = t o λ dt N N o λt = e (2) onde N é o número de núcleos radioativos e λ é definida como a constante de decaimento. A unidade histórica da atividade é o curie (Ci), definida exatamente como 3, desintegracoes por segundo, que deve sua definição como a melhor estimativa sobre a atividade de 1 g de 226 Ra puro. Para uso em laboratório, os submúltiplos mci e µci, são mais apropriados. No sistema internacional, no entanto, a unidade para atividade é o becquerel (Bq), 1 Bq = 2, Ci. 126

5 A meia-vida τ 1/2, do decaimento radioativo é dada por ln 2 τ1 / 2 = (3) λ A vida média τ, definida como o tempo médio de sobrevivência de um núcleo é dado por tdn τ = dn 1 = (4) λ Se um núcleo possui mais do que um modo de decaimento (decaimento alfa, beta,etc..), a constante de decaimento total é dada pela soma parcial das constantes de decaimento e a atividade total é λ = λ 1 +λ Nλ = N (λ 1 +λ ) A atividade parcial de um determinado modo de desintegração é λ N i = λ N i e λt o Note que a atividade parcial decai como a taxa determinada pela constante de decaimento total λ, ao invés de λ i. Note também que as atividades parciais Nλ i proporcionais à atividade total. Deve-se ressaltar que a atividade mede a taxa de desintegração da fonte, o que não é sinônimo de emissão de radiação. Normalmente, apenas uma fração de todos os decaimentos resultara na emissão de radiação. A atividade especifica de uma fonte radioativa é definida como a atividade por unidade de massa do radioisótopo. Para um radioisótopo puro, a sua atividde especifica pode ser calculada como atividade massa λn = NM A v λa = M v 127

6 onde M é a massa molecular da amostra, A v é o numero de Avogrado (= 6, nucleos/mol), e λ é a constante de decaimento (=ln2/τ 1/2 ) τ 1/2 = meiavida. A International Commision on Radiation Units and Measurements (ICRU) recomenda o uso de unidades no SI. Entretanto é comum encontramos grandezas expressas em outros sistemas de unidades, expressas abaixo entre parenteses Unidade de dose absorvida gray (rad) 1 Gy (gray) = 1 J.kg -1 = 100 rad = 6, MeV.kg -1 unidade de exposição a quantidade de radiação x ou γ em um ponto no espaço integrada no tempo. = 1 C kg -1 de ar (roentgen. 1 R = 2, C kg -1 ) = 87.8 erg de energia liberada por g de ar. Unidades de dose equivalente para dano biológico = sievert (Sv). 1 Sv 100 rem (roentgen equivalent for man). A dose equivalente expressa o risco de longo tempo (primariamente devido ao câncer e leucemia). Na maior parte do mundo, a taxa de dose equivalente de corpo inteiro 0,4-4 msv ( mrem) devido a radiação de fundo natural. Em algumas áreas pode alcançar 50 msv (5 rem). Energia A unidade tradicional para energia de radiação é o elétron volt (ev), definido como a energia cinética obtida por um elétron quando acelerado por uma diferença de potencial de 1 V. No sistema internacional, a unidade de energia é o joule (J). 1J = 6, (2) ev. A energia de um fóton esta relacionda com a sua freqüência por E= hν, onde h = 6, J.s é a constante de Planck e ν a freqüência. Em termos do comprimento de onda λ E( ev ) = o λ( A ) 128

7 Fontes de elétrons rápidos a) decaimento beta A fonte mais comum de elétrons rápidos em medidas de radiação e um radioisótopo que decai pela via emissão beta-menos (β - ). O processo pode ser escrito esquematicamente como A X A Y Z Z β +ν onde X e Y são as espécies nucleares inicial e final, e ν e o antineneutrino. Neutrinos e antineutrinos possuem uma probabilidade de interação muito baixa com a matéria, e por isto são indetectaveis para fins práticos. O núcleo de recuo Y aparece com uma energia de recuo muito pequena, que e ordinariamente menor do que o limiar de ionização, e entretanto não pode ser detectado por meios convencionais. Assim, a única radiação ionizante produzida pelo decaimento beta e o elétron rápido. Devido ao fato de que a maioria dos radionuclideos produzidos por bombardeamento de nêutrons em materiais estáveis são beta-ativos, uma grande variedade de emissores beta são disponiveis através da produção em um reator. Espécies com diferentes meia-vidas podem ser obtidas, na faixa de ate milhares de anos. A maioria dos decaimentos beta populam um estado excitado do núcleos produzidos, de modo que subseqüente gama desexcitacoes acontecem. Alguns exemplos de nuclideos que decaem diretamente para o estado fundamental do produto são mostrados na tabela abaixo. Nuclideo Meia-vida Energia máxima dos betas (MeV) 3 H anos 0, C 5730 anos 0, P 14,28 dias 1, P 24,4 dias 0, S 87,9 dias 0,167 Cada decaimento beta e caracterizada por uma energia fixa de decaimento ou valor-q. Devido a energia de recuo do núcleo ser 129

8 virtualmente zero, esta energia e compartilhada entre a partícula beta e o neutrino. A partícula beta aparece assim com uma energia que varia de decaimento a decaimento e que vai desde zero ate uma energia máxima, que e numericamente igual ao valor-q. O valor-q e calculado supondo que a transição ocorre entre um estado excitado do pai ou filho. b) conversão interna c) elétrons Auger Fontes de partículas carregadas pesadas a) decaimento alfa Partículas alfa são o núcleo do átomo de 4 He, ou seja, um sistema ligado de dois prótons e dois nêutrons, e são geralmente emitidos por núcleos muito pesados contendo nucleons em excesso, e por isto são instáveis. A emissão de um aglomerado (cluster) de nucleons em em vez da emissão de um simples nucleon e mais vantajoso energeticamente devido a alta energia de ligação de uma partícula alfa. O núcleo pai (Z, A) e transformado na reação via (Z, A) (Z-2,A-4) +α Teoreticamente, o processo foi explicado primeiramente por Gamov e Condon e por Gurney como o tunelamento de uma partícula alfa por uma barreira de potencial do núcleo. Partículas alfa, no entanto, exibem um espectro monoenergetico. Uma vez que a transmissão e dependente da energia, todas as fontes de alfa são limitadas na faixa de 4-6 MeV sendo que as fontes de maiores energias possuem uma probabilidade maior de transmissão e por isto uma meia-vida mais curta. Por esta razão também, a maioria dos decaimentos alfa são diretos para o estado fundamental do núcleo filho uma vez que resulta em uma maior mudança em energia. Decaimento para estados excitados dos núcleos filhos são também possíveis, e em tais núcleos, o espectro de energia mostra várias linhas monoenergeticas cada uma correspondendo a um decaimento para um destes estados. Algumas das fontes mais comuns são listadas abaixo Isotopo Meia-vida Energias [MeV] Intensidade relativa 130

9 241 Am 433 dias 5,486 85% 5,443 12,8 % 210 Po 138 dias 5, % 242 Cm 163 dias 6, % 6, % Devido a sua carga dupla, as partículas alfa possuem uma taxa alta de perda de energia na matéria (capitulo 10). O alcance de uma partícula alfa de 5 MeV no ar e somente alguns centimentros, por exemplo. Por esta razão e necessário fazer fontes de alfa muito finas de modo a minimizar a perda de energia e a absorção da partícula. A maioria das fontes alfa são feitas pelo deposito o isotopo na superfície de uma material e protegendo-a com uma camada muito fina de folha metálica. b) fissão espontânea Fontes de radiação eletromagnética a) raios gamma seguindo decaimento beta b) radiação de aniquilação c) raios gamma seguindo reações nucleares d) Bremsstrahlung e) Raios X característicos Fontes de nêutrons a) fissão espontânea b) fontes (α,n) c) fontes foto-neutrons d) reações de partículas carregadas Radiação Síncrotron Luz síncrotron é a intensa radiação eletromagnética produzida por particulas carregadas de alta energia num acelerador de partículas enquanto sã aceleradas. A luz síncrotron abrange uma ampla faixa do espectro eletromagnético: Raios-X, Luz Ultravioleta e Infravermelha, além da Luz Visível, que sensibiliza o olho humano, são emitidas pela fonte. É com esta luz que cientistas estão descobrindo novas propriedades físicas, químicas e 131

10 biológicas existentes em átomos e moléculas, os componentes básicos de todos os materiais. As particulas que circulam em um acelerador circular de electrons ou positrons emitem radiacao com um espectro continuo. Esta radiacao e utilizada por exemplo no Laboratorio Nacional de Luz Sincrotron (LNLS) em Campinas como uma fonte intense de luz polarizada para espectroscopia no ultravioleta de vacuo (UVV), raios-x mole e duro. Ha tambem sincrotron que fazem espectroscopia no infravermelho. A emissão de radiação que e produzida de uma maneira análoga e que também e chamada de radiação sincrotron, ocorre quando partículas carregadas ficam armadilhadas no campo magnético da terra. Este fenômeno também ocorre quando partículas em regiões distantes do espaço. Vários objetos astronômicos são emissores de radiação em regiões desde o ultravioleta ate as freqüências de radio. 132

11 Uma nota de aviso Vários tipos de fontes radioativas são utilizadas nos experimentos sugeridos neste curso. As regras simples dadas nesta seção assegurará um manuseamento seguro destas fontes. Nunca beba, ou fume no laboratório de radiações. Lave suas mãos no final de cada experimento. No caso de fontes líquidas, luvas e roupas especiais devem ser usadas. Alguns kits de fontes contém fontes seladas (discos metálicos parecidos com uma moeda). Estas fontes possuem atividades menores do que 1 µci e podem ser manuseadas com seus dedos, mas é recomendável 133

12 segura-las pelas bordas dos discos. Qualquer fonte com atividade superior a 10 µci devem ser manuadas com pinças. Com o conhecimento da atividade da fonte e um compromisso entre blindagem, distancia da fonte, e tempo de exposição, podemos usar seguramente os radioisótopos. Exercícios 1 Uma fonte de 50 mg de Ra esta em equilíbrio com todos os seus progenitores. Supondo uma meia-vida de 1602 anos, calcule a) a constante de decaimento b) a vida media c) Quantos átomos de Ra contem a fonte, baseado na sua massa. 1 mol de Ra = 226 g. d) Quantos átomos de Ra contem a fonte, baseado na sua atividade 2- mostre que τ tdn = dn 1 = λ 3 O 74 33As desintegra em 74 32Ge em 68 % dos casos, e em 74 32Se no restante dos casos. A meia-vida para o átomo pai é de 17,9 dias. a) Qual a constante de decaimento do 74 33As b) Quais as constantes de decaimento parciais c) Qual a atividade da fonte contendo 2, atomos de 74 33As. Expresse em becquereis e curies. d) Qual a taxa inicial de produção do 74 32Se. Qual a taxa para t = 47 dias 4 Calcule a atividade especifica do trítio puro ( 3 H) com meia-vida de anos. 5- Qual a energia máxima de uma partícula alfa pode alcançar em um acelerador dc com 3 MV de tensão máxima? Respostas 1- a- 1, s -1 b- 7, s c- 1, átomos 134

13 d- 1, átomos 3 a) 4, s -1 b) λ Ge = 3, s -1, λ Se = 1, s -1 c) 8, Bq = 2,42 Ci d) 2, s -1, 4, s -1 Referencias [1] E. S. de Almeida, Revista de Ensino de Física, 12, 12 (1990). [2] G. F. Knoll, Radiation Detection and Measurements, Second Edition, John Wiley & Sons (1979). [3] E. F. Pessoa, F. A. B. Coutinho, O. Sala, Introdução à Física Nuclear, Editora McGrawhill do Brasil (1979) [4] F. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry, John Wiley and Sons.(1976). 135

Capítulo 9 Fontes de radiação e proteção biológica

Capítulo 9 Fontes de radiação e proteção biológica Capítulo 9 Fontes de radiação e proteção biológica versão 2008.2 Radiação : Designação genérica de energia que se propaga de um ponto a outro no espaço, no vácuo ou num meio material, mediante um campo

Leia mais

Decaimento Radioativo

Decaimento Radioativo Unidade 3 Radioatividade Decaimento Radioativo Decaimentos Alfa, Beta, e Gama Nuclídeos Radioativos Datação Radioativa 14 C Medidas de Dose de Radiação Modelos Nucleares Marie e Pierre Curie Marie Curie

Leia mais

O ÂTOMO TIPOS DE RADIAÇÕES. TIPOS DE RADIAÇÕES As radiações podem ser classificadas da seguinte forma: Quanto à composição

O ÂTOMO TIPOS DE RADIAÇÕES. TIPOS DE RADIAÇÕES As radiações podem ser classificadas da seguinte forma: Quanto à composição O ÂTOMO Prof. André L. C. Conceição DAFIS Curitiba, 27 de março de 2015 TIPOS DE RADIAÇÕES Radiação é energia em trânsito (emitida e transferida por um espaço). Do mesmo jeito que o calor (energia térmica

Leia mais

Lista elaborado por coletânea de exercícios, traduzida e organizado por Emerson Itikawa sob supervisão do Prof. Eder R. Moraes

Lista elaborado por coletânea de exercícios, traduzida e organizado por Emerson Itikawa sob supervisão do Prof. Eder R. Moraes Física Nuclear e Decaimento 1) (HOBBIE, R.K.; Interm Phys Med Bio) Calcular a energia de ligação, e a energia de ligação por núcleon, a partir das massas dadas, para os nuclídeos (a) 6 Li, (b) 12 C, (c)

Leia mais

Radioatividade. Prof. Fred

Radioatividade. Prof. Fred Radioatividade Prof. Fred Radioatividade, uma introdução Radioatividade O homem sempre conviveu com a radioatividade. Raios cósmicos Fótons, elétrons, múons,... Radioatividade natural: Primordiais urânio,

Leia mais

Desintegração Nuclear. Paulo R. Costa

Desintegração Nuclear. Paulo R. Costa Desintegração Nuclear Paulo R. Costa Sumário Introdução Massas atômicas e nucleares Razões para a desintegração nuclear Decaimento nuclear Introdução Unidades e SI Introdução Comprimento metro Tempo segundo

Leia mais

Descoberta do Núcleo

Descoberta do Núcleo Unidade 2: Aula 4 (1a. Parte) Núcleo Atômico Descoberta do Núcleo Propriedades dos Núcleos Forças Nucleares Estabilidade Nuclear Ressonância Magnética Nuclear Consultas http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html#nuccon

Leia mais

Física Nuclear: Radioatividade

Física Nuclear: Radioatividade Física Nuclear: Radioatividade Descoberta da Radioatividade Becquerel, estudando fenômenos de fluorescência e raios-x Observava fluorescência no Urânio quando exposto ao Sol. Becquerel protegia uma chapa

Leia mais

Física Nuclear: Radioatividade

Física Nuclear: Radioatividade Física Nuclear: Radioatividade Descoberta da Radioatividade Becquerel, estudando fenômenos de fluorescência e raios-x Observava fluorescência no Urânio quando exposto ao Sol. Becquerel protegia uma chapa

Leia mais

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 3 Lista 2

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 3 Lista 2 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 3 Lista 2 1.Calcule a distância máxima de aproximação para uma colisão frontal entre uma partícula

Leia mais

Aula 21 Física Nuclear

Aula 21 Física Nuclear Aula 21 Física 4 Ref. Halliday Volume4 Sumário Descobrindo o Núcleo; Algumas Propriedades Nucleares; Decaimento Radioativo; Decaimento Alfa; Decaimento Beta; Radiação Ionizante; Analisando os dados, Rutherford

Leia mais

Cap. 42 Física Nuclear

Cap. 42 Física Nuclear Radiação Fukushima (2011) Cap. 42 Física Nuclear A descoberta do núcleo. Propriedades do núcleo: Núcleons; Carta de nuclídeos; Raio; Massa; Energia de ligação; Força forte. Decaimento radioativo: Decaimento

Leia mais

AS RADIAÇÕES NUCLEARES 4 AULA

AS RADIAÇÕES NUCLEARES 4 AULA AS RADIAÇÕES NUCLEARES 4 AULA Nesta Aula: Caracterização das radiações Nucleares Caracterização das radiações Nucleares UM POUCO DE HISTÓRIA... O físico francês Henri Becquerel (1852-1908), em 1896, acidentalmente

Leia mais

Decaimentos radioativos. FÍSICA DAS RADIAÇÕES I Paulo R. Costa

Decaimentos radioativos. FÍSICA DAS RADIAÇÕES I Paulo R. Costa Decaimentos radioativos FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Atividade de uma amostra radioativa Crescimento radioativo Decaimentos sucessivos Tipos de decaimento Radioisótopos na Medicina Radioproteção

Leia mais

Física das Radiações & Radioatividade. Tecnologia em Medicina Nuclear Prof. Leonardo

Física das Radiações & Radioatividade. Tecnologia em Medicina Nuclear Prof. Leonardo Física das Radiações & Radioatividade Tecnologia em Medicina Nuclear Prof. Leonardo ÁTOMO Menor porção da matéria que mantém as propriedades químicas do elemento químico correspondente. Possui um núcleo,

Leia mais

O Decaimento Radioativo (6 aula)

O Decaimento Radioativo (6 aula) O Decaimento Radioativo (6 aula) O decaimento Radioativo Famílias Radioativas Formação do Material Radioativo O Decaimento Radioativo Quando um átomo instável emite partículas a, b, ou radiação g, ele

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes Tel: (19) 3429-4836 walterpaes@gmail.com gtprusp@gmail.com www.usp.br/protecaoradiologica

Leia mais

GRANDEZAS DOSIMÉTRICAS BÁSICAS

GRANDEZAS DOSIMÉTRICAS BÁSICAS GRANDEZAS DOSIMÉTRICAS BÁSICAS (7 ª aula) Existem várias unidades que medem diversas características das radiações ionizantes e, também, das substâncias radioativas. 1)ATIVIDADE 2)EXPOSIÇÃO 3)DOSE ABSORVIDA

Leia mais

Física Moderna II Aula 10

Física Moderna II Aula 10 Física Moderna II Aula 10 Marcelo G. Munhoz munhoz@if.usp.br Lab. Pelletron, sala 245 ramal 6940 Como podemos descrever o núcleo de maneira mais detalhada? n Propriedades estáticas: q Tamanho, q Massa,

Leia mais

FICHA DE DISCIPLINA. UNIDADE ACADÊMICA: Instituto de Física PRÉ-REQUISITOS: CÓ-REQUISITOS: OBJETIVOS

FICHA DE DISCIPLINA. UNIDADE ACADÊMICA: Instituto de Física PRÉ-REQUISITOS: CÓ-REQUISITOS: OBJETIVOS 173 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE FÍSICA CURSO DE LICENCIATURA EM FÍSICA DISCIPLINA: Física das Radiações FICHA DE DISCIPLINA CÓDIGO: GFC101 PERÍODO/SÉRIE: UNIDADE ACADÊMICA: Instituto

Leia mais

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014)

Física IV Poli Engenharia Elétrica: 20ª Aula (04/11/2014) Física IV Poli Engenharia Elétrica: ª Aula (4/11/14) Prof. Alvaro Vannucci a última aula vimos: Átomos multi-eletrônicos: as energias dos estados quânticos podem ser avaliadas através da expressão: 13,6

Leia mais

UFSC Universidade Federal de Santa Catarina

UFSC Universidade Federal de Santa Catarina UFSC Universidade Federal de Santa Catarina Curso de Física (2013.2) Disciplina: Laboratório de Física moderna Professor: Lucio Sartori Farenzena Acadêmico: Jaime, Paulo e Wanderson. PRÉ-RELATÓRIO DIOATIVIDADE

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS COORDENADORIA DE ADMINISTRAÇÃO GERAL DIVISÃO DE SAÚDE OCUPACIONAL SEÇÃO TÉCNICA DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO

Leia mais

A descoberta da radioatividade

A descoberta da radioatividade 10. Radioatividade Sumário Histórico da radioatividade Lei do decaimento radioativo Decaimentos alfa, beta e gama Séries radioativas Datação pelo Carbono-14 Fissão nuclear Fusão nuclear A descoberta da

Leia mais

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS

CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS CURSO DE RADIOPROTEÇÃO COM ÊNFASE NO USO, PREPARO E MANUSEIO DE FONTES RADIOATIVAS NÃO SELADAS Walter Siqueira Paes DIVISÃO DE HIGIENE, SEGURANÇA E MEDICINA DO TRABALHO SETOR DE PROTEÇÃO RADIOLÓGICA PROGRAMAÇÃO

Leia mais

Física Moderna II Aula 14

Física Moderna II Aula 14 Física Moderna II Aula 14 Marcelo G. Munhoz munhoz@if.usp.br Lab. Pelletron, sala 245 ramal 6940 Como podemos descrever o núcleo de maneira mais detalhada? n Propriedades estáticas: q Tamanho, q Massa,

Leia mais

Dosimetria e Proteção Radiológica

Dosimetria e Proteção Radiológica Dosimetria e Proteção Radiológica Prof. Dr. André L. C. Conceição Departamento Acadêmico de Física (DAFIS) Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial (CPGEI) Universidade

Leia mais

Apostila de Química 03 Radioatividade

Apostila de Química 03 Radioatividade Apostila de Química 03 Radioatividade 1.0 Histórico Em 1896, acidentalmente, Becquerel descobriu a radioatividade natural, ao observar que o sulfato duplo de potássio e uranila: K2(UO2)(SO4)2 conseguia

Leia mais

FÍSICA MÉDICA. Aula 03 - Proteção Radiológica

FÍSICA MÉDICA. Aula 03 - Proteção Radiológica FÍSICA MÉDICA Aula 03 - Proteção Radiológica Introdução Tendo em vista os danos biológicos causados nos seres vivos pela exposição à radiação, tornou-se necessário estabelecer meios de proteção aos que

Leia mais

GRANDEZAS E UNIDADES USADAS EM RADIOPROTEÇÃO

GRANDEZAS E UNIDADES USADAS EM RADIOPROTEÇÃO GRANDEZAS E UNIDADES USADAS EM RADIOPROTEÇÃO RADIOPROTEÇÃO - HISTÓRICO 1895 Wilhelm Conrad Röentgen descobre os Raios X - revolução na medicina 1896 Marie e Pierre Curie e Henry Becquerel descobrem as

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 2

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 2 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 2 Prof ª. Giselle Blois As emissões gama, na verdade, não são partículas e sim ondas eletromagnéticas

Leia mais

Eletromagnetismo: radiação eletromagnética

Eletromagnetismo: radiação eletromagnética 29 30 31 32 RADIAÇÕES NUCLEARES Como vimos nos textos anteriores, o interior da matéria no domínio atômico, inacessível ao toque e olhar humano, é percebido e analisado somente através das radiações eletromagnéticas

Leia mais

GRANDEZAS DE RADIOPROTEÇÃO

GRANDEZAS DE RADIOPROTEÇÃO GRANDEZAS DE RADIOPROTEÇÃO Prof. André L. C. Conceição DAFIS GRANDEZAS DE RADIOPROTEÇÃO Os raios X foram descobertos por Roentgen em 1895 e a radioatividade por Becquerel em 1896. Iniciou-se, assim, o

Leia mais

QUESTÕES DE FÍSICA MODERNA

QUESTÕES DE FÍSICA MODERNA QUESTÕES DE FÍSICA MODERNA 1) Em diodos emissores de luz, conhecidos como LEDs, a emissão de luz ocorre quando elétrons passam de um nível de maior energia para um outro de menor energia. Dois tipos comuns

Leia mais

18/Maio/2016 Aula 21. Introdução à Física Nuclear. Estrutura e propriedades do núcleo. 20/Maio/2016 Aula 22

18/Maio/2016 Aula 21. Introdução à Física Nuclear. Estrutura e propriedades do núcleo. 20/Maio/2016 Aula 22 18/Maio/2016 Aula 21 Introdução à Física Nuclear Estrutura e propriedades do núcleo 20/Maio/2016 Aula 22 Radioactividade: Poder de penetração. Regras de conservação. Actividade radioactiva. Tempo de meia

Leia mais

Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa

Introdução às interações de partículas carregadas Parte 1. FÍSICA DAS RADIAÇÕES I Paulo R. Costa Introdução às interações de partículas carregadas Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa Sumário Introdução Radiação diretamente ionizante Partículas carregadas rápidas pesadas Partículas carregadas

Leia mais

Os fundamentos da Física Volume 3 1. Resumo do capítulo

Os fundamentos da Física Volume 3 1. Resumo do capítulo Os fundamentos da Física Volume 1 Capítulo 0 Física Nuclear AS FORÇAS FUNDAMENTAIS DA NATUREZA Força nuclear forte Mantém a coesão do núcleo atômico. Intensidade 10 8 vezes maior do que a força gravitacional.

Leia mais

Lista 1 - Radioatividade

Lista 1 - Radioatividade 1. Para cada um dos radionuclídeos mostrados a seguir, escreva a equação que representa a emissão radioativa. Consulte a tabela periódica. a) b) c) d) e) 222 86 Rn, um alfa emissor presente no ar. 235

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL PPE6408 Tópicos Especiais de Física Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de

Leia mais

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa

FÍSICA MÉDICA. Aula 04 Desintegração Nuclear. Prof. Me. Wangner Barbosa da Costa FÍSICA MÉDICA Aula 04 Desintegração Nuclear Prof. Me. Wangner Barbosa da Costa Desintegração Nuclear Núcleos prótons e nêutrons. Elemento com diferentes nº de nêutrons são chamados de isótopos. Núcleos

Leia mais

Radioatividade Ambiental. Paulo Sergio Cardoso da Silva. Instituto de Pesquisas Energéticas e Nucleares - IPEN

Radioatividade Ambiental. Paulo Sergio Cardoso da Silva. Instituto de Pesquisas Energéticas e Nucleares - IPEN Radioatividade Ambiental Paulo Sergio Cardoso da Silva Instituto de Pesquisas Energéticas e Nucleares - IPEN nucleons A ESTRUTURA DO NÚCLEO O número atômico (Z) corresponde ao número de prótons presentes

Leia mais

Átomos. Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN

Átomos. Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN Átomos Retrospectiva do átomo de hidrogênio Estrutura eletrônica do átomo neutro Estrutura nuclear do átomo RMN Átomo neutro O átomo é constituido de um núcleo positivo com Z próton que definem o confinamento

Leia mais

Vimos que a energia de ligação de um núcleo com Z prótons e N nêutrons é dado por:

Vimos que a energia de ligação de um núcleo com Z prótons e N nêutrons é dado por: Vimos que a energia de ligação de um núcleo com Z prótons e N nêutrons é dado por: E lig = Mc E lig = = Mc Zm H c + = Zm Nm c n p c M Nm c A c n M E como a massa de um átomo é praticamente igual a soma

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOB1021 - FÍSICA IV Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de Lorena (EEL) Universidade

Leia mais

Efeitos biológicos da radiação

Efeitos biológicos da radiação Efeitos biológicos da radiação Proteção Radiológica Alguns elementos químicos têm a propriedade de se decompor, transformando-se em outros elementos, de massas atômicas menores, com liberação de energia

Leia mais

LISTA 1 PARA ENTREGAR. Raios ultravioletas

LISTA 1 PARA ENTREGAR. Raios ultravioletas LISTA 1 PARA ENTREGAR 1) a) Radiação é energia em trânsito. É uma forma de energia emitida por uma fonte e transmitida por meio do vácuo, do ar ou de meios materiais. b) Radiações ionizantes são partículas

Leia mais

Decaimento radioativo

Decaimento radioativo Decaimento radioativo Processo pelo qual um nuclídeo instável transforma-se em outro, tendendo a uma configuração energeticamente mais favorável. Tipos de decaimento: (Z, A) * (Z, A) (Z, A) (Z, A)! γ!

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 008 1 Núcleos não podem conter elétrons O Princípio da Incerteza nos diz que:

Leia mais

Física IV Cap 43 Física Nuclear Prof. Daniel Jonathan

Física IV Cap 43 Física Nuclear Prof. Daniel Jonathan Física IV Cap 43 Física Nuclear Prof. Daniel Jonathan Niterói, Novembro 2014 1 Estrutura Nuclear Núcleons = prótons e nêutrons (constituintes do núcleo) Spin = ½ (obedecem o princípio de exclusão de Pauli)

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 16 PROCESSOS E REAÇÕES NUCLEARES Edição Agosto de 2007 CAPÍTULO 08 PROCESSOS E REAÇÕES NUCLEARES ÍNDICE 16.1- Introdução 16.2- Radioatividade

Leia mais

Capítulo 1 Radiação Ionizante

Capítulo 1 Radiação Ionizante Física das Radiações e Dosimetria Capítulo 1 Radiação Ionizante Dra. Luciana Tourinho Campos Programa Nacional de Formação em Radioterapia Introdução Tipos e fontes de radiação ionizante Descrição de campos

Leia mais

Propriedades corpusculares das ondas (2. Parte)

Propriedades corpusculares das ondas (2. Parte) Propriedades corpusculares das a ondas (2. Parte) Revisão da aula passada A hipótese dos quanta de Planck Max Planck (1900): a energia dos osciladores de cavidade de corpo negro somente pode ter valores

Leia mais

15/08/2017. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis.

15/08/2017. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis. É a propriedade que os núcleos instáveis possuem de emitir partículas e radiações eletromagnéticas, para se tornarem estáveis. 1 Descoberta dos raios X No final do século XIX, o físico alemão Wilheim Konrad

Leia mais

Química Fascículo 04 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida

Química Fascículo 04 Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida Química Fascículo Elisabeth Pontes Araújo Elizabeth Loureiro Zink José Ricardo Lemes de Almeida Índice Radioatividade...1 Exercícios... Gabarito...3 Radioatividade É a emissão de Radiação de um núcleo

Leia mais

Física Moderna II. Universidade de São Paulo Instituto de Física. Prof. Nemitala Added Profa. Márcia de Almeida Rizzutto 2 o Semestre de 2014

Física Moderna II. Universidade de São Paulo Instituto de Física. Prof. Nemitala Added Profa. Márcia de Almeida Rizzutto 2 o Semestre de 2014 Universidade de São Paulo Instituto de Física Física Moderna II Prof. Nemitala Added Profa. Márcia de Almeida Rizzutto o Semestre de 014 1 Força Nuclear no modelo atômico (átomo mais simples, H) descrevemos

Leia mais

Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES

Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES Leonnardo Cruvinel Furquim PROCESSOS NUCLEARES Radioatividade Três espécies de emissões radioativas naturais foram identificadas e caracterizadas e foi demonstrado que todas são emitidas pelo núcleo atomico,

Leia mais

Aula 21 Física Nuclear

Aula 21 Física Nuclear Aula 21 Física 4 Ref. Halliday Volume4 Sumário Descobrindo o Núcleo; Algumas Propriedades Nucleares; Decaimento Radioativo; Decaimento Alfa; Decaimento Beta; Radiação Ionizante; Analisando os dados, Rutherford

Leia mais

PROTEÇÃO RADIOLÓGICA

PROTEÇÃO RADIOLÓGICA PROTEÇÃO RADIOLÓGICA O ser humano não dispõe de sistemas próprios para a detecção da presença de radiação ionizante. O uso desenfreado das radiações mostrou que: A radiação ionizante é capaz de produzir

Leia mais

ESTRUTURA DA MATÉRIA E O ÁTOMO

ESTRUTURA DA MATÉRIA E O ÁTOMO ESTRUTURA DA MATÉRIA E O ÁTOMO Todas as coisas existentes na natureza são constituídas de átomos ou suas combinações. Atualmente, sabemos que o átomo é a menor estrutura da matéria que apresenta as propriedades

Leia mais

Oficinas sobre Física das Radiações e Radiologia Industrial

Oficinas sobre Física das Radiações e Radiologia Industrial Oficinas sobre Física das Radiações e Radiologia Industrial Prof. Luciano Santa Rita www.lucianosantarita.pro.br tecnologo@lucianosantarita.pro.br Sumário - Física das Radiações Oficinas tópicos 1a 2a

Leia mais

Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes /IFUSP/2014

Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes /IFUSP/2014 Efeitos Biológicos das Radiações Ionizantes e Não Ionizantes 4300436/IFUSP/2014 Lista de Exercícios 3 (Extraídos de Okuno e Yoshimura, 2010, capítulo 4) 1. Calcule o número de átomos de 198 Au que se desintegram

Leia mais

3. Introdução à Radioatividade

3. Introdução à Radioatividade 3. Introdução à Radioatividade Eliezer de Moura Cardoso et all, Apostila Educativa RADIOATIVIDADE, CNEN. Luiz Tauhata et all, Apostila Fundamentos de Radioproteção e Dosimetria, CNEN. O termo Radioatividade

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 4

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 4 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 4 Prof ª. Giselle Blois Cinética da Radioatividade Quando um átomo emite radiação (energia) ele sofre

Leia mais

Radioatividade. Profa. Amanda Amantes Neiva Ribeiro

Radioatividade. Profa. Amanda Amantes Neiva Ribeiro Radioatividade Profa. Amanda Amantes Neiva Ribeiro O que é? A Radioatividade está ligada diretamente ao núcleo n do átomo, que sofre alteração ao final do processo. Trata-se basicamente da emissão de partículas

Leia mais

1ª e 2 ª Lista de Exercícios de Química Geral - Estrutura Atômica

1ª e 2 ª Lista de Exercícios de Química Geral - Estrutura Atômica 1ª e 2 ª Lista de Exercícios de Química Geral - Estrutura Atômica Prof. Dr. Newton Luiz Dias Filho 1) a) Qual é a frequência de radiação que tem um comprimento de onda de 0,452 pm? b) Qual é o comprimento

Leia mais

PRODUÇÃO DE RAIOS X. Produção de raios X Tubo de raios X. Produção de raio x Tubo de raios X

PRODUÇÃO DE RAIOS X. Produção de raios X Tubo de raios X. Produção de raio x Tubo de raios X PRODUÇÃO DE RAIOS X Prof. André L. C. Conceição DAFIS Curitiba, 17 de abril de 2015 Produção de raios X Tubo de raios X Os raios X são uma das maiores ferramentas médicas de diagnóstico desde sua descoberta

Leia mais

1 Estrutura do átomo. c Leonor Cruzeiro

1 Estrutura do átomo. c Leonor Cruzeiro 1 Radiações c Leonor Cruzeiro 1 Estrutura do átomo Um físico famoso, chamado Richard Feynman, disse que se tivesse de condensar os conhecimentos que tinha da física numa frase diria que a matéria é constituída

Leia mais

PROBLEMAS RESOLVIDOS SOBRE DECAIMENTO RADIOATIVO

PROBLEMAS RESOLVIDOS SOBRE DECAIMENTO RADIOATIVO Bertolo Exercícios sobre Decaimento Radioativo 1 PROBLEMAS RESOLVIDOS SOBRE DECAIMETO RADIOATIVO 1. A meia-vida de um dado isótopo radioativo é de 6,5 horas. Se existirem inicialmente 48 x 10 19 átomos

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 2 Física da Radiação Física Para Ciências Biológicas Prof. Roberto Claudino Ferreira 1 ÍNDICE 1. Conceito de radiação;

Leia mais

Demócrito. Demócrito a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos.

Demócrito. Demócrito a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos. Atomística Demócrito Demócrito 460-370 a.c. Filósofo grego. A matéria é formada por partículas indivisíveis chamadas átomos. Lavoisier NADA SE PERDE NADA SE CRIA TUDO SE TRANSFORMA Dalton BASEADO NA LEI

Leia mais

Descoberta do núcleo. Forças nucleares. Nuclídeos experimento de Rutherford Núcleo pequeno e positivo

Descoberta do núcleo. Forças nucleares. Nuclídeos experimento de Rutherford Núcleo pequeno e positivo Descoberta do núcleo 1911- experimento de Rutherford Núcleo pequeno e positivo Raio nuclear: fentometro (1 fm = 10-15 m) Razão entre os raios (r): r núcleo / r átomo = 10-4 Forças nucleares Prótons muito

Leia mais

Biofísica Bacharelado em Biologia

Biofísica Bacharelado em Biologia Biofísica Bacharelado em Biologia Prof. Dr. Sergio Pilling PARTE B Capítulo 6 Conceitos basicos sobre radiação. Modelos atómico e niveis de energia. Radiaoatividade. Objetivos: Nesta aula veremos alguns

Leia mais

Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote

Aula 1 Conceitos Básicos sobre Radiação. F 107 Física para Biologia 1º Semestre de 2010 Prof.Dr. Edmilson JT Manganote Aula 1 Conceitos Básicos sobre Radiação Introdução O que vamos discutir? Tipos e características das radiações Teoria dos quanta Dualidade onda-partícula Microscópio eletrônico A radiação é a propagação

Leia mais

1896, : K2(UO2)(SO4)2,

1896, : K2(UO2)(SO4)2, RADIOATIVIDADE Radioatividade Histórico: Em 1896, acidentalmente, Becquerel descobriu a radioatividade natural, ao observar que o sulfato duplo de potássio e uranila : K 2 (UO 2 )(SO 4 ) 2, conseguia impressionar

Leia mais

RADIOATIVIDADE DEFINIÇÃO

RADIOATIVIDADE DEFINIÇÃO RADIOATIVIDADE DEFINIÇÃO ATIVIDADE QUE CERTOS ÁTOMOS POSSUEM DE EMITIR RADIAÇÕES ELETROMAGNÉTICAS E PARTÍCULAS DE SEUS NÚCLEOS INSTÁVEIS COM O PROPÓSITO DE ADQUIRIR ESTABILIDADE ESTABILIDADE NUCLEAR ADMITE-SE

Leia mais

Radioatividade X Prof. Neif Nagib

Radioatividade X Prof. Neif Nagib Radioatividade X Prof. Neif Nagib Breve Histórico Em 1895, Wilhem Röntgen descobriu os raios X, que eram úteis mas misteriosos. A descoberta da radioatividade ocorreu, casualmente, por Henri Becquerel,

Leia mais

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade Como definir a estabilidade de um átomo? Depende Eletrosfera Ligações Núcleo Radioatividade O que é radioatividade? Tem alguma ver com radiação? Modelos atômicos Átomo grego Átomo de Thomson Átomo de

Leia mais

Sumário. Espectros, Radiação e Energia

Sumário. Espectros, Radiação e Energia Sumário Das Estrelas ao átomo Unidade temática 1 Radiação ionizante e radiação não ionizante.. E suas aplicações. APSA 5 Espectro eletromagnético.. Radiação não ionizante São radiações não ionizantes as

Leia mais

Capítulo 42: Física Nuclear

Capítulo 42: Física Nuclear Cap. 4: Sumário A Descoberta do úcleo Propriedades dos úcleos Decaimento Alfa Decaimento Beta Datação Radioativa Medida da Dose de Radiação Modelos ucleares. Em 1911, Ernest Rutherford sugerio que a carga

Leia mais

HISTÓRICO 1895 WILHEM ROENTGEN

HISTÓRICO 1895 WILHEM ROENTGEN Prof. Edson Cruz HISTÓRICO 1895 WILHEM ROENTGEN Investiga o fenômeno da luminescência; (emissão de luz por uma substância excitada por uma radiação eletromagnética). Tubo de raios catódicos emitiam uma

Leia mais

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA

Raios-x. Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Raios-x Proteção e higiene das Radiações Profª: Marina de Carvalho CETEA Materiais Radioativos 1896 o físico Francês Becquerel descobriu que sais de Urânio emitia radiação capaz de produzir sombras de

Leia mais

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 1

QUÍMICA. Transformações Químicas e Energia. Radioatividade: Reações de Fissão e Fusão Nuclear, Desintegração Radioativa e Radioisótopos - Parte 1 QUÍMICA Transformações Químicas e Energia Radioatividade: Reações de Fissão e Fusão Nuclear, - Parte 1 Prof ª. Giselle Blois Reação nuclear: é aquela que altera os núcleos atômicos. * Importante lembrar

Leia mais

Descoberta do Núcleo

Descoberta do Núcleo Unidade 3 Núcleo Atômico Descoberta do Núcleo Propriedades dos Núcleos Forças Nucleares Estabilidade Nuclear Ressonância Magnética Nuclear Consultas http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html#nuccon

Leia mais

Aula 25 Radioatividade

Aula 25 Radioatividade Aula 25 Radioatividade A radioatividade foi descoberta pelo físico francês Antonie Henri Becquerel, ele havia descoberto um minério de urânio que, ao ser colocado sobre uma chapa fotográfica envolta em

Leia mais

FNC Física Moderna 2 Aula 26

FNC Física Moderna 2 Aula 26 FNC 0376 - Física Moderna Aula 6 1 Física Nuclear: cronologia do início Descoberta da Radioatividade (Becquerel) 1896 Separação química do Ra (Marie e Pierre Curie) 1898 Modelo atômico de Rutherford 1911

Leia mais

SÓ EU SEI O QUE VAI CAIR NA PROVA! RADIOATIVIDADE. Prof. Gabriel P. Machado

SÓ EU SEI O QUE VAI CAIR NA PROVA! RADIOATIVIDADE. Prof. Gabriel P. Machado RADIOATIVIDADE Prof. Gabriel P. Machado DEFINIÇÃO Propriedade de núcleos instáveis, que emitem partículas e radiação de modo a atingir estabilidade. HISTÓRICO 1895: Wilhelm Konrad Roentgen conseguiu produzir

Leia mais

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE MEDICINA CURSO SUPERIOR DE TECNOLOGIA EM RADIOLOGIA PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES PROFESSORES: Priscila Carmo Santana Lucas Paixão Reis 1. EMENTA

Leia mais

PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01

PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01 PROFESSOR: JURANDIR SOARES DISCIPLINA: QUÍMICA CONTEÚDO: RADIOTIVIDADE AULA: 01 RADIOATIVIDADE É a desintegração espontânea ou provocada da matéria com emissões de radiações como consequência de uma estabilidade

Leia mais

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE MEDICINA CURSO SUPERIOR DE TECNOLOGIA EM RADIOLOGIA PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES PROFESSORES: Priscila Carmo Santana Marcio Alves de Oliveira

Leia mais

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES

PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE MEDICINA CURSO SUPERIOR DE TECNOLOGIA EM RADIOLOGIA PLANO DE TRABALHO FÍSICA DAS RADIAÇÕES PROFESSORES: Priscila Carmo Santana Lucas Paixão Reis 1. EMENTA

Leia mais

INTRODUÇÃO À FÍSICA MÉDICA

INTRODUÇÃO À FÍSICA MÉDICA Curso de Verão 2018 IF-USP INTRODUÇÃO À FÍSICA MÉDICA Elisabeth M. Yoshimura e.yoshimura@if.usp.br e Ricardo A. Terini rterini@if.usp.br Bloco F Conjunto Alessandro Volta Paulo R. Costa pcosta@if.usp.br

Leia mais

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade

Como definir a estabilidade de um átomo? Depende. Eletrosfera. Núcleo. Radioatividade Como definir a estabilidade de um átomo? Depende Eletrosfera Ligações Núcleo Radioatividade O que é radioatividade? Tem alguma ver com radiação? Radiação eletromagnética Ampla faixa de frequência Modelos

Leia mais

RADIOATIVIDADE. É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos.

RADIOATIVIDADE. É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos. RADIOATIVIDADE É o fenômeno onde núcleos instáveis emitem partículas e radiação, transformando-se em outros átomos. Marie Curie Descobriu a Radioatividade com Pierre Curie e Becquerel. Descobriu dois

Leia mais

O Decaimento Alfa, Beta, Gama e Captura de Elétrons Datação pelo Carbono 14 Reações Nucleares

O Decaimento Alfa, Beta, Gama e Captura de Elétrons Datação pelo Carbono 14 Reações Nucleares CPÍTULO 3: Física Nuclear lgumas Propriedades dos Núcleos Carga e Massa O Tamanho dos Núcleos Estabilidade Nuclear Energia de Ligação Radioatividade Os Processos de Decaimento Radioativo O Decaimento lfa,

Leia mais

RADIOATIVIDADE E FÍSICA NUCLEAR

RADIOATIVIDADE E FÍSICA NUCLEAR RADIOATIVIDADE E FÍSICA NUCLEAR O começo... 1895 Wilhelm Conrad Roengten descobre a radiação X 1896 Antoine Henri Bequerel descobriu que determinado material emitia radiações espontâneas radioatividade

Leia mais

Radiação e Ionização. Proteção e higiene das Radiações I Profª: Marina de Carvalho CETEA

Radiação e Ionização. Proteção e higiene das Radiações I Profª: Marina de Carvalho CETEA Radiação e Ionização Proteção e higiene das Radiações I Profª: Marina de Carvalho CETEA Introdução O que é onda? Perturbação em um meio que se propaga transportando energia sem que haja transporte de matéria.

Leia mais

Física IV para Engenharia Elétrica. 2º Semestre de Instituto de Física - Universidade de São Paulo

Física IV para Engenharia Elétrica. 2º Semestre de Instituto de Física - Universidade de São Paulo 1 Física IV para Engenharia Elétrica 2º Semestre de 2014 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdirg@if.usp.br Aula 8 Física Nuclear - Aplicações 2 3 Aplicações

Leia mais

Introdução à Proteção Radiológica

Introdução à Proteção Radiológica Proteção Radiológica Introdução à Proteção Radiológica PROF. LUIZ CONTI Programa Nacional de Formação em Radioterapia FONTES DE RADIAÇÃO Naturais: Radiação cósmica Urânio, Tório e Potássio Radônio Artificiais:

Leia mais

CURSO DE MEDICINA VETERINÁRIA DISCIPLINA: BIOFÍSICA 3 período BIOFÍSICA DAS RADIAÇÕES Prof.a: Érica Muniz

CURSO DE MEDICINA VETERINÁRIA DISCIPLINA: BIOFÍSICA 3 período BIOFÍSICA DAS RADIAÇÕES Prof.a: Érica Muniz CURSO DE MEDICINA VETERINÁRIA DISCIPLINA: BIOFÍSICA 3 período BIOFÍSICA DAS RADIAÇÕES Prof.a: Érica Muniz RADIAÇÃO Radiação é a propagação de energia de um meio para outro através de ondas eletromagnéticas

Leia mais