1 Solução geral para equação de ondas

Documentos relacionados
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

O degrau de potencial. Caso II: energia maior que o degrau

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

APLICAÇÕES DA DERIVADA

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2

Ondas II F-228 UNICAMP

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

objetivos A partícula livre Meta da aula Pré-requisitos

Capítulo 1. x > y ou x < y ou x = y

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

TIPOS DE REFLEXÃO Regular Difusa

Por que o quadrado de terminados em 5 e ta o fa cil? Ex.: 15²=225, 75²=5625,...

6. Geometria, Primitivas e Transformações 3D

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

O caso estacionário em uma dimensão

a 1 x a n x n = b,

Ondas Estacionárias Apostila 2

Movimentos Periódicos: representação vetorial

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

Tópico 3. Limites e continuidade de uma função (Parte 2)

Somatórias e produtórias

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

Tópicos de Física Moderna ano 2005/2006

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

Departamento de Matemática - UEL Ulysses Sodré. Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 3º BIMESTRE

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

Antena Escrito por André

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Sumário. Prefácio... xi. Prólogo A Física tira você do sério? Lei da Ação e Reação... 13

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Movimento Harmônico Simples: Exemplos (continuação)

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

Comunicação da informação a curta distância. FQA Unidade 2 - FÍSICA

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Exercícios Teóricos Resolvidos

5 Equacionando os problemas

1 OSCILADOR SEM AMORTECIMENTO. 1.1 A equação do oscilador harmónico e o movimento harmónico simples. 1.2 O plano complexo

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Análise Dimensional Notas de Aula

Matemática - UEL Compilada em 18 de Março de Prof. Ulysses Sodré Matemática Essencial:

CAP. I ERROS EM CÁLCULO NUMÉRICO

O coeficiente angular

Números Complexos. Capítulo Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

29/Abril/2015 Aula 17

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Circuitos Elétricos Senoides e Fasores

Além do Modelo de Bohr

Laboratório Virtual Kit Óptico

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

9. Derivadas de ordem superior

Bases Matemáticas. Aula 2 Métodos de Demonstração. Rodrigo Hausen. v /15

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

POTENCIAL ELÉTRICO. por unidade de carga

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

Dificuldades de Modelos de PNL. Onde está a solução ótima? Outro exemplo: Condição ótima Local vs. Global Quinta-feira, 25 de abril

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Só Matemática O seu portal matemático FUNÇÕES

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 9

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

Lista 4. 2 de junho de 2014

( ) ( ) ( ( ) ( )) ( )

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

Matemática - UEL Compilada em 18 de Março de Prof. Ulysses Sodré Matemática Essencial:

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

Simetria Externa. Universidade de São Paulo. Instituto de Química de São Carlos. Departamento de Química e Física Molecular. SQM Cristalografia

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Aula 18 Elipse. Objetivos

Hoje estou elétrico!

Lista de Exercícios - Integrais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

5ta Aula de Relatividade e Cosmologia. Horacio Dottori A contração espacial. Porto Alegre 12 de setembro de 2004

A integral também é conhecida como antiderivada. Uma definição também conhecida para integral indefinida é:

Correlação e Regressão Linear

Faculdade de Administração e Negócios de Sergipe

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1

RESUMO 2 - FÍSICA III

Transcrição:

1 2.1. SOLUÇÃO GERAL PARA EQUAÇÃO DE ONDAS 1.138J/2.062J, PROPAGAÇÃO DE ONDAS Outono, 2000 MIT Observações de C. C. Mei CAPÍTULO DOIS ONDAS MONODIMENSIONAIS 1 Solução geral para equação de ondas É fácil verificar por meio de substituição direta que a maioria das soluções gerais das equações de ondas monodimensionais: podem ser resolvidas por meio de (1.1) onde f (ξ) e g(ξ) são funções arbitrárias de ξ. No plano x, t (espaço, tempo) f (x ct) é constante ao longo da linha reta x ct = constante. Assim, para o observador (x, t) que se move em velocidade uniforme c ao longo do eixo positivo x, a função f é estacionária. Assim, para um observador que se move da esquerda para a direita em velocidade c, o sinal descrito inicialmente por f (x) em t = 0 permanece imutável na fórmula, à medida que t aumenta, ou seja, f se propaga à direita em velocidade c. Semelhantemente, g se propaga para a esquerda em velocidade c. As linhas x ct = constante e x + ct = constante são chamadas curvas características (linhas) ao longo das quais os sinais se propagam. Uma outra forma de escrever (1.2) é (1.2) Ilustraremos uma aplicação. (1.3) 2 Ramificação das artérias Referências: Y C Fung: Biomechanics, Circulation. Springer 1997. M.J. Lighthill: Waves in Fluids, Cambridge 1978

2 2.2. RAMIFICAÇÃO DAS ARTÉRIAS Lembre-se das equações governantes para pressão e velocidade (2.1) (2.2) As duas estão relacionadas pela equação de momentum (2.3) As soluções gerais são: (2.4) (2.5) Já que e onde os números primos indicaram diferenciação usual em relação ao argumento. A equação (2.3) pode ser solucionada se Estipule a descarga por Q = ua e, em seguida, (2.6) onde (2.7) é o índice de pressão da taxa de fluxo chamada impedância. Ela é a propriedade do tubo. (2.8)

3 2.2. ONDAS DEVIDO À PERTURBAÇÃO INICIAL Agora, examinaremos os efeitos das ramificações. Referindo-se à figura x, os tubos principais se ramificam em duas velocidades de onda caracterizadas C 1 e C 2 e impedâncias Z 1 e Z 2. Uma onda incidente que se aproxima da junção causará reflexos no mesmo tubo e as ondas transmitidas nas ramificações são p 1 (t x / c 2 ). Na junção da pressão e dos fluxos, deste modo (2.9) x = 0, supomos a continuidade (2.10) (2.11) Defina o coeficiente de reflexão R como sendo a razão das amplitudes da onda refletida na onda incidente, portanto Semelhantemente, os coeficientes de transmissão são (2.12) (2.13) Observe que ambos os coeficientes são constantes, dependendo apenas das impedâncias. Deste modo, as ondas transmitidas são semelhantes na fórmula para ondas incidentes exceto as mais fracas pelo fator T. A onda total na lateral de incidência é, no entanto, muito diferente. 3 Ondas em um domínio infinito devido a perturbações iniciais Lembre-se da equação governante para ondas monodimensionais em uma corda tensa (3.1)

4 2.2. ONDAS DEVIDO À PERTURBAÇÃO INICIAL Permita que o deslocamento transverso inicial e a velocidade ocorram ao longo da corda inteira. (3.2) (3.3) onde f(x) e g(x) são diferentes de zero apenas no domínio finito de x. Em x ±, u e u / t são zero para qualquer t finito. Essas condições são exibidas melhor no diagrama de espaço-tempo, conforme mostra Figura 1. Figura 1: Resumo do problema do valor limite inicial Em (3.1.1) a maior derivativa de tempo é de segunda ordem e os dados iniciais são prescritos para u e u / t. As condições iniciais que especificam todas as derivativas de todas as ordens menores do que a mais elevada na equação diferencial chamam-se condições iniciais de Cauchy. Lembre-se de que a solução geral é (3.4) onde ø e ψ são, até agora, funções arbitrárias das variáveis representativas ξ = x + ct e η = x ct, respectivamente. A partir das condições iniciais, obtemos A última equação pode ser integrada em relação à x (3.5) (3.6)

5 2.2. ONDAS DEVIDO À PERTURBAÇÃO INICIAL onde K é uma constante arbitrária. Agora, ø e ψ podem ser resolvidas a partir de (3.1.6) e (3.17) como funções de x, Figura 2: Domínio de dependência e limite de influência onde K e x 0 são algumas constantes. Trocando os argumentos de ø por x e de ψ por x ct e substituindo os resultados em u, obtemos que é a solução d Alembert para a equação de onda homogênea sujeita às condições gerais iniciais de Cauchy. Para visualizar o significado físico, vamos desenhar no diagrama de espaço-tempo um triângulo formado por duas linhas representativas através do observador em x, t, como mostra a Figura 2. A base do triângulo ao longo do eixo inicial t = 0 começa em x ct e termina em x + ct. A solução (3.1.9) depende do deslocamento inicial apenas nos dois ângulos x ct e x + ct, e da velocidade inicial apenas ao longo do segmento de x ct a x + ct. Fora do triângulo, nada interessa. No entanto, para o observador em x, t, o domínio da dependência é a base do triângulo representativo formado por duas características passando por x, t. Por outro lado, os dados em qualquer ponto x na linha inicial t = 0 devem influenciar todos os observadores no ângulo de definição formado por duas características extraídas de x, 0 para a região de t > 0; este ângulo de definição característico chama-se limite de influência. (3.7)

6 2.2. ONDAS DEVIDO À PERTURBAÇÃO INICIAL Figura 3: Ondas devido ao deslocamento inicial Vamos ilustrar os efeitos físicos do deslocamento e da velocidade iniciais, separadamente. Caso (i): Apenas o deslocamento inicial: f (x) 0 e g(x) = 0. A solução é e é apresentada para um simples f(x) na Figura 3 em sucessivos períodos de tempo. Obviamente, a perturbação inicial é dividida em duas ondas iguais que se propagam em direções opostas à velocidade c. As ondas de saída preservam o perfil inicial, embora suas amplitudes sejam reduzidas pela metade. Caso (ii): Apenas a velocidade inicial: f(x) = 0 e g(x) 0. Considere o simples exemplo onde Referindo-se a Figura 4, dividimos o diagrama x ~ t em seis regiões pelas características em relação à B e C no eixo em x = b e +b, respectivamente. A solução em várias regiões é:

7 2.2. ONDAS DEVIDO À PERTURBAÇÃO INICIAL no ângulo de definição AB;; Figura 4: Ondas devido à velocidade inicial na faixa EBIF; no triângulo BCI; no ângulo de definição FIG; na faixa GICH; e na faixa HCD. A variação espacial de u é traçada por vários instantes na Figura 4. Observe que as frentes de onda em ambas as direções avançam em velocidade c. Em comparação com o caso (i), a perturbação persiste por todo tempo na região entre as duas frentes.

8 3.2. REFLEXÃO DA EXTREMIDADE FIXA 4 Reflexão da extremidade fixa de uma corda Vamos utilizar a solução de d Alembert para um problema na metade de um domínio infinito x > 0. Considere uma corda longa e tensa esticada de x = 0 ao infinito. Como as perturbações geradas perto da extremidade esquerda se propagam como resultado de um deslocamento e velocidade iniciais? No limite esquerdo x = 0, deve-se agora adicionar a condição (4.1) No diagrama de espaço-tempo vamos desenhar duas características passando por x, t. Para um observador na região x > ct, o triângulo característico não faz interseção com o eixo de tempo, porque t ainda é muito pequeno. O observador não sente a presença da extremidade fixa em x = 0, então a solução (3.1.9) para uma corda infinitamente longa se aplica, Mas para x < ct, este resultado não é mais válido. Para se certificar de que a condição-limite é satisfatória, empregamos a idéia de reflexão de espelho. Considere uma extensão fictícia de corda para < x 0. Se na lateral x < 0 os dados iniciais são impostos de tal forma que f(x) = f( x), g(x) = g(x), então u(0, t) = 0 é garantido pela simetria. Agora, temos as condições iniciais declaradas por todo o eixo x (4.2) onde Estas condições são resumidas na Figura 5. Portanto, a solução para 0 < x < ct é (4.3)

9 3.2. REFLEXÃO DA EXTREMIDADE FIXA Figura 5: Problema do valor limite inicial e a reflexão de espelho Figura 6: Reflexão de uma extremidade fixa

10 3.4. ONDAS FORÇADAS EM UM DOMÍNIO INFINITO Considere a equação de onda não-homogênea onde h(x, t) representa forçamento. Por causa da linearidade, podemos tratar os efeitos dos dados iniciais separadamente. Vamos, no entanto, focar a atenção apenas nos efeitos de forçamento persistente e permitir que os dados iniciais sejam zero, As condições-limite são (5.1) (5.2) Permita que a transformação de Fourier de qualquer função f(x) e seu inverso por sejam definidos (5.3) (5.4) A equação de onda transformada agora é uma equação diferencial ord inária para a transformação de onde significa a transformação da função de forçamento. As condições iniciais para ū são: Vamos ocultar a dependência paramétrica em α, por enquanto. A solução geral para a equação diferencial ordinária de segunda ordem não-homogênea é (5.5)

11 3.5. CORDA ENVOLTA NUM AMBIENTE ELÁSTICO onde ū 1 e ū 2 são soluções homogêneas e W é Wronskiano As duas condições iniciais exigem que C 1 = C 2 = 0, portanto a transformação de Fourier é (5.6) A transformação inversa é Assim, o observador é influenciado apenas pelo forçamento dentro do triângulo característico definido pelas duas características que passam através de (x, t). Para os dados iniciais diferentes de zero u(x, 0) = f(x) e u t (x, 0) = g(x), obtemos a solução completa de d Alembert através da sobreposição linear (5.7) O domínio de dependência está inteiramente dentro do triângulo característico. (5.8) 6 Corda envolta num ambiente elástico Referência: Graff: Waves in Elastic Solids

12 2.6. CORDA ENVOLTA NUM AMBIENTE ELÁSTICO Se o movimento lateral da corda é refreado por molas elásticas ao longo de todo comprimento, a equação governante pode ser encontrada a partir do 1.1, trocando a pressão externa pela força restauradora elástica KV por unidade de comprimento, que pode ser escrita assim (6.9) onde (6.10) (6.11) 6.1 Ondas monocromáticas Para qualquer problema linear, se a variação da coordenada espacial x for (, ), e todos os coeficientes forem independentes de x, t, então a primeira tarefa é examinar as propriedades físicas do trem de ondas senoidais da fórmula: formular mais soluções gerais. Costuma-se omitir o símbolo redução, ou seja, (6.12) onde A = A e iøa é um número complexo com magnitude A e ângulo de fase ø A. Após examinar o significado físico deste tipo especial de ondas, é possível utilizar o princípio da sobreposição para = a parte real de, visando a Em primeiro lugar, algumas definições sobre ondas senoidais em geral. Devemos chamar (6.13) (6.14)

13 2.6. CORDA ENVOLTA NUM AMBIENTE ELÁSTICO a fase de onda. Obviamente, a função trigonométrica é periódica em fase em relação ao período 2π. No plano x, t, V possui um valor de constante ao longo de uma linha de fase constante. Em particular, θ = 2nπ, (n = 0, 1, 2,...) corresponde às cristas das ondas onde V = A é a maior. Por outro lado, θ = (2n + 1)π, (n = 0, 1, 2,...) corresponde aos sulcos da onda onde V = A é a menor. A é a metade da separação entre as cristas e os sulcos adjacentes e chama-se amplitude de onda; também chamamos A de amplitude complexa. Obviamente, representa o número de linha de fase por unidade de distância, ou seja, a densidade de linhas de fase, em um dado instante; ela é chamada de número de ondas, (6.15) Por outro lado, representa o número de linhas de fase passando por um x fixo por unidade de tempo; ele é chamado de freqüência de onda. Para prolongar uma determinada linha de fase constante, digamos uma crista, deve-se ter (6.16) em outras palavras, deve-se movimentar em velocidade de fase, Agora, de volta à corda. Substituindo (6.18) pela (6.9), obtemos (6.17) ou (6.18) (6.19)

14 2.6. CORDA ENVOLTA NUM AMBIENTE ELÁSTICO A velocidade de fase é (6.20) Observe que, devido ao reforço do apoio lateral, a velocidade de fase é sempre maior que c 0 e diminui uniformemente em relação ao número de ondas. As ondas mais longas ( k pequeno) são mais rápidas, enquanto as ondas mais curtas ( k grande) são mais lentas. À medida que k aumenta, c se aproxima do limite finito c 0 para as ondas mais curtas. Em geral, uma onda senoidal, cuja velocidade de fase depende do comprimento de onda, ou seja, ω é uma função não-linear de k chamada onda dispersiva, e (6.19) ou seu equivalente (6.28) chama-se relação de dispersão. Uma característica física interessante das ondas dispersivas em geral pode ser encontrada através da sobreposição de dois trens de freqüências e números de ondas levemente diferentes: onde (6.21) Vamos aproximar ω ± de (6.22) então onde (6.23) (6.24) O fator exp(ikx iωt) chama-se onda portadora e A(x, t), envoltória. Assim, o resultado é um trem de onda senoidal com uma envoltória que possui um comprimento de onda bastante longo 2π/k >> 2π/k, variando lentamente, e que se move em velocidade de grupo (6.25) que é, em geral, diferente da velocidade de fase das ondas dispersivas. Em nosso problema da corda, a velocidade de grupo é facilmente encontrada a partir da relação de dispersão (6.19)

15 2.6. CORDA ENVOLTA NUM AMBIENTE ELÁSTICO (6.26) Assim, a velocidade de grupo é sempre menor que a velocidade de fase e aumenta em relação ao número de ondas de 0, para a onda mais longa, ao limite finito c 0 (igual à velocidade de fase) das ondas mais curtas. Quando ω > ω c, onde chama-se freqüência de corte ω c, k é real (6.27) (6.28) sendo a raiz quadrada verdadeira e positiva. V(x, t) é a onda de propagação, com o sinal de adição (subtração) correspondente ao movimento de onda direita (esquerda). Se ω < ω c, k = ±iκ é imaginário, com κ sendo a raiz positiva: (6.29) Então,. Para limitação, deve-se escolher o sinal de subtração (adição) para x > 0 (x < 0). As oscilações são localizadas ou infinitesimais; não existe nenhuma radiação de onda. Como uma aplicação simples, ( 6.12) é a reação em uma corda semi-infinita forçada a oscilar na extremidade esquerda x = 0, Se ω > ω c, então (6.30) (6.31) onde k é definido por (6.28). O requisito de que as ondas, devido à perturbação local, podem irradiar apenas para fora é chamada de condição de radiação. Falaremos ainda sobre este assunto mais adiante. Se ω < ω c, devemos exigir limitação no infinito, de forma que (6.32)

16 2.7. DISPERSÃO DE UMA PERTURBAÇÃO LOCALIZADA Na freqüência de corte, k = 0, V é constante em x; a corda infinitamente longa oscilaria em harmonia. Este resultado improvável significa o rompimento da teoria linear. 6.2 Transporte de energia Ao longo do comprimento de uma unidade da corda, as densidades de energia cinética por unidade de comprimento são (6.33) A energia potencial em qualquer segmento dx da corda é o trabalho necessário para deformá-la a partir do equilíbrio estático. A parte devida ao alongamento da corda em relação à tensão é Adicionando a parte em relação às molas, a energia potencial total por unidade de comprimento é (6.34) Agora, calculamos o tempo médio. Se as duas funções harmônicas de tempo fossem escritas na fórmula complexa: o tempo médio de seu resultado é dado por (6.35) Usando esta fórmula, as densidades de energia da média do período são, (6.36)

17 2.7. DISPERSÃO DE UMA PERTURBAÇÃO LOCALIZADA onde θ k x ωt é a fase de onda. Portanto, (6.37) após usar a relação de dispersão. Agora, a taxa média de transporte de energia através de qualquer estação x é Assim, a velocidade do transporte de energia é a velocidade de grupo. Este resultado é bastante genérico para muitos problemas físicos e não se limita às molas. 7 Dispersão de uma perturbação inicial localizada A solução para ondas monocromáticas já mostra que as diferentes ondas de comprimento se movem em velocidades diferentes. Então, qual é a conseqüência de uma perturbação inicial? Já que uma perturbação inicial genérica delimitada em espaço pode ser representada por uma integral de Fourier, que equivale à soma de muitas sinuosidades em relação a um amplo espectro, devemos empregar as ferramentas de transformação de Fourier. Além da equação governante: adicionamos as condições (de Cauchy) iniciais (7.1) Vamos definir a transformação de Fourier e seu inverso através de (7.2) As transformações de (7.1) são (7.3) (7.4)

18 2.7. DISPERSÃO DE UMA PERTURBAÇÃO LOCALIZADA e as condições iniciais são (7.5) A solução para a transformação é (7.6) onde (7.7) A inversão de Fourier é (7.8) Qualquer função real f(x) pode ser expressa como a soma de uma função par e ímpar de x. Para simplificar, vamos supor que f(x) é par em x, de forma que seja real e par em k, então que pode ser manipulado para (7.9) O primeiro termo na integrante representa a onda de movimento à direita, enquanto a segunda, à esquerda. Cada parte corresponde a uma sobreposição de trens de ondas senoidais por todo o intervalo do números de ondas, dentro de uma pequena faixa (k, k + dk) a amplitude é função chama-se amplitude de espectro de Fourier. Em geral, a avaliação explícita das integrais de Fourier não é viável. Devemos, portanto, procurar apenas os dados aproximados. O método da fase estacionária é particularmente útil aqui. Ele tem por objetivo a aproximação assintótica da integral. A (7.10)

19 2.7. DISPERSÃO DE UMA PERTURBAÇÃO LOCALIZADA para o grande t. Vamos primeiro oferecer uma derivação rápida do resultado matemático. Suponha que F(k), ø(k) sejam funções ordinárias de k. Se t é grande, então à medida que k aumenta ao longo do caminho de integração, ambas as partes reais e imaginárias da função exponencial oscila rapidamente entre -1 e +1, a menos que exista um ponto de fase estacionária k 0 dentro de (a, b), de forma que (7.11) Então, a importante contribuição para a integral de Fourier vem apenas da região de k 0. Próximo ao ponto da fase estacionária, aproximamos a fase pela e a integral pela Com um erro de O(1/t), também substituímos os limites da última integral por ± ; a justificativa é omitida. Agora, sabe-se que Conclui-se que (7.12) onde o sinal é + (ou ), se ø (k 0 ) for positivo (ou negativo). Pode-se mostrar que se não existe um ponto estacionário na faixa (a, b), então a integral I(t) é pequena Vamos aplicar o resultado à onda que vem da direita (7.13)

20 2.8. DIFUSÃO DE ONDAS SENOIDAIS (7.14) Para uma constante fixa = x / t, temos (7.15) Para um observador que viaja em velocidade x / t, existe um ponto estacionário k 0 na raiz de (7.16) veja a figura x. Já que (7.17) o resultado final é esse (7.18) A transformação onde representou o perfil específico da perturbação inicial. Para o caso especial (7.19) que possui uma área S e largura característica b, a transformação de Fourier é (7.20) Para um determinado observador identificado pela velocidade de deslocamento x / t, o resultado aproximado pode ser visto como um simples trem de onda harmônica com número de ondas k 0, freqüência ω(k 0 ) e amplitude

21 2.8. DIFUSÃO DE ONDAS SENOIDAIS (7.21) Já que ω (k) aumenta a partir de 0 em relação ao aumento de k ao máximo finito T / pc 0 = c 0, um observador mais rápido que c 0 não visualiza nenhuma onda. Entretanto, qualquer observador mais lento que c 0 é acompanhado por um trem de ondas progressivas senoidais. O comprimento de onda local k 0 é tal que a velocidade de grupo corresponde à velocidade do observador. Quanto mais rápido o observador, mais curtas as ondas. Se uma foto for tirada, então a onda mais curta, cuja velocidade de fase é a mais baixa, é vista de frente, a qual se move tão rápido quanto as cristas das ondas mais curtas. As cristas de ondas longas avançam muito mais rápido do que a envoltória local. Como é a maior em k = 0, a envoltória das ondas mais longas que permanece próximo à fonte é a maior. A envoltória das ondas mais curtas é mais baixa em amplitude e se propaga em relação à frente de onda. Toda a perturbação se atenua com o tempo, como t 1/2. Observe que bem próximo à onda, c g c 0 ; a segunda derivativa ø (k 0 ) = ω (k) desaparece. Desse modo, a fórmula assintótica falha. É necessário uma aproximação melhor, mas ela foi suprimida aqui. (Consulte C. C. Mei, 1989, Applied Dyamics of Ocean Surface Waves). Por fim, examinaremos a propagação de energia das ondas neste problema transitório. Utilizando (7.21) a densidade da energia local é: Em qualquer dado t, as ondas entre dois observadores que se movem em velocidades um pouco diferentes, c g (k 1 ) e c g (k 2 ), ou seja, entre dois pontos x 1 / t = c g (k 1 ) e x 2 / t = c g (k 2 ) são basicamente harmônica simples, de forma que a energia total é Já que x = ω (k 0 )t para t fixo, temos Agora, para x 2 > x 1, k 2 > k 1, conclui-se que Portanto, a energia total entre dois observadores se movimentando em velocidade de grupo local permanece a mesma em todos os momentos. Em outras palavras, as ondas são transportadas pela velocidade de grupo local mesmo em dispersão transitória.

22 2.8. DIFUSÃO DE ONDAS SENOIDAIS 8 Difusão de ondas senoidais Se ao longo de uma haste não existem homogeneidades, um trem de ondas senoidais que se aproxima será metade refletido e metade transmitido. Os sinais dispersos nos dizem alguma coisa sobre o dispersor. Para determinar as propriedades de dispersão de um dispersor conhecido chama- o problema de dispersão. Para determinar o dispersor a partir de dados de dispersão chama-se o se problema de dispersão inverso. Estudaremos apenas o padrão. Várias técnicas matemáticas são necessárias em diversos casos: (i) Dispersores fracos caracterizados pela baixa amplitude em relação ao comprimento de onda ou variação lenta dentro de um comprimento de onda, (ii) Dispersores fortes, se as dimensões forem comparáveis ao comprimento da onda. 8.1 Difusão fraca Permita que a haste longa tenha um corte transversal levemente não-uniforme, (8.1) onde a(x) se reduz a zero em x ~ ±. Então, a solução pode ser procurada pelo método de perturbação Substituindo pela equação governante (8.2) e equacionando os coeficientes de força semelhantes de a zero, obtemos, com base nas expressões de ordem O( 0 ): (8.3) A solução é simplesmente a onda incidente (8.4) (8.5)

23 2.8. DIFUSÃO DE ONDAS SENOIDAIS Na ordem O( ), obtemos ou, Assim, a onda difusa é no máximo da ordem de e é governada por uma equação não-homogênea. Vamos definir a solução fundamental (função de Green) pela (8.6) (8.7) Foi mostrado em aula que (8.8) (8.9) Por clara diferenciação, pode-se confirmar que Já que U 0 (x ) = e ikx, temos (8.10). (8.11). (8.12) Mais à direita, temos

24 2.8. DIFUSÃO DE ONDAS SENOIDAIS (8.13) Assim, a modificação da lateral de transmissão das ondas incidentes pode ser no máximo da ordem de O( 2 ). Mais à esquerda x ~, O coeficiente de reflexão é (8.14) Por exemplo, se a for uma elevação da área adimensional total da unidade e o comprimento b, (8.15) então (8.16) (8.17) Desse modo, a reflexão é pequena se kb for maior, ou seja, obstáculos longos e sutis não são eficazes na reflexão de ondas curtas. Para ondas bem longas ou um obstáculo curto, a reflexão também é pequena através do desaparecimento. O coeficiente máximo de reflexão é R = i a 0 /2 quando kb = ½. Trabalho de casa: Verifique se a equação governante em O( 2 ) para U 2 é: (8.18) Coloque em prática a solução para encontrar o coeficiente de transmissão T a partir da amplitude de U 0 + U 1 + 2 U 2 em x ~, e mostre que a energia é conservada na ordem O( 2 ). 8.2 Difusão forte de ondas de água através de uma plataforma Considere o fundo do oceano com uma variação escalonada de profundidade. (8.19)

25 2.8. DIFUSÃO DE ONDAS SENOIDAIS Como o passo interrompe a propagação de uma onda incidente de unidade de amplitude que chega de x ~? Em cada zona de profundidade constante (i = 1, 2, 3), as equações de águas rasas aconselham: (8.20) Para ondas senoidais (8.21) obtemos (8.22) (8.23) ou (8.24) Em uma junção, a pressão e o fluxo devem ser iguais, então (8.25) (8.26) (8.27) As fórmulas das soluções em cada zona de profundidade constante são: (8.28) (8.29) (8.30)

26 2.8. DIFUSÃO DE ONDAS SENOIDAIS Os coeficientes de reflexão e transmissão R e T, bem como A e B ainda são desconhecidos. Aplicando as condições correspondentes à junção esquerda, obtemos duas relações (8.31) (8.32) De forma semelhante, as condições correspondentes em x = a proporciona (8.33) (8.34) Essas quatro equações podem ser resolvidas para proporcionar (8.35) (8.36) (8.37) (8.38) onde (8.39) A energia associada às ondas transmitidas e refletidas é: (8.40) (8.41) É evidente que R 2 + T 2 = 1. Acima da plataforma a superfície livre é dada por

27 2.8. DIFUSÃO DE ONDAS SENOIDAIS (8.42) Recordando o fator tempo e iωt, vemos que a superfície livre sobre a plataforma consiste em dois trens de ondas avançando em direções opostas. Entretanto, ao longo da plata forma as duas ondas podem interferir entre si de forma construtiva, com as cris tas de uma coincidin do com a da outra no mesmo momento. Em outros lugares, a interferência é destrutiva, com a crista de um trem de ondas coincidindo com a calha da outra. A envoltória da energia sobre a plataforma é dada por Na borda da plataforma, x = a, a envoltória é (8.43) (8.44) Observe que os coeficientes de reflexão e transmissão são oscilatórios em k 2 a. Em particular para 2k 2 a = nπ, n = 1, 2, 3..., que é 4a / λ = n, R = 0 e T = 1. A plataforma é transparente para as ondas incidentes, que correspondem à interferência mais construtiva e a transmissão mais forte. A transmissão mínima e a reflexão máxima Figura 7: Coeficientes de transmissão e reflexão para uma plataforma retangular. Com base em Mei, C. C., Applied Dynamic of Ocean Surface Waves.

28 2.8. DIFUSÃO DE ONDAS SENOIDAIS ocorre quando 2k 2 a = (n ½)π, ou 4a / λ = n ½, quando a interferência é mais destrutiva. Os coeficientes de transmissão e reflexão correspondentes são (8.45) Veja a Figura 7 As características de interferência podem ser explicadas fisicamente. O trem de ondas incidente consiste em cristas e calhas periódicas. Quando uma das cristas bate primeiro na borda esquerda em x = a, parte dela é transmitida para a plataforma e parte é refletida em direção à x ~. Após alcançar a borda direita em x = a, a crista transmitida possui uma parte refletida à esquerda e refletida novamente pela borda x = a à direita. Quando a crista refletida chega à borda direita pela segunda vez, a distância total do deslocamento é 4a. Se 4a for uma integral múltipla do comprimento de onda λ 2, a crista estará em fase com todas as outras cristas entrando pela plataforma tanto antes (a terceira, quarta, quinta,... vez) ou depois. Assim, todas as cristas aumentam a força umas das outras na borda direit a. Esta é uma interferência construtiva, que leva à transmissão mais forte à direita de x ~. Por outro lado, se 2k 2 a = (n ½)π ou 4a / λ = n ½, algumas cristas estarão em fase oposta a outras cristas, que conduzem à interferência destrutiva na borda direita e à transmissão mais baixa. 9 Identidades gerais na difusão por não-homogeneidades arbitrárias Difusão devido a não-homogeneidades, causada por não-uniformidades em geometria ou em propriedade de materiais, exige a solução de equações diferenciais ordinárias em relação a coeficientes variáveis. Em geral, deve-se lançar mão de meios numéricos. Visando a verificação da exatidão numérica e o ganho de percepção física, as identidades que devem ser fiéis são úteis. Normalmente, elas são deduzidas por meio de típicos argumentos na derivação ou pelo uso do teorema de Green. Ilustramos essas identidades através do exemplo de uma haste infinitamente longa com corte transversal variável S(x), (9.1) E e ρ são tidas como constantes. S(x) é não-uniforme apenas em uma região finita em torno de x = 0. Em algum outro lugar, S = S 0 = constante. Considere as ondas monocromáticas (9.2)

29 2.9. IDENTIDADES GERAIS SOBRE DIFUSÃO de forma que U(x) seja governada pela equação diferencial ordinária (9.3) As condições-limite dependem da origem das ondas incidentes. Se as ondas incidentes chegam de x ~, a fórmula assintótica da solução deve ser (9.4) e (9.5) onde T 1 e R 1 são os coeficientes de transmissão e reflexão, que são parte da solução desconhecida do problema de incidência esquerda. Vamos definir a função de Jost através de então (9.6) e (9.7) Por outro lado, se as ondas incidentes chegarem de x ~, a fórmula assintótica da solução deve ser (9.8) e (9.9) (9.10)

30 2.9. IDENTIDADES GERAIS SOBRE DIFUSÃO onde T 2 e R 2 são os coeficientes desconhecidos de transmissão e reflexão do problema de incidência à direita. Semelhantemente, definimos a função de Jost pela solução assintótica a seguir: e (9.11) Já que ambos f 1 e f 2 satisfazem (9.3), temos (9.12) (9.13) M ultiplicando a primeira por f 2 e a segunda por f 1 e, em seguida, pegando a diferença, obtemos a integração parcial, ou (9.14) A constante C pode ser relacionada com os limites assintóticos em k x >> 1 onde S S 0. Distante da lateral incidente, o Wronskiano é Distante da lateral de transmissão, o Wronskiano é

31 2.9. IDENTIDADES GERAIS SOBRE DIFUSÃO Já que os dois Wronskianos são iguais, concluímos que (9.15) Assim, os coeficientes de transmissão complexos são iguais para as ondas incidentes que vêem de qualquer lado, não importa o quão assimétrica a geometria possa ser no campo próximo! A seguir, consideramos o problema de incidência esquerda. Multiplicando o primeiro de (9.3) pelo conjugado complexo de conjugado complexo, obtemos, e pegando a diferença do resultado junto com seu (9.16) então (9.17) Utilizando-se a expressão assintótica (9.4) na lateral de incidência, obtemos Semelhantemente, utilizando-se a expressão assintótica (9.5) na lateral de transmissão, obtemos Equacionando-se os dois limites, concluímos que ou (9.18) (9.19)

32 2.10. REFRAÇÃO EM UM AMBIENTE DE VARIAÇÃO LENTA Esta é simplesmente uma declaração do fluxo de conservação: a taxa de fluxo da energia total dispersada (refletida e transmitida) é igual à taxa de fluxo da energia da onda incidente; a velocidade do transporte de energia sendo a mesma em ambas as laterais do dispersor. Obviamente, a mesma conservação de energia pode aguardar pelo problema de incidência direita. (9.20) Se o problema de dispersão for resolvido numericamente por, digamos, elementos finitos é necessário que os coeficientes de dispersão computada R e T satisfaçam as identidades (9.15) (9.19) e (9.20). 10 Refração em um ambiente de variação lenta Para os casos de tempo harmônico, utilizamos mais uma vez demonstração. A equação governante é as ondas de águas rasas como (10.1) Considere o fundo do mar que varia lentamente dentro de um comprimento de onda, ou seja, (10.2) As análises anteriores sugerem que a reflexão é insignificantemente pequena. Assim, espera-se que a solução seja uma onda progressiva localmente com o número de ondas e a amplitude variando muito mais lentamente do que a fase de onda em x. Portanto, tentaremos a solução onde θ(x) ωt é a função de fase e (10.3) (10.4) é o número de ondas local e A é a amplitude complexa. Observe a taxa espacial de variação da função de fase, ou seja, o número de ondas geralmente não é pequeno. Portanto, θ não é uma função de variação lenta de x. Vamos calcular a primeira derivativa:

33 2.10. REFRAÇÃO NUM AMBIENTE DE VARIAÇÃO LENTA e suponha que De fato, devemos supor que cada derivativa de h, A ou k é µ vezes menor que kh, ka ou k 2. Além do mais, Observe que a amplitude complexa A pode ser escrita como (10.5) A fase de A: θ A, é uma função variante lenta de x. Ela pode ser considerada como parte da fase de onda, embora seu gradiente espacial seja muito menor do que k. Agora, vamos expandir 2 0 com A 1 / A 0 = O(µ), A 2 / A 0 = O(µ ),... A partir de O(µ ), a relação de dispersão resulta: (10.6) (10.7) Assim, o número de ondas local e a profundidade local estão relacionados à freqüência, de acordo com a famosa relação de dispersão para profundidade constante. À medida que a profundidade diminui, o número de ondas aumenta. Portanto, a velocidade de fase local também diminui. A partir de O(µ), obtemos (10.8)

34 2.10. REFRAÇÃO EM UM AMBIENTE DE VARIAÇÃO LENTA ou após a multiplicação por, que significa ou (10.10) Já que a velocidade de grupo das águas rasas se iguala à velocidade de fase, o resultado acima significa que a taxa do fluxo de energia é a mesma para todo x e é compatível com a premissa original de propagação unidirecional. Além disso, a amplitude local aumenta de acordo com a profundidade como em Este resultado é chamado de lei de Green. Em resumo, a solução da ordem principal é (10.11) (10.12)