TAMBOR ROTATÓRIO OPERANDO NO REGIME DE ROLAMENTO: UM ESTUDO EXPERIMENTAL E NUMÉRICO



Documentos relacionados
ESTUDO DA DINÂMICA DE PARTÍCULAS NO INTERIOR DE UM TAMBOR ROTATÓRIO OPERANDO EM REGIME DE ROLAMENTO

CARACTERIZAÇÃO DOS REGIMES DE ESCOAMENTO NO INTERIOR DE UM TAMBOR ROTATÓRIO POR MEIO DE EXPERIMENTOS E TÉCNICAS DE CFD

CARACTERIZAÇÃO DOS DIFERENTES REGIMES DE ESCOAMENTO PRESENTES EM UM TAMBOR ROTATÓRIO

ESTUDO DOS DIFERENTES REGIMES DE ESCOAMENTO PRESENTES EM UM TAMBOR ROTATÓRIO

CALIBRAÇÃO DA METODOLOGIA NUMÉRICA DEM E APLICAÇÃO DO MODELO CALIBRADO EM UM CASO DE SCALE-UP EM UM TAMBOR ROTATÓRIO RESUMO

Figura 1-1. Entrada de ar tipo NACA. 1

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

Efeito da pulsação do ar durante a fluidização de partículas de amido de milho Prof. Dr. Gustavo Cesar Dacanal

FACULDADE DE FARMÁCIA DA UFMG DEPARTAMENTO DE ALIMENTOS

Figura Vista frontal dos vórtices da Figura Vedovoto et al. (2006).

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

2 Materiais e Métodos

Ensaio de Emissão Acústica Aplicado em Cilindros sem Costura para Armazenamento de Gases

4. RESULTADOS E DISCUSSÃO

BANCADA DIDÁTICA DE SISTEMA DE VENTILAÇÃO

Medidas de Grandezas Fundamentais - Teoria do Erro

AVALIAÇÃO DO ESCOAMENTO DE FLUIDOS INCOMPRESSÍVEIS EM TUBULAÇÕES USANDO CFD

MOTORES ELÉTRICOS Princípios e fundamentos

O raio crítico. Problema motivador 01: Problema motivador 02: Problema motivador 03: Portfolio de:

Observação do Contato Concreto-Solo da Ponta de Estacas Hélice Contínua

ESTUDO DA FLUIDODINÂMICA EM UM LEITO DE JORRO BIDIMENSIONAL COM ALIMENTAÇÃO NÃO CONVENCIONAL

Radiologia Industrial. Radiografia de Soldas. Agenda. Tubulações e Equipamentos 23/08/2009. Walmor Cardoso Godoi, M.Sc.

DINÂMICA DOS FLUIDOS COMPUTACIONAL. CFD = Computational Fluid Dynamics

RELAÇÃO DO TEMPO DE SINTERIZAÇÃO NA DENSIFICAÇÃO E CONDUTIVIDADE ELÉTRICA EM CÉLULAS À COMBUSTÍVEL. Prof. Dr. Ariston da Silva Melo Júnior

Mecânica 2007/ ª Série

ANÁLISE NUMÉRICA DA ADERÊNCIA ENTRE AÇO E CONCRETO ENSAIO PULL-OUT TEST

A Equação 5.1 pode ser escrita também em termos de vazão Q:

Física FUVEST ETAPA. ε = 26 cm, e são de um mesmo material, Resposta QUESTÃO 1 QUESTÃO 2. c) Da definição de potência, vem:

Cálculo de volume de objetos utilizando câmeras RGB-D

Operação Unitária de Centrifugação

Estudo comparativo do comportamento térmico de quatro sistemas de cobertura. Um estudo experimental para a reação frente ao calor.

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

5. Conclusões e Sugestões

Cinética Química Aplicada (LOQ 4003)

Bancada de visualização de escoamentos: maquetes

Escola de Engenharia de Lorena USP - Cinética Química Capítulo 05 Reações Irreversiveis a Volume Varíavel

Licenciatura em Engenharia de Telecomunicações e Informática. 1ª Parte Frequência

Conservação da Energia II

Vazão ou fluxo: quantidade de fluido (liquido, gás ou vapor) que passa pela secao reta de um duto por unidade de tempo.

Desenho e Projeto de tubulação Industrial

. linear ou rotativo. analógico ou digital. absoluto, incremental ou incremental-absoluto. princípio de operação

USP EEL - Escola de Engenharia de Lorena Reatores Aula 1 Introdução a Engenharia de Reatores

CINÉTICA QUÍMICA CINÉTICA QUÍMICA EQUAÇÃO DE ARRHENIUS

ESTUDO EXPERIMENTAL DOS EQUILÍBRIOS ENTRE FASES COM APLICAÇÃO COMPUTACIONAL PARA O ENSINO DE TERMODINÂMICA PARA ENGENHARIA

5 Discussão dos Resultados

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA DOS MATERIAIS SETOR DE MATERIAIS

II Congresso Internacional de Desempenho Portuário CIDESPORT

DETERMINAÇÃO DO TEOR DE UMIDADE E DENSIDADE BÁSICA PARA ESPÉCIES DE PINUS E EUCALIPTO

Influência do nível de deformação na formação das bandas de Lüders para chapas de aço com mesmo nível de envelhecimento

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENG03108 MEDIÇÕES TÉRMICAS

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

O FORNO A VÁCUO TIPOS E TENDÊNCIA 1

6 Construção de Cenários

MODELAGEM BIOCAD DE PRÓTESE DENTÁRIA IMPLANTO-MUCO-SUPORTADA EM MANDÍBULA

ESTUDO POR ELEMENTOS FINITOS DA INTERAÇÃO FLUIDO- ESTRUTURAL NA ARTÉRIA DA CARÓTIDA DEVIDO AO FLUXO DE SANGUE

ANÁLISE EXPERIMENTAL E DE CFD DO ESCOAMENTO DE DIFERENTES MATERIAIS EM TAMBOR ROTATÓRIO COM SUSPENSORES

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

curso de extensão Análise de Escoamentos através de Dinâmica dos Fluidos Computacional

Análise numérica de fundações diretas de aerogeradores Carlos A. Menegazzo Araujo, Dr. 1, André Puel, Msc 2, Anderson Candemil 3

1 Descrição do Trabalho

SISTEMA DE TRATAMENTO DE ÁGUA DE FULIGEM

Mecânica dos Fluidos. Aula 10 Escoamento Laminar e Turbulento. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Manual de Operação e Instalação

Comandos Eletro-eletrônicos SENSORES

AVALIAÇÃO DA HIDRODINÂMICA DE UM LAVADOR VENTURI: DADOS EXPERIMENTAIS E SIMULAÇÃO NUMÉRICA RESUMO

MODELAGEM FLUIDO-DINÂMICA DE REATORES DE POLIMERIZAÇÃO: ESTUDO DE CASOS

Eixo Temático ET Energia ESTUDO DA TERMOFLUIDODINÂMICA DE UM SECADOR SOLAR DE EXPOSIÇÃO DIRETA: MODELAGEM E SIMULAÇÃO

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.02 SOBRE A ANÁLISE DINÂMICA MIEM. Integradora II. Elaborado por Paulo Flores

EFEITO DOS PARÂMETROS DO MODELO DE HERTZ-MINDLIN DE FORÇAS DE CONTATO ENTRE PARTÍCULAS SOBRE O ÂNGULO DE REPOUSO ESTÁTICO DA SOJA

13 o Encontro Técnico DER-PR

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

4. Programa Experimental

Análise de Percolação em Barragem de Terra Utilizando o Programa SEEP/W

Resultados e Discussões 95

DESENVOLVIMENTO E APLICAÇÕES DE SOFTWARE PARA ANÁLISE DO ESPECTRO SOLAR

CONSERVAÇÃO DA ENERGIA MECÂNICA

ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS ESTRUTURA CRISTALINA E IMPERFEIÇÕES NOS SÓLIDOS

Exercícios Terceira Prova de FTR

SPS ZOOM D Laser Scanner

materiais ou produtos,sem prejudicar a posterior utilização destes, contribuindo para o incremento da

ANÁLISE DIGITAL DA POROSIDADE DE PACOTES GRANULARES

Módulo 06 - VISCOSÍMETRO DE STOKES

Universidade Federal do Paraná

Eng Civil Washington Peres Núñez Dr. em Engenharia Civil pela Universidade Federal do Rio Grande do Sul

Anual de Física ª Lista de embasamento Espelhos Planos e Esféricos

Quais são os critérios adotados pelo programa para o cálculo dos blocos de fundação?

ANÁLISE DO EFEITO DA VELOCIDADE NO ESCOAMENTO BIFÁSICO EM DUTOS CURVADOS COM VAZAMENTO

Curso de Engenharia de Produção. Processos de Fabricação

Eixo Temático ET Gestão de Resíduos Sólidos

Setores Trilhas. Espaço entre setores Espaço entre trilhas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

A UTILIZAÇÃO DO MÉTODO NODAL NA SIMULAÇÃO DE PROCESSOS TÉRMICOS

2 Avaliação de desempenho de uma rede de telecomunicações

Quanto à origem uma onda pode ser classificada em onda mecânica e onda eletromagnética.

Geopolímero para reparo e reabilitação de vigas de concreto armado por P. Balaguru, Professor Stephen Kurtz e Jon Rudolph

TÍTULO: INFLUÊNCIA DA VISCOSIDADE NO COMPORTAMENTO DA ATOMIZAÇÃO EM UM SPRAY DRYER DE DISCO ROTATIVO

SISTEMAS DE COMUNICAÇÃO ÓPTICA : INICIAR A PROPOSTA DA DISSERTAÇÃO DE MESTRADO EM DISCIPLINA OPTATIVA, DURANTE PERÍODO DE AQUISIÇÃO DE CRÉDITOS.

TIPOS DE REFLEXÃO Regular Difusa

Transcrição:

TAMBOR ROTATÓRIO OPERANDO NO REGIME DE ROLAMENTO: UM ESTUDO EXPERIMENTAL E NUMÉRICO R. SCATENA 1, L.C. FERREIRA 1, D.A. SANTOS 1, C.R. DUARTE 1, M.A.S. BARROZO 1 1 Universidade Federal de Uberlândia, Faculdade de Engenharia Química E-mail para contato: rafascatena@gmail.com RESUMO No presente trabalho foram realizados, tanto um estudo experimental quanto um estudo numérico, da dinâmica de partículas no interior de um tambor rotatório operando no regime de rolamento. A abordagem multifásica Euler-Euler, juntamente com a teoria cinética do escoamento granular, foi utilizada em todas as simulações. No intuito de se obter, experimentalmente, os perfis de velocidade de partículas, foi proposto a utilização de uma técnica não intrusiva composta por uma câmera de alta velocidade. Os resultados das simulações mostraram-se satisfatórios quando comparados aos dados experimentais e possibilitaram a análise da influência da velocidade de rotação e da fração de preenchimento do tambor rotatório sobre a velocidade das partículas e espessura da camada ativa presentes no escoamento. 1. INTRODUÇÃO Muitos setores industriais tais como, mineração, metalurgia, processamento de alimentos, polímeros e indústrias bioquímicas, possuem processos que requerem uma elevada área de contato entre as fases envolvidas, no intuito de aumentar as taxas de transferência de massa e energia. Desta forma, os tambores rotatórios surgem como equipamentos adequados no processamento de materiais granulares em aplicações tais como, mistura, granulação, moagem, recobrimento e secagem (Degrève et al., 2006; Dubé et al., 2013). Tambores rotatórios são largamente empregados nos setores industriais, principalmente, devido a sua capacidade de lidar com materiais contendo uma larga faixa de distribuição granulométrica e diferenças significativas nas suas propriedades físicas. Como observado por Mellmann (2001), dependendo da velocidade de rotação do tambor, de sua geometria, da fração de preenchimento e das propriedades físicas do material particulado, tambores rotatórios podem apresentar, basicamente, cinco diferentes regimes de escoamento granular em seu interior (escorregamento, rolamento, cascateamento, catarateamento e centrifugação), cada qual contendo um comportamento dinâmico intrínseco, o que aumenta ainda mais a complexidade em seu estudo. Logo, muitos trabalhos têm sido desenvolvidos em tambores rotatórios no intuito de se estudar: Área temática: Fenômenos de Transporte e Sistemas Particulados 1

os diferentes regimes de escoamentos granulares (Mellmann, 2001; Watanabe, 1999), o fenômeno de segregação e mistura de partículas (Lee et al., 2013; Ding et al., 2002) e o comportamento dinâmico de partículas (Dubé et al., 2013; Ding et al., 2001; Boateng e Barr, 1997). Dentre todos os regimes, o regime de rolamento é o mais comumente utilizado na indústria. Como pode ser observado na Figura 1, este regime é caracterizado por possuir duas diferentes regiões: uma região passiva, próxima à parede do tambor, onde as partículas se movem como um corpo sólido, e uma região ativa, próxima à superfície do leito de material, onde ocorrem os principais mecanismos de mistura e transferência de massa e energia (Dubé et al., 2013; Ding et al., 2001). Figura 1 Esquema das regiões ativa e passiva presentes no regime de rolamento em um tambor rotatório. O escoamento granular se inverte quando da passagem da região passiva para a região ativa, o que caracteriza a interface ativo-passiva. A distância entre a interface ativo-passiva e a superfície do leito de partículas é definida como sendo a espessura da camada ativa. Existem diferentes técnicas, denominadas intrusivas e não intrusivas, para a medida da velocidade de partículas. Técnicas não intrusivas, que utilizam detectores de raios- para a quantificação das velocidades das partículas através do monitoramento de suas posições, foram utilizadas, dentre outros pesquisadores, por Ding et al. (2002) e Dubé et al. (2013). Entretanto, tais métodos são aplicáveis apenas a partículas radioativas. Nakagawa et al. (1993) e Yada et al. (2010) utilizaram imagens de ressonância magnética como técnica não intrusiva para o estudo do movimento de partículas no interior de um tambor rotatório. Alguns trabalhos na literatura vêm demostrando a viabilidade em se estudar escoamentos Área temática: Fenômenos de Transporte e Sistemas Particulados 2

granulares por meio de uma técnica não intrusiva composta por uma câmera de alta velocidade (Duarte et al., 2005). Após a gravação do escoamento granular, a velocidade da partícula é calculada baseando-se na distância percorrida e no respectivo número de frames. Por outro lado, Boateng e Barr (1997) utilizaram, como técnica intrusiva, sondas de fibra ótica para medir as principais propriedades do escoamento em um tambor rotatório. Contudo, tais sondas podem causar, dependendo de suas geometrias, perturbações no escoamento e, consequentemente, erros de medição. Paralelamente aos estudos experimentais, as simulações numéricas surgem como uma importante ferramenta complementar no estudo de escoamentos granulares. A abordagem Euler-Euler e o Método dos Elementos Discretos (DEM) são os principais métodos utilizados nas simulações de escoamentos granulares. Na metodologia DEM, cada partícula presente no escoamento é acompanhada e todas as forças de interação que agem sobre elas são calculadas individualmente. Embora muitos autores tenham adotado este tipo de metodologia (Marigo et al., 2012; Kwapinska et al., 2006), a mesma ainda se encontra restrita ao número de partículas presentes no interior do equipamento devido ao alto custo computacional. Por outro lado, na abordagem Euler-Euler, ambas as fases são tratadas como contínuas e interpenetrantes e resolvidas em um campo Euleriano. Simulações numéricas utilizando a abordagem Euler-Euler vêm se tornando cada vez mais comum no estudo de escoamentos granulares em diferentes tipos de equipamentos (Santos et al., 2012a; Santos et al., 2012b; Cunha et al., 2009; Barrozo et al., 2010; Santos et al., 2009; Oliveira et al., 2009; Duarte et al., 2009). Desta forma, o presente trabalho tem por objetivo estudar a dinâmica de partículas em um tambor rotatório, operando no regime de rolamento e submetido a diferentes condições operacionais, por meio de experimentos e simulações numéricas. 2. MATERIAIS E MÉTODOS 2.1. Metodologia Experimental O tambor rotatório utilizado no presente trabalho foi construído em aço inox contendo 50 cm de comprimento e 21,5 cm de diâmetro interno. A parede frontal foi confeccionada em vidro transparente para possibilitar a visualização do escoamento granular em seu interior. No intuito de se evitar o deslizamento do material sobre a parede do tambor, o interior do mesmo foi revestido com uma lixa (P80). Foram utilizados, como material particulado, grãos de soja com diâmetro de 6,2 mm e densidade de 1164 kg/m 3. O limite máximo de empacotamento (concentração de sólidos inicial) para os grãos de soja foi de 60% (porcentagem em volume). Os perfis de velocidade de partículas, na metade da corda do leito de material (linha de Área temática: Fenômenos de Transporte e Sistemas Particulados 3

referência na Figura 1), foram medidos por meio de uma câmera de alta velocidade (até 2000 frames/s). As posições das partículas foram determinadas através do software analisador de imagens Meazure TM e o tempo necessário para transpor esta distância foi calculado como base nos respectivos frames. Foram investigadas, no presente trabalho, as seguintes condições operacionais: frações de preenchimento de 18,81% e 31,40% e velocidades de rotação do tambor de 0,712 rad/s e 1,45 rad/s. 2.2. Metodologia Numérica A abordagem multifásica Euler-Euler, juntamente com a teoria cinética do escoamento granular, utilizada no presente trabalho, é descrita com detalhes por Duarte et al. (2005). As seguintes condições foram adotadas nas simulações computacionais: malha computacional contendo 300.000 células; simulações tridimensionais (3D); condição de contorno de não deslizamento (no-slip) na parede do tambor; algoritmo de acoplamento pressão-velocidade SIMPLE; esquema de interpolação espacial Up-wind de primeira ordem; tempo total de simulação de 60 s para cada condição; passo no tempo (time step) de 1x10-3 ; critério de convergência de 1x10-3. 3. RESULTADOS E DISCUSSÕES No intuito de se investigar a dinâmica de partículas em um tambor rotatório operando no regime de rolamento, perfis de velocidades de partículas na metade da corda do leito de material (linha de referência na Figura 1) foram medidos, experimentalmente, por meio de uma câmera de alta velocidade e comparados, sob as mesmas condições, com as simulações numéricas. As Figuras 2 e 3 mostram os resultados dos perfis de velocidade para uma fração de preenchimento de 18,81% e velocidades de rotação de 0,712 e 1,45 rad/s, respectivamente. Figura 2 - Perfis de velocidade de partículas: fração de preenchimento de 18,81% e velocidade de rotação de 0,712 rad/s (a) velocidade resultante; (b) velocidade na direção x; (c) velocidade na direção y. Área temática: Fenômenos de Transporte e Sistemas Particulados 4

Figura 3 - Perfis de velocidade de partículas: fração de preenchimento de 18,81% e velocidade de rotação de 1,45 rad/s (a) velocidade resultante; (b) velocidade na direção x; (c) velocidade na direção y. Pode-se observar (Figuras 2 e 3) uma satisfatória correspondência entre os dados experimentais e os respectivos resultados numéricos. Em todas as condições nota-se que, o maior valor de velocidade de partícula se encontra próximo à superfície do leito de material (região ativa), decresce com a diminuição da posição radial e alcança um valor nulo na interface ativo-passiva, onde o escoamento granular é invertido devido ao movimento da parede do tambor. As figuras 4 e 5 mostram comportamentos semelhantes como os elucidados anteriormente, porém, para uma fração de preenchimento de 31,40% e velocidades de rotação de 0,712 e 1,45 rad/s, respectivamente. Figura 4 - Perfis de velocidade de partículas: fração de preenchimento de 31,40% e velocidade de rotação de 0,712 rad/s (a) velocidade resultante; (b) velocidade na direção x; (c) velocidade na direção y. Área temática: Fenômenos de Transporte e Sistemas Particulados 5

Figura 5 - Perfis de velocidade de partículas: fração de preenchimento de 31,40% e velocidade de rotação de 1,45 rad/s (a) velocidade resultante; (b) velocidade na direção x; (c) velocidade na direção y. Como esperado, duas diferentes regiões presentes no escoamento transversal em um tambor rotatório foram visualizadas: uma região ativa, próxima à superfície livre, se movimentando com uma velocidade relativamente alta e uma região passiva, próxima à parede do tambor, a qual se movimenta proporcionalmente à velocidade de rotação do tambor. Nota-se que, fixando-se o valor da fração de preenchimento e aumentando-se o valor da velocidade de rotação do tambor, ocorreu um aumento na magnitude da velocidade das partículas tanto na região ativa quanto na região passiva. Contudo, a posição do ponto de inversão do sentido da velocidade (interface ativo-passiva) permaneceu constante (Figuras 2-5). Como pode ser observado, o ponto de inversão da velocidade ocorreu a aproximadamente 4,0 cm da parede do tambor, para a fração de preenchimento de 18,81%, independentemente da velocidade de rotação do tambor (Figuras 2 e 3). Já para a fração de preenchimento de 31,40%, o ponto de inversão ocorreu a 5,5 cm da parede do tambor, independentemente da velocidade de rotação (Figuras 4 e 5). Por outro lado, fixando-se a velocidade de rotação do tambor e aumentando-se a fração de preenchimento, ocorreu um aumento na magnitude da velocidade das partículas apenas na região ativa. Pode ser notado, também que, a posição do ponto de inversão moveu-se de 4,0 para 5,5 cm da parede do tambor, ou seja, ocorreu um aumento na espessura da região passiva (Figuras 2-5). Quanto maior a velocidade das partículas na região ativa, maior é a possibilidade de transição para outros regimes de escoamento. Logo, como observado por Mellmann (2001), dentre outras variáveis, um aumento na velocidade de rotação ou na fração de preenchimento pode conduzir à transição para os demais regimes em um tambor rotatório. A espessura da camada ativa, medida experimentalmente, para a fração de preenchimento de 18,81% e velocidades de rotação de 0,712 rad/s e 1,45 rad/s, foram de 1,5 cm e 1,65 cm, respectivamente (Figuras 2 e 3). Para a fração de preenchimento de 31,40%, os valores foram de 2,10 cm e 2,95 cm, respectivamente para velocidades de rotação de 0,712 rad/s e 1,45 rad/s (Figuras 4 e 5). Área temática: Fenômenos de Transporte e Sistemas Particulados 6

Desta forma, um aumento na velocidade de rotação causou um aumento na espessura da região ativa. Este efeito foi mais acentuado quando da utilização da maior fração de preenchimento (31,40%). Logo, quanto maior for a velocidade de rotação ou a fração de preenchimento, maior a espessura da região ativa e, consequentemente, maiores as taxas de transferência de massa, energia e quantidade de movimento. Os perfis de velocidade na região ativa não foram parabólicos, mas, ao contrário, foram essencialmente lineares. Este resultado está de acordo com aqueles observados por Boateng e Barr (1997), os quais sugeriram que, na maior parte da região ativa a tensão de cisalhamento é uniforme (du/dy = constante). 4. CONCLUSÕES Foi possível, através de um estudo experimental e numérico, investigar o comportamento dinâmico das partículas no interior de um tambor rotatório operado no regime de rolamento. As simulações numéricas utilizando a abordagem Euler-Euler se mostraram satisfatórias quando comparadas com os dados experimentais sob as mesmas condições. Observou-se uma grande influência da velocidade de rotação e da fração de preenchimento do tambor sobre a espessura da camada ativa, a qual está diretamente relacionada às taxas de transferência de massa e energia. 5. AGRADECIMENTOS Agradecemos a Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) pelos recursos concedidos no Projeto de Participação Coletiva em Eventos Técnico-Científicos (PCE- 00082-14). Os autores agradecem, também, à CAPES e ao CNPq pelo apoio financeiro concedido por meio de bolsas de pesquisa. 6. REFERÊNCIAS BARROZO, M.A. S.; DUARTE, C.R.; EPSTEIN, N.; GRACE, J. R.; LIM, C.J. Experimental and CFD study of dense-phase, transition region and dilute-phase spouting. Ind. Eng. Chem. Res., v.49, p.5102-5109, 2010. BOATENG, A.A.; BARR, P.V. Granular flow behaviour in the transverse plane of a partially filled rotating cylinder. J. Fluid Mech., v.330, p.233-249, 1997. CUNHA, F.G.; SANTOS, K.G.; ATAÍDE, C.H.; EPSTEIN, N.; BARROZO, M.A.S. Annatto powder production in a spouted bed: An experimental and CFD study. Ind. Eng. Chem. Res., v.48, p.976-982, 2009. DEGRÈVE, J.; BAEYENS, J.; VAN DE VELDEN, M.; DE LAET, S. Spray-agglomeration of NPKfertilizer in a rotating drum granulator. Powder Technol., v.163, p.188-195, 2006. DING, Y.L.; FORSTER, R.; SEVILLE, J.P.K.; PARKER, D.J. Segregation of granular flow in the transverse plane of a rolling mode rotating drum. Int. J. Multiphase Flow, v.28, p.635-663, 2002. Área temática: Fenômenos de Transporte e Sistemas Particulados 7

DING, Y.L.; SEVILLE, J.P.K.; FORSTER, R.; PARKER, D.J. Solids motion in rolling mode rotating drums operated at low to medium rotational speeds. Chem. Eng. Sci., v.56, p.1769-1780, 2001. DUARTE, C.R.; MURATA, V.V.; BARROZO, M. A. S. A study of the fluid dynamics of the spouted bed using CFD. Braz. J. Chem. Eng., v.22, p.263-270, 2005. DUARTE, C.R.; OLAZAR, M.; MURATA, V.V.; BARROZO, M.A.S. Numerical simulation and experimental study of fluid particle flows in a spouted bed. Powder Technol., v.188, p.195-205, 2009. DUBÉ, O.; ALIZADEH, E.; CHAOUKI, J.; BERTRAND, F. Dynamics of non-spherical particles in a rotating drum. Chem. Eng. Sci., v.101, p.486 502, 2013. KWAPINSKA, M.; SAAGE, G.; TSOTSAS, E. Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol., v.161, p.69-78, 2006. LEE, C.-F.; CHOU, H.-T.; CAPART, H. Granular segregation in narrow rotational drums with different wall roughness: Symmetrical and asymmetrical patterns. Powder Technol., v.233, p.103-115, 2013. MARIGO, M.; CAIRNS, D.L.; DAVIES, M.; INGRAM, A.; STITT, E.H. A numerical comparison of mixing efficiencies of solids in a cylindrical vessel subject to a range of motions. Powder Technol., v.217, p.540-547, 2012. MELLMANN, J. The transverse motion of solids in rotating cylinders forms of motion and transition behavior. Powder Technol., v.118, p.251-270, 2001. NAKAGAWA, M.; ALTOBELLI, S.A.; CAPRIHAN, A.; FUKUSHIMA, E.; JEONG, E.-K. Noninvasive measurements of granular flows by magnetic resonance imaging. Exp. Fluids, v.16, p.54-60, 1993. OLIVEIRA, D.C.; ALMEIDA, C.A.K.; VIEIRA, L.G.M.; DAMASCENO, J.J.R.; BARROZO, M.A.S. Influence of geometric dimensions on the performance of a filtering hydrocyclone: an experimental and CFD study. Braz. J. Chem. Eng., v.26, p.575-582, 2009. SANTOS, D.A.; ALVES, G.C.; DUARTE, C.R.; BARROZO, M.A.S. Disturbances in the hydrodynamic behavior of a spouted bed caused by an optical fiber probe: Experimental and CFD study. Ind. Eng. Chem. Res., v.51, p.3801-3810, 2012a. SANTOS, K.G.; MURATA, V.V.; BARROZO, M.A.S. Three-dimensional computational fluid dynamics modeling of spouted bed. Can. J. Chem. Eng., v.87, p.211-219, 2009. SANTOS, K.G.; SANTOS, D.A.; DUARTE, C.R.; MURATA, V.V.; BARROZO, M.A.S. Spouting of bidisperse mixture of particles: A CFD and experimental study. Drying Technol., v.30, p.1354-1367, 2012b. WATANABE, H. Critical rotation speed for ball-milling. Powder Technol.. v.104, p.95-99, 1999. YADA, H.; KAWAGUCHI, T.; TANAKA, T. Relation between segregation patterns and granular flow modes in conical rotating drum. Flow Meas. Instrum., v.21, p.207-211, 2010. Área temática: Fenômenos de Transporte e Sistemas Particulados 8