Discussão sobre as leis de Newton no contexto da análise de estruturas



Documentos relacionados
INTRODUÇÃO À ANÁLISE DE ESTRUTURAS

Caso (2) X 2 isolado no SP

de forças não concorrentes.

Uma estrutura pode estar em equilíbrio ou movimento.

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL

Leis de Isaac Newton

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições.

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

TEORIA DAS ESTRUTURAS I

6- Análise Estrutural

FORÇA DE ATRITO PLANO INCLINADO

1. Definição dos Elementos Estruturais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

Equipe de Física FÍSICA

Bacharelado Engenharia Civil

TRELIÇAS. Tipo sheed (cobertura)

Estudo do efeito de sistemas de forças não concorrentes. Eduardo Nobre Lages CTEC/UFAL

EQUILÍBRIO DO CORPO EXTENSO

A distribuição de um momento aplicado em um nó de um pórtico por parcelas de momentos fletores equilibrantes nas barras adjacentes (Seção 8.2).

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

As leis de Newton e suas aplicações

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Cap. 4 - Princípios da Dinâmica

ESCOLA SECUNDÁRIA DE CASQUILHOS

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

Só Matemática O seu portal matemático FUNÇÕES

Física. Física Módulo 1 Leis de Newton

e) Primeira Lei de Kepler. c) Lei de Ampére;

Esforços axiais e tensões normais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! Cinemática escalar

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

Hoje estou elétrico!

UNIVERSIDADE SANTA CECÍLIA

ESTÁTICA DEC - COD 3764 I

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

COLÉGIO JOÃO PAULO I UNIDADE SUL

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng.

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Os princípios fundamentais da Dinâmica

UNIVERSIDADE DE MARÍLIA

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Equilíbrio de um Ponto

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Você acha que o rapaz da figura abaixo está fazendo força?

Capítulo 4 Trabalho e Energia

1. Equilíbrio de corpos rígidos

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

LISTA UERJ 2014 LEIS DE NEWTON

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial


MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.02 SOBRE A ANÁLISE DINÂMICA MIEM. Integradora II. Elaborado por Paulo Flores

SISTEMAS ESTRUTURAIS

LISTA UERJ 1ª FASE LEIS DE NEWTON

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

Um momento, por favor

Lista de Exercícios-PRA - Estática R. C. Hibbeler I - Adição de forças vetoriais

CAPÍTULO 3 PROBLEMA 3.1

AS LEIS DO MOVIMENTO. O Conceito de Força

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

Leis de Newton. Dinâmica das partículas Física Aplicada

Análise Dimensional Notas de Aula

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período

Sumário. Prefácio... xi. Prólogo A Física tira você do sério? Lei da Ação e Reação... 13

Provas Comentadas OBF/2011

condições de repouso ou movimento de corpos sob a ação de forças.

Lista de Exercícios - Unidade 8 Eu tenho a força!

Exercícios 6 Aplicações das Leis de Newton

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

Análise estrutural. Objetivos da aula. Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções.

4.2 Modelação da estrutura interna

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

RESISTÊNCIA DOS MATERIAIS APOSTILA 01

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Capítulo 16. Gravitação. Página 231

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão

Programa de Retomada de Conteúdo - 3º Bimestre

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física

ESCOLA SECUNDÁRIA DE CASQUILHOS

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

CAPÍTULO V CISALHAMENTO CONVENCIONAL

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

1. Determinar a tensão normal nos pontos das seções S 1 e S 2 da barra da figura.

1 Momento ou torque de uma força

CÁLCULO DE LAJES - RESTRIÇÕES ÀS FLECHAS DAS LAJES

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Transcrição:

Princípios físicos básicos para as condições de equilíbrio As condições de equilíbrio garantem o equilíbrio estático de qualquer porção isolada da estrutura ou da estrutura como um todo. Elas estão baseadas nas três leis de Newton: 1ª Lei de Newton (Princípio da Inércia): Todo corpo permanece em seu estado de repouso ou de movimentos retilíneo uniforme até que uma ação eterna, não equilibrada, atue sobre ele. 2ª Lei de Newton: A partir do momento em que o corpo ficar submetido à ação de uma força resultante F, o corpo irá adquirir uma aceleração a, de tal forma F = ma, sendo m a massa do corpo. 3ª Lei de Newton: A toda ação corresponde uma reação de mesma intensidade e de sentido contrário. Unidades de força 1 N (Newton) é a força cuja intensidade é capaz de deslocar uma massa de 1 kg com a aceleração de 1 m/seg 2. 1 kn (kilo-newton) = 1000 N. 1 kgf (kilograma-força) é a força cuja intensidade é capaz de deslocar uma massa de 1 kg com a aceleração da gravidade: 1 kgf = kg g. Para conversão, será adotada a aceleração da gravidade g = 10 m/seg 2. 1 kgf = 10 N. 1 tf (tonelada-força) é a força cuja intensidade é capaz de deslocar uma massa de 1 tonelada (1000 kg) com a aceleração da gravidade: 1 tf = 1000 kg g = 1000 kgf 1 tf = 10 kn. Discussão sobre as leis de Newton no conteto da análise de estruturas Estruturas civis estão sempre em estado de repouso (velocidade e aceleração nulas). Portanto, a força resultante em uma estrutura deve ser nula. Lembre-se que uma força é uma grandeza vetorial, com intensidade, direção e sentido. Para o caso de quadros planos, a imposição de resultante de força nula fornece duas condições para o equilíbrio global da estrutura: F = 0 somatório de forças na direção horizontal deve ser nulo; F = 0 somatório de forças na direção vertical deve ser nulo. Introdução à Análise de Estruturas Luiz Fernando Martha 6

Uma estrutura tem dimensões grandes e tem comportamento diferente de uma partícula sem dimensão. Além disso, as cargas atuam em uma estrutura em vários pontos de aplicação. Nesse caso, a ação à distância de uma força deve ser considerada. O efeito de uma força F atuando à distância h é chamado de momento: M = F h: Assim, a 2ª lei de Newton, para estruturas em repouso, pode ser estendida para momentos: o momento resultante em uma estrutura deve ser nulo. No caso de quadros planos, isso resulta em mais uma condição para o equilíbrio global da estrutura: M = 0 somatório de momentos em relação a um ponto qualquer deve ser nulo. o Essa condição de equilíbrio garante que o corpo não vai girar: Estruturas civis se deformam quando submetidas a solicitações (cargas, etc.). Mas as deformações e os deslocamentos de estruturas são muito pequenos, a ponto de serem desprezados quando são impostas condições de equilíbrio. Isto é, as condições de equilíbrio são impostas para a geometria original (indeformada) da estrutura. Esta hipótese é chamada de hipótese de pequenos deslocamentos. Introdução à Análise de Estruturas Luiz Fernando Martha 7

A 3ª lei de Newton (princípio de ação e reação) é aplicável a todas as estruturas recebendo cargas e que estejam em equilíbrio. Esse princípio vale para forças em qualquer direção e para momentos. (Concreto Armado Eu te amo, pags. 13 e 14) Introdução à Análise de Estruturas Luiz Fernando Martha 8

As 2ª e 3ª leis de Newton também se aplicam para qualquer porção isolada da estrutura. Isto é, qualquer barra, qualquer nó ou qualquer trecho da estrutura tem que isoladamente satisfazer as condições de equilíbrio. Isso vai resultar no conceito de esforço interno. Veja, por eemplo, o esforço interno aial em um cabo: Tração de um cabo Esforço interno aial (esforço normal) Mais adiante os esforços internos vão ser definidos para cada tipo de modelo estrutural: quadro plano, treliças, grelhas e quadros espaciais. Introdução à Análise de Estruturas Luiz Fernando Martha 9

Vínculos eternos (restrições de apoio) Em um modelo estrutural, as ligações com o meio eterno têm que ser especificadas. Isso é feito através de restrições de apoios, também denominadas vínculos eternos. Em um quadro plano, um z apoio pode restringir o deslocamento horizontal, o deslocamento vertical, ou a rotação θ no ponto da estrutura onde está posicionado. Lembre-se que: deslocamento na direção do eio global X; deslocamento na direção do eio global Y; z θ rotação em torno do eio global Z. Além disso, um apoio pode impedir cada componente de deslocamento ou rotação em separado, aos pares, ou todos juntos. Os tipos mais comuns de apoios estão indicados abaio, onde também estão indicadas as suas representações no modelo estrutural. Estrutura Real Representação Representação (Concreto Armado Eu te amo) (adotada) SIMBOLOGIA E RESTRIÇÕES IMPOSTAS z = 0 = 0 θ = 0 = 0 = 0 = 0 Introdução à Análise de Estruturas Luiz Fernando Martha 10

Reações de apoio Cada restrição de apoio está associada a uma reação de apoio, que é a força ou momento que o vínculo eterno eerce sobre a estrutura. O impedimento a um deslocamento está associado ao aparecimento de uma reação força. O impedimento de uma rotação está associado ao aparecimento de uma reação momento. Dessa forma, um apoio do 1º gênero está associado a uma reação força vertical. Um apoio do 2º gênero está associado está associado a uma reação força horizontal e uma reação força vertical. Um engaste está associado a três reações de apoio: uma reação força horizontal, uma reação força vertical e uma reação momento: q M A q H B V B V B Aplicação das condições de equilíbrio para determinação de reações de apoio Conforme dito anteriormente, um dos objetivos da Análise Estrutural é a determinação das reações de apoio de uma estrutura. De uma maneira geral, para se calcular as reações de apoio é necessário considerar todos as condições matemáticas que o modelo estrutural tem que atender: condições de equilíbrio, leis constitutivas dos materiais e condições de compatibilidade entre deslocamentos e deformações. Entretanto, eiste um caso especial de estruturas para as quais é possível determinar as reações de apoio (e também os esforços internos) utilizando apenas condições de equilíbrio. Esses tipos de estruturas são denominados estruturas isostáticas. O caso mais geral de estruturas é o de estruturas hiperestáticas, para as quais só é possível determinar reações de apoio utilizando todas as condições do modelo: equilíbrio, leis constitutivas e compatibilidade. A análise de estruturas hiperestáticas é bem mais complea do que a análise de estruturas isostáticas. Nesta seção, a determinação de reações de apoio é considerada apenas para estruturas isostáticas. Os eemplos estudados são de vigas horizontais e barras verticais ou inclinadas, que se enquadram como modelos de quadros planos. Para esses tipos de modelos estruturais, eistem três equações de equilíbrio disponíveis: F = 0 somatório de forças na direção horizontal deve ser nulo; F = 0 somatório de forças na direção vertical deve ser nulo; Mo = 0 somatório de momentos em relação a um ponto qualquer deve ser nulo. Portanto, a condição para que quadros planos sejam isostáticos é que tenham apenas três reações de apoio. Deve-se salientar que a presença de articulações internas (rótulas) acarreta equações de equilíbrio adicionais (isso será visto mais tarde). Portanto, um quadro plano isostático pode ter mais do que três reações de apoio quando tiver rótulas. Introdução à Análise de Estruturas Luiz Fernando Martha 11

Eemplo 1 Estrutura Real Modelo Estrutural P = 500 kgf V B Imposição de somatório nulo de forças na direção horizontal: F = 0 Reação força horizontal no apoio A é nula: = 0 Convenção de sinais para forças e momentos: Imposição de somatório nulo de forças na direção vertical: F = 0 + V B P = 0. + V B = + 500 kgf Imposição de somatório nulo de momentos no ponto A: M A = 0 0 P 8 m + V B 10 m = 0 V B 10 m = 500 kgf 8 m = 4000 kgf m V B = 4000 kgf m 10 m = + 400 kgf + V B = 500 kgf = 500 kgf V B = 500 kgf 400 kgf = + 100 kgf Eemplo 2 Estrutura Real Modelo Estrutural F 1 = 300 kgf F 2 = 60 kgf H C M C V C Imposição de somatório nulo de forças na direção horizontal: F = 0 F 1 F 2 + H C = 0 H C + 300 kgf 60 kgf = 0 H C = 300 kgf + 60 kgf = 240 kgf (com sentido contrário ao que está indicado na figura) Imposição de somatório nulo de forças na direção vertical: F = 0 Reação força vertical no apoio C é nula: V C = 0 Imposição de somatório nulo de momentos no ponto C: M C = 0 F 1 8 m + F 2 2 m + M C = 0 M C = + 300 kgf 8 m 60 kgf 2 m= + 2280 kgf m Introdução à Análise de Estruturas Luiz Fernando Martha 12

Eemplo 3 q = 1 kgf/m Modelo Estrutural 10 kgf Resultante do peso próprio: 2 kgf 1 kgf/m 5 m = 5 kgf (localiza-se no centro de simetria) 10 kgf 2 kgf 35 kgf 10 kgf 35 kgf 10 kgf M A M A Imposição de somatório nulo de forças na direção horizontal: F = 0 + 10 kgf + 2 kgf = 0 = 12 kgf (com sentido contrário ao que está indicado na figura) Imposição de somatório nulo de forças na direção vertical: F = 0 + 35 kgf 5 kgf 10 kgf = 0. = 20 kgf (com sentido contrário ao que está indicado) Imposição de somatório nulo de momentos no ponto A: M A = 0 M A + 0 + 0 + 35 kgf 2 m 5 kgf 2 m 10 kgf 1.5 m 10 kgf 4 m 2 kgf 3 m = 0 M A = + 1 kgf m Eercícios propostos para cálculo de reações de apoio Introdução à Análise de Estruturas Luiz Fernando Martha 13