PROJETO AERO-TERMODINÂMICO DE UMA CÂMARA DE COMBUSTÃO PARA MICROTURBINA A GÁS DERIVADA DE TURBO- COMPRESSOR AUTOMOTIVO



Documentos relacionados
UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Figura 1-1. Entrada de ar tipo NACA. 1

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

ENSAIOS EM CÂMARAS DE COMBUSTÃO DE TURBINAS A GÁS

8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007

5. Resultados e Análises

Simulação Numérica do Aquecimento de Água Utilizando-se um Cilindro Ferromagnético

ANÁLISE EM CFD DO PROCESSO DE COMBUSTÃO DE CARVÃO NUMA CALDEIRA AQUATUBULAR: DEFEITOS DE FUNCIONAMENTO

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel

Módulo VII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Princípio de Conservação da Massa. Regime Permanente.

PROJETO DE PÁS DE TURBINAS EÓLICAS DE ALTA PERFORMANCE AERODINÂMICA

Misturadores a jato e sistemas de mistura em tanques

14 COMBUSTÍVEIS E TEMPERATURA DE CHAMA

CÁLCULO DO RENDIMENTO DE UM GERADOR DE VAPOR

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ COORDENAÇÃO DE ENGENHARIA MECÂNICA CURSO DE ENGENHARIA MECÂNICA VINICIUS ORTEGA BATISTA

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé

VAZAMENTOS CALCULADOS: UMA ANÁLISE FÍSICA

Perda de Carga e Comprimento Equivalente

4. RESULTADOS E DISCUSSÃO

Laboratório de Engenharia Térmica e Ambiental

Módulo VIII - 1ª Lei da Termodinâmica Aplicada a Volume de Controle: Regime Permanente, Dispositivos de Engenharia com Escoamento e Regime Transiente.

Influência dos carregamentos dos estágios na forma do canal axial de um compressor axial de vários estágios

Relatório técnico do projeto CFD-14/UFPR: testes de paralelização do código Mach2D

CFD ANALYSIS OF THE PULVERIZED COAL COMBUSTION IN A BOILER USING DIFFERENT BRAZILIAN MANUFACTURED COALS: CE3100 AND CE4500

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

Universidade Paulista Unip

O tornado de projeto é admitido, para fins quantitativos, com as seguintes características [15]:

Catálogo. Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Centro de Energia Eólica. Apoio:

6 Conclusões e Trabalhos futuros 6.1. Conclusões

Geração de Energia Elétrica

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo.

Universidade Federal do Paraná

Figura Vista frontal dos vórtices da Figura Vedovoto et al. (2006).

Alimentação de Caldeiras Alcooldutos Pipe Line. Bomba Multestágio Bipartida Axialmente. Soluções em Bombeamento

ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST

Princípios 6 Transformação de energia solar em eletricidade 6 Modelo solar com um módulo solar 7

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

SISTEMAS TÉRMICOS DE POTÊNCIA


Figura Ar sangrado do compressor da APU

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

ANÁLISE DAS TEMPERATURAS INTERENAS DA CÂMARA DE COMBUSTÃO DE UM SISTEMA COMPACTO DE CO-GERAÇÃO

A seguir será dada uma classificação ampla da Mecânica dos Fluidos baseada nas características físicas observáveis dos campos de escoamento.

PRINCIPAIS PARTES COMPONENTES DOS GERADORES DE VAPOR

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS

MANUTENÇÃO ELÉTRICA INDUSTRIAL * ENROLAMENTOS P/ MOTORES CA *

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Armazenamento de energia

Estabilizada de. PdP. Autor: Luís Fernando Patsko Nível: Intermediário Criação: 22/02/2006 Última versão: 18/12/2006

Análise Aerodinâmica e Térmica de uma Câmara de Combustão anular de Turbinas a Gás Utilizando CFD

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

a) 2880 C b) 3000 C c) 4200 C d) 5000 C e) 6000 C

PRÁTICA 12: VISCOSIDADE DE LÍQUIDOS

4.2 Modelação da estrutura interna

Caldeiras Manoel O. A. Méndez

ANÁLISE DOS PADRÕES DE RESISTÊNCIA ELÉTRICA DO LABORATÓRIO DE CALIBRAÇÃO DE GRANDEZAS ELÉTRICAS DA ELETRONORTE PARA MELHORIA DA INCERTEZA DE MEDIÇÃO

DA INTERPOLAÇÃO SPLINE COMO TRAJETÓRIA DA FERRAMENTA NA MANUFATURA SUPERFÍCIES COMPLEXAS ATRAVÉS DE FERRAMENTAS DOE (DESING OF EXPERIMENTS)

SÉRIE: 2º ano EM Exercícios de recuperação final DATA / / DISCIPLINA: QUÍMICA PROFESSOR: FLÁVIO QUESTÕES DE MÚLTIPLA ESCOLHA

BI 1-7. Sistemas de aceleração (testes de disparo)

PRINCÍPIOS DE FUNCIONAMENTO DOS MOTORES DE COMBUSTÃO INTERNA

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

4. O Ciclo das Substancias na Termoelétrica Convencional De uma maneira geral todas as substâncias envolvidas na execução do trabalho são o

Escoamento em dutos em L

Departamento Formação Básica Engenharia Civil Disciplina. Matéria. Fenômenos de Transporte. Código. Carga Horária (horas-aula) 120

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Fenômenos de Transporte

Análise Técnico/Financeira para Correção de Fator de Potência em Planta Industrial com Fornos de Indução.

Produção de Energia Alternativa

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária

Prof. Rogério Eletrônica Geral 1

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

Eixo Temático ET Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO

Mecânica dos Fluidos Fundamentos da Cinemática dos Fluidos

Curso Básico. Mecânica dos Fluidos. Unidade 3

COMPORTAMENTO DOS GERADORES DE INDUÇÃO DUPLAMENTE ALIMENTADOS EM TURBINAS EÓLICAS DE PEQUENO PORTE

MÁQUINAS DE EQUILÍBRIO

Instituto Superior de Engenharia do Porto

Controle de Processos Aula: Balanço de massa

Estudo de Casos Estudo de Caso 1: Velocidade Intervalar e Espessura da Camada

GERADOR EÓLICO 1 INTRODUÇÃO

ELEMENTOS ORGÂNICOS DE MÁQUINAS II AT-102

Compressor Parafuso. Principais tipos: Parafuso simples. Parafuso duplo (mais empregado)

MODELO TERMODINÂMICO DE UMA TURBINA A GÁS

Turbocompressores Holset

GERAÇÃO DE ENERGIA ELÉTRICA HIDRELÉTRICA-SISTEMA ELÉTRICO

PRO-FAE: FERRAMENTA COMPUTACIONAL PARA AUXILIO NO PROJETO PRELIMINAR DE FAZENDAS EÓLICAS.

ENSAIO DE BOMBAS EM SÉRIE E PARALELO

P2 - PROVA DE QUÍMICA GERAL - 20/05/06

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENG03108 MEDIÇÕES TÉRMICAS

Proposta de Trabalho para a Disciplina de Introdução à Engenharia de Computação PESQUISADOR DE ENERGIA

A utilização dos roletes ESI no Brasil

Estamos apresentando nossa proposta em resposta a sua carta convite enviada em 13/05/08.

DIMENSIONAMENTO DE TRANSFORMADOR SOB CARGAS NÃO-LINEARES

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

Curso de Engenharia de Produção. Processos de Fabricação

VANTAGENS DAS CORREIAS TRAPEZOIDAIS DENTADAS SOBRE AS CLÁSSICAS LISAS

Spray-ball fixo Grande consumo de água Baixa eficiência Dependência de agentes químicos

Módulo VI - Processos Isentrópicos Eficiência Isentrópica em Turbinas, Bombas, Bocais e Compressores.

Transcrição:

PROJETO AERO-TERMODINÂMICO DE UMA CÂMARA DE COMBUSTÃO PARA MICROTURBINA A GÁS DERIVADA DE TURBO- COMPRESSOR AUTOMOTIVO Newton Kiyoshi Fukumasu newton.fukumasu@gmail.com Guenther Carlos Krieger Filho guenther@usp.br Resumo: Devido à demanda energética atual, outros processos para a geração de energia elétrica se fizeram necessárias. A utilização de uma micro-turbina a gás associada a um gerador elétrico é uma solução estudada por diversos centros tecnológicos e, em sua forma mais simples, baseia-se em uma câmara de combustão e um turbo-compressor automotivo, o qual representa a instalação analisada, que pode produzir até 7 kw de potência. Neste trabalho será avaliada, utilizando-se Mecânica dos Fluidos Computacional (CFD) a câmara de combustão para o acionamento dessa instalação. A câmara original, baseada na geometria anular com fluxo direto, conteve basicamente um difusor de entrada, um liner, um casing e um swirler. Os resultados obtidos com a simulação numérica foram validados experimentalmente através de uma bancada de testes, de forma a controlar a qualidade dos mesmos, calibrando os modelos matemáticos de combustão e turbulência empregados. Servirão como base de comparação a temperatura de exaustão dos gases de combustão e as vazões mássicas de ar e combustível para a estabilidade da chama. Para se ampliar o entendimento sobre o processo de mistura devido à utilização de misturadores, foram estudadas duas configurações conhecidas por swirler, bluff-body. Uma terceira geometria sem misturadores foi utilizada como base de comparação e análise da utilização de dois tipos de bico injetores de combustível. Os resultados permitiram a visualização do processo de mistura devido a cada tipo de misturador e a verificação de que o processo de mistura devido a utilização do swirler possui maior intensidade, levando a uma melhor eficiência no processo de combustão. Palavras chave: turbina a gás, combustão, aerodinâmica. 1. Introdução Com o desenvolvimento industrial dos últimos tempos, uma alta demanda por energia elétrica pela comunidade fez com que os investimentos na área de geração de energia fossem aumentados. Entretanto esse aumento não se apresentou suficiente e novas soluções foram necessárias. Entre essas soluções, apresenta-se a utilização de uma turbina acoplada a um gerador elétrico como nas grandes termelétricas desenvolvidas. Entretanto, para a utilização em pequena escala e minimização de custos de investimento, soluções com menores densidades de energia se tornam necessários. Uma dessas soluções é composta por uma câmara de combustão e um turbo-compressor automotivo, este último atua acoplado ao gerador de energia. Este trabalho é baseado num projeto pré-existente de uma câmara de combustão, a qual permite ao conjunto à geração de até 7kW de potência. 2. Objetivo Este trabalho objetivou a análise do processo de mistura entre o combustível e o oxidante numa câmara de combustão pré-dimensionada para o acionamento de um turbo-compressor automotivo utilizado para a geração de energia elétrica. O ensaio de um protótipo foi realizado de modo a permitir a compatibilidade entre os resultados numéricos e experimentais. Utilizando-se da dinâmica dos fluidos computacional, é possível o estudo do escoamento interno dos gases na câmara de combustão devido à utilização de dois tipos de misturadores, conhecidos por swirler e bluff-body, permitindo a análise do processo de mistura entre os reagentes devido a estas diferentes geometrias e possibilitando a seleção do dispositivo que apresenta melhor eficiência de mistura. 3. Materiais e Métodos Os estudos da mecânica dos fluidos foram baseados em Munson (2003), Malalasekera (1998) e Maliska (1995). Os dois últimos tratam sobre os principais métodos numéricos atuais para a solução de escoamentos pela dinâmica dos fluidos computacional (CFD), além de apresentar alguns dos processos numéricos para a solução de combustão de gases. A geometria da câmara estudada é apresentada pela figura 1. Nela verificam-se as geometrias do combustor em vermelho, da carcaça em azul transparente e do swirler, em laranja.

Figura 1. Câmara projetada: vermelho combustor (liner); azul carcaça (casing); laranja swirler Devido à alta rotação empregue ao fluido na utilização deste tipo de misturador, modelou-se a turbulência gerada pelo modelo k-ε. Entretanto, um breve estudo foi realizado comparando-se este modelo com um baseado nas tensões de reynolds, como descrito em Wilcox (2004) e nos manuais do Fluent e do CFX. O modelo flamelet de combustão foi empregado para se verificar o processo de mistura e estimar a região em que ocorre a máxima temperatura de combustão para cada geometria. Este modelo é discutido por Griffiths e Barnard (1995) e as bases do processo de combustão, por Turns (2000). O modelo flamelet se baseia na fração de mistura dada pela equação 1. f combustível = Equação 1. m& m& combustível + m& oxidante O dimensionamento dos misturadores, bem como da câmara de combustão é discutido por Lefebvre (1983), o qual informa, de modo qualitativo, como ocorrem os processos de mistura e combustão devido ao uso de cada misturador. As figuras 2 e 3, apresentam as geometrias dos misturadores swirler e bluff-body, respectivamente. Figura 2 Geometria do misturador tipo Swirler Figura 3 Geometria do misturador tipo Bluff-Body Devido à geometria da câmara de combustão ter sido estimada anteriormente a este trabalho, apenas uma breve revisão foi realizada sobre a sua geometria original de modo a garantir o ponto de operação do sistema com fluxo mássico de 0,2kg/s de ar e 0,0033kg de GLP. Entretanto, durante os testes com o protótipo do combustor e, posteriormente, com o protótipo final da câmara, foi necessária uma revisão destes fluxos para a manutenção da estabilidade da chama, de modo a estabelecer os valores de, aproximadamente, 0,0312kg/s de ar e 0,003kg/s de GLP. 4. Resultados Os resultados da análise do bico injetor são apresentados pelas figuras 4.1 e 4.2, as quais se referem à distribuição da concentração mássica de combustível num plano longitudinal para os bicos de fluxo axial e radial, respectivamente. Nestas simulações, utilizou-se o modelo de turbulência k-ε e não se consideraram reações químicas, permitindo a simples mistura dos reagentes pelo transporte de suas propriedades. A figura 4.3 apresenta a distribuição radial da concentração mássica de combustível na saída do combustor. Devido ao fato de se analisar apenas o transporte das propriedades dos reagentes, como apresentado pelas figuras 4.1 e 4.2, perdem-se informações importantes do escoamento, como a aceleração do fluido devido à reação de combustão e concentração mássica dos produtos na saída do combustor. Assim, as figuras 4.4, 4.5, 4.6 e 4.7 apresentam as mesmas simulações, porem com o modelo de combustão acionado. As figuras 4.4 e 4.5 são resultados das simulações com o modelo de turbulência k-ε, já as figuras 4.6 e 4.7, o modelo de turbulência empregado foi um baseado nas tensões de Reynolds ( RSM ).

Figura 4.1: Distribuição da concentração mássica de combustível para o bico injetor de fluxo axial com o modelo de turbulência k-ε Figura 4.2: Distribuição da concentração mássica de combustível para o bico injetor de fluxo radial com o modelo de turbulência k-ε Concentração mássica 0.30 0.25 0.20 0.15 0.10 Bico axial Bico radial 0.0 0.2 0.4 0.6 0.8 1.0 Comprimento radial normalizado Figura 4.3: Distribuição da concentração mássica de combustível para ambos os bicos injetores de combustível na saída do combustor com o modelo de turbulência k-ε e sem reação química Figura 4.4: Distribuição da concentração mássica de combustível para o bico injetor de fluxo axial com o modelo de turbulência k-ε Figura 4.5: Distribuição da concentração mássica de combustível para o bico injetor de fluxo radial com o modelo de turbulência k-ε Figura 4.6: Distribuição da concentração mássica de combustível para o bico injetor de fluxo axial com o modelo de turbulência RSM

Figura 4.7: Distribuição da concentração mássica de combustível para o bico injetor de fluxo radial com o modelo de turbulência RSM As figuras 4.8, 4.9, 4.10 e 4.11 apresentam a distribuição de velocidades do escoamento num plano longitudinal do combustor. As figuras 4.8 e 4.9 não levam em consideração os processos de reação química, isto é, foi simulado apenas o processo de mistura pelo transporte das propriedades dos reagentes. Já os resultados apresentados pelas figuras 4.10 e 4.11 levaram em consideração a reação química, de modo que se verifica um aumento na velocidade média do escoamento. Isto é devido ao acoplamento da variação da densidade com a temperatura do fluido, gerando um empuxo, acelerando o fluido. Portanto, para uma boa representação do escoamento do fluido interno ao combustor, se faz necessária o uso de um modelo de combustão, que no caso presente foi o Flamelet model. Figura 4.8: Distribuição de velocidades para o bico injetor de fluxo axial sem o modelo de combustão (m/s) Figura 4.9: Distribuição de velocidades para o bico injetor de fluxo radial sem o modelo de combustão (m/s) Figura 4.10: Distribuição de velocidades para o bico injetor de fluxo axial com o modelo de combustão (m/s) Figura 4.11: Distribuição de velocidades para o bico injetor de fluxo radial com o modelo de combustão (m/s) Dois tipos de misturadores, conhecidos por bluff-body e swirler, foram analisados. As figuras 4.12 e 4.13 apresentam a distribuição da concentração de combustível para a utilização do misturador do tipo bluff-body e swirler, respectivamente. Para a configuração com misturador do tipo bluff-body, verificou-se, na saída do combustor, a existência de aproximadamente 35% de combustível que não participou das reações químicas. Para o caso com o misturador do tipo swirler, essa fração era de 11%. Com esses números, constata-se que o processo de mistura quando usado um misturador do tipo swirler é mais intenso, de modo a garantir uma maior eficiência no processo de combustão.

Figura 4.12: Distribuição da concentração mássica de combustível para o misturador do tipo bluff-body Figura 4.13: Distribuição da concentração mássica de combustível para o misturador do tipo swirler As figuras 4.14 e 4.15 apresentam as linhas de corrente para as configurações com misturadores do tipo bluffbody e swirler, respectivamente. Figura 4.14: Linhas de corrente do escoamento com a configuração de misturador do tipo bluff-body Figura 4.15: Linhas de corrente do escoamento com a configuração de misturador do tipo swirler As figuras 4.16 e 4.17 apresentam o perfil de velocidades, próximo à entrada do combustor, devido ao uso do misturador do tipo bluff-body. Já as figuras 4.18 e 4.19 apresentam o perfil de velocidades devido ao uso do misturador do tipo swirler. A figura 4.20 apresenta a distribuição da concentração de combustível para a configuração com o misturador do tipo swirler e com diâmetro de 95,25mm. Comparando-se esse resultado com o da figura 4.13, verifica-se um aumento no tamanho da estrutura turbulenta próxima a entrada do combustor e uma concentração de combustível menor nas regiões de recirculação e da linha de centro. Figura 4.16: Perfil de velocidades próximo a saída do misturador do tipo bluff-body (m/s)

Figura 4.17: Visão frontal do perfil de velocidades próximo a saída do misturador do tipo bluff-body (m/s) Figura 4.18: Perfil de velocidades próximo a saída do misturador do tipo swirler (m/s) Figura 4.19: Visão frontal do perfil de velocidades próximo a saída do misturador do tipo swirler (m/s) Figura 4.20: Distribuição da concentração mássica de combustível para o misturador do tipo swirler e combustor com diâmetro de 95,25mm A figura 4.21 apresenta as linhas de corrente devido a essa nova geometria e as figuras 4.22 e 4.23 mostram o perfil de velocidades próximo à entrada do combustor. As figuras 4.24 e 4.25 apresentam a distribuição de velocidades num plano longitudinal do combustor. Dessas figuras, constata-se que com o aumento do diâmetro do combustor, houve um aumento radial na estrutura turbulenta devida ao uso do misturador do tipo swirler e, como esperado, a velocidade no núcleo desta estrutura é menor na figura 4.25

Figura 4.21: Linhas de corrente do escoamento com a configuração de misturador do tipo swirler e combustor de 95,25mm Figura 4.22: Perfil de velocidades próximo a saída do misturador do tipo swirler e combustor de diâmetro de 95,25mm (m/s) Figura 4.23: Visão frontal do perfil de velocidades próximo a saída do misturador do tipo swirler e combustor de diâmetro de 95,25mm (m/s) Figura 4.24: Perfil de velocidades num plano longitudinal com diâmetro do combustor de 63,50mm (m/s) Figura 4.25: Perfil de velocidades num plano longitudinal com diâmetro do combustor de 95,25mm (m/s)

Comparando-se as quantidades de combustível na saída do combustor, obteve-se, para a configuração com diâmetro de 95,25mm, o valor de 18% de combustível que não participou das reações químicas. Entretanto, quando comparados os valores de geração de CO, o combustor com 63,50mm apresentou 14% contra 8% de concentração relativa aos componentes na saída, para o combustor de diâmetro de 95,25mm. Esses dados indicam que a diferença no processo de transformação de combustível em produtos de combustão não é tão significativa quanto à redução na geração de CO, de uma configuração para outra. 5. Conclusões Este trabalho objetivou o estudo do processo de mistura e da identificação do escoamento interno a uma câmara de combustão simplificada pelo seu combustor. A figura 4.2 indica que o bico injetor de combustível com fluxo radial apresentava uma distribuição mais homogênea de combustível por todo o combustor, de modo a levar a um melhor processo de mistura, quando comparado com os resultados para o bico de fluxo axial. Verificou-se que para as propriedades do escoamento médio serem bem representadas, um modelo de turbulência complexo, como os baseados nas tensões de Reynolds, se fez necessário, uma vez que o um modelo básico, como o kε, não foi suficiente para representar todas as influências devido a rotacionalidade do escoamento, apesar deste modelo mas simples, ter conseguido representar, na média, as propriedades gerais do escoamento, servindo como um ponto de partida para as demais análises. Determinou-se, ainda, que a utilização de um modelo de combustão seria necessária, uma vez que a influência deste sobre o escoamento principal foi muito importante, como apresentado pelas figuras 4.10 4.11. Para o estudo sobre os dois misturadores, verificou-se que o misturador do tipo swirler impunha um escoamento médio extremamente turbulento e rotacional, o que melhorava o processo de mistura, quando comparado com o misturador do tipo bluff-body. Pela figura 4.15 identifica-se que a melhora no processo de mistura se deve a estrutura turbulenta que se forma logo após a entrada do combustor, a qual apresenta uma zona de recirculação intensa próxima as paredes e um núcleo com velocidade negativa, de modo a levar os produtos de combustão aquecidos de volta para a região da entrada de combustível, o que se verifica pelo perfil de velocidades da figura 4.16. Observa-se ainda uma componente tangencial da velocidade tão importante quanto a componente axial, de acordo com a figura 4.17, implicando na alta rotacionalidade do fluido devido a utilização do swirler. Portanto, constata-se que o misturador do tipo swirler induz um escoamento que apresenta um intenso processo de mistura, permitindo uma melhor eficiência de combustão. Assim, para melhor entender a influencia que o tamanho do combustor tem sobre o escoamento médio devido à utilização de um misturador do tipo swirler, verificou-se que quanto maior o diâmetro do combustor com relação ao diâmetro do misturador, melhor é o processo de mistura, pois a influencia do confinamento que a parede do combustor impõe sobre o escoamento diminui com o aumento do diâmetro, permitindo que as estruturas turbulentas, apresentadas pela figura 4.21, se desenvolvam sem nenhuma restrição. Portanto, conclui-se, neste trabalho, que a melhor configuração conteria um bico injetor de fluxo radial, com um misturador do tipo swirler e um combustor com o máximo diâmetro permitido dentro das instalações projetadas. 6. Referências Munson, B.R., Young, D.F., Okiishi, T.H., 2003, Fundamentos da mecânica dos fluidos, traduzido por E. J. Zerbini, Ed. Edgard Blücher, S.Paulo, Brazil. Versteeg, H.K., Malalasekera, W., 1998, An introduction to computational fluid dynamics: The finite volume method, Addison Wesley Longman Ltd., Reino Unido. Maliska, C.R., 1995, Transferência de calor e mecânica dos fluidos computacional, Ed. LTC, São Paulo, Brasil. Hoffmann, K.A., 2000, Computational Fluid Dynamics, 3 volume, Ed. EES, Kansas, Estados Unidos da América. Wilcox, D.C., 2004, Turbulence modeling for CFD, DCW Industries, California, Estados Unidos da América. Griffiths, J.F., Barnard, J.A., 1995, Flame and combustion, Ed. Alden Press, Londres, Reino Unido. Turns, S.R., 2000, An introduction to combustion: concepts and applications, Ed. McGraw-Hill, 2 edição, São Paulo, Brasil. Lefebvre, A.H., 1983, Gas turbine combustion, Ed. McGraw-Hill, São Paulo, Brasil. 7. Direitos autorais Os autores são os únicos responsáveis pelo conteúdo do material impresso incluído no neste trabalho.

AERO-THERMODYNAMIC PROJECT OF A COMBUSTION CHAMBER FOR A GAS MICRO-TURBINE ORIGINATED FROM AN AUTOMOTIVE TURBO-COMPRESSOR. Newton Kiyoshi Fukumasu newton.fukumasu@gmail.com Guenther Carlos Krieger Filho guenther@usp.br Abstract. Alternative electric generation was needed due to the high energetic demand that is occurring nowadays. The use of a gas micro-turbine associated to a electric energy generator is one of the solutions analyzed by the research center in many universities. In the simplest form, this solution is based on a combustion chamber and an automotive turbo-compressor that represents the installation that could generate as far as 7kW of power. In this work it was analyzed the combustion chamber by the computational fluid dynamics method to better understand the flow inside it. The original chamber was based on an annular geometry, with direct flow. The devices associated were one diffuser in the inlet position, one liner, one casing and one swirler. The results of the simulations were validated with some experiments that were found by the assembly of a prototype. Those experiments were used also to calibrate the numerical method of the combustion and the turbulence applied. The comparative variables were the temperature at the exit of the chamber and the mass flow of the gas and the air used to stabilize the reaction flame. To amplify the understanding about the mixture process due to the mixers, it was studied two configurations called swirler and bluff-body. A third geometry without any mixer was used as a comparison base and to analyze the properties of using a radial or axial fuel entrance. The results allowed to visualize the mixture process duo to the mixers configurations and the confirmation that this process was more intense when the swirler configuration was used, implying in a better combustion process efficiency. Keywords: Gas turbine, Combustion, Aerodynamics.