FUNDAMENTOS DO CONCRETO ARMADO

Documentos relacionados
1 ESTRUTURAS DE CONCRETO ARMANDO 1.1 INTRODUÇÃO

ESTRUTURAS DE FUNDAÇÕES RASAS

Universidade Estadual de Campinas Faculdade de Engenharia Civil Departamento de Estruturas. Elementos estruturais. Prof. MSc. Luiz Carlos de Almeida


4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO

2.0 O PROJETO DE LAJES PROTENDIDAS - SÍNTESE

CAPÍTULO 4 4. ELEMENTOS ESTRUTURAIS. 4.1 Classificação Geométrica dos Elementos Estruturais

IV Seminário de Iniciação Científica

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção

Resumo. Palavras-chave. Concreto Armado; Pórtico Plano; Dimensionamento; Otimização. Introdução

Estruturas Mistas de Aço e Concreto

AÇÕES E SEGURANÇA NAS ESTRUTURAS ESTADOS LIMITES COMBINAÇÃO DE ESFORÇOS

Pontifícia Universidade Católica do Rio Grande do Sul. Faculdade de Engenharia FACULDADE DE ARQUITETURA E URBANISMO SISTEMAS ESTRUTURAIS II

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

Módulo 4 Vigas: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Segurança em Relação aos ELU e ELS

1.1 Conceitos fundamentais Vantagens e desvantagens do concreto armado Concreto fresco...30

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

Memorial Descritivo BUEIROS CELULARES DE CONCRETO. 01 BUEIRO triplo na RS715 com 3,00m X 2,50m X 16m, cada célula, no km ,5m.

AÇO PARA CONSTRUÇÃO CIVIL

PERDAS DA FORÇA DE PROTENSÃO

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

Exemplo de Análise de Tabuleiro com duas Vigas

tecfix ONE quartzolit

6 Vigas: Solicitações de Flexão

Resistência dos Materiais

MATERIAIS PARA CONCRETO ARMADO

Módulo 2 Ações e Segurança e. Comportamento Básico dos Materiais. Métodos de Verificação da Segurança. Método dos Estados Limites

BASES PARA CÁLCULO CAPÍTULO 6 BASES PARA CÁLCULO 6.1 ESTADOS LIMITES

LT 500kV MARIMBONDO - ASSIS MEMORIAL DO PROJETO BÁSICO DE FUNDAÇÕES

ESPECIFICAÇÃO DE SERVIÇO

Lajes de Edifícios de Concreto Armado

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Universidade Federal de Pelotas Centro de Engenharias Cursos de Engenharia Civil e Engenharia Agrícola

COMPORTAMENTO E PROPRIEDADES DOS MATERIAIS

TQS - SISEs Parte 10 Fundações em bloco sobre 3 estacas sem baldrame e sobre 1 estaca com baldra

UNIVERSIDADE ESTADUAL PAULISTA UNESP Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil. Disciplina: ESTRUTURAS DE CONCRETO IV

Tecnologia da Construção Civil - I Fundações. Roberto dos Santos Monteiro

Fundações e Estruturas Especiais. Módulo III. Pavimentos Industriais BASES PARA DIMENSIONAMENTO. Fundações e Estruturas Especiais

ESTUDO EXPERIMETAL DE UMA LIGAÇÃO VIGA-PILAR DE CONCRETO PRÉ-MOLDADO PARCIALMENTE RESISTENTE A MOMENTO FLETOR

11 - PROJETO ESTRUTURAL DO EDIFÍCIO DA ENGENHARIA CIVIL

Todo concreto estrutural deverá ser usinado e dosado em peso, não se aceitando dosagens volumétricas.

AUTOMATIZAÇÃO DA VERIFICAÇÃO DE SEÇÕES DE CONCRETO ARMADO SUBMETIDAS À FLEXÃO COMPOSTA OBLÍQUA YURI MAGALHÃES CUNHA. Aprovado por:

ENGENHARIA DE FORTIFICAÇÃO E CONSTRUÇÃO CADERNO DE QUESTÕES

Este curso consiste de uma introdução ao cálculo estrutural das vigas de concreto armado, ilustrada através do estudo de vigas retas de edifícios.

Capítulo1 Tensão Normal

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

MANUTENÇÃO E RESTAURAÇÃO DE OBRAS

Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção

Materiais e Processos Construtivos. Materiais e Processos Construtivos. Concreto. Frank Cabral de Freitas Amaral 1º º Ten.-Eng.º.

ESTADOS LIMITES DE SERVIÇO SEGUNDO A NBR 6118

DIMENSIONAMENTO DE ELEMENTOS DE ESTRUTURAS DE AÇO USANDO MÉTODOS

Mesa Redonda Módulo de Elasticidade, influências diretas sobre a estrutura pré-moldada

Estruturas de Concreto Armado. Eng. Marcos Luís Alves da Silva

MATERIAIS DE CONSTRUÇÃO II TECNOLOGIA DA ARGAMASSA E DO CONCRETO

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

ÓRGÃOS ACESSÓRIOS DA REDE DE ESGOTO

Laje de concreto com esferas plásticas

ABNT NBR 15200:2004 Projeto de estruturas de concreto em situação de incêndio Procedimento

Efeito do comportamento reológico do concreto

Aula 04 Peças submetidas à flexão simples: solicitações normais.

Fundamentos de Teste de Software

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ESTRUTURAL E CONSTRUÇÃO CIVIL MARCOS ANDREW RABELO SOEIRO

ENSAIOS DE STUTTGART REPRODUÇÃO EM LABORATÓRIO

Universidade Católica do Rio de Janeiro PUC-Rio. Departamento de Arquitetura. Sistemas Estruturais na Arquitetura III

VIGAS E LAJES DE CONCRETO ARMADO

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3.

REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO

RELATÓRIO VISTORIA NA ESTRUTURA DO CARTÓRIO ELEITORAL DE GURINHÉM - SEARQ

Análise de procedimentos para medida de rotações e curvaturas em vigas de concreto armado

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados.

ANÁLISE E CÁLCULO DE ELEMENTOS ESTRUTURAIS EM CONCRETO ARMADO DE UM EDIFÍCIO RESIDENCIAL

Carga concentrada indireta (Apoio indireto de viga secundária)

Fundações Diretas Rasas

Practical formulas for calculation of deflections of reinforced concrete beams

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA QUÍMICA ENG 008 Fenômenos de Transporte I A Profª Fátima Lopes

CÁLCULO DE LAJES - RESTRIÇÕES ÀS FLECHAS DAS LAJES

SUGESTÃO DE UM POSSÍVEL MECANISMO DE RUPTURA DO VIADUTO GENERAL OLYMPIO MOURÃO FILHO

UNIVERSIDADE FEDERAL DO PARANÁ JULIANO ANDRÉ VERGUTZ RICARDO CUSTÓDIO

Tensão para a qual ocorre a deformação de 0,2%

7. A importância do aterramento na Qualidade da Energia.

ANÁLISE ESTRUTURAL DE RIPAS PARA ENGRADAMENTO METÁLICO DE COBERTURAS

PROJETO ESTRUTURAL EM CONCRETO ARMADO

O CONTROLE DA RESISTÊNCIA DO CONCRETO E A TEORIA DA CONFIABILIDADE

CÁLCULO DE ESTAQUEAMENTO PLANO POR MEIO DE

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

Fau USP PEF 604. Estruturas em aço. Prof. Francisco Paulo Graziano. Baseado em anotações e apresentações do Prof. Waldir Pignata

2 Projeto de Vigas de Concreto Armado Submetidas à Força Cortante e à Flexão

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

Sistema de Isolamento Térmico pelo Exterior. Reboco Delgado Armado sobre Poliestireno Expandido - ETICS

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

Estribos verticais: 2 Largura X: 45.0 cm Ø10 CA-50-A P9, P10, P11, Largura Y: 45.0 cm

Módulo de Elasticidade do Concreto Como Analisar e Especificar. Enga. Inês Laranjeira da Silva Battagin Superintendente do ABNT/CB-18

Detalhamento de Concreto Armado

ESTRUTURAS DE BETÃO I

DER/PR ES-OA 03/05 OBRAS DE ARTE ESPECIAIS: ARMADURAS PARA CONCRETO ARMADO

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL

Transcrição:

FUNDAMENTOS DO CONCRETO ARMADO Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com P u P u Departamento de Estruturas Escola Politécnica da Universidade Federal do Rio de Janeiro 2017

Fundamentos do Concreto Armado prof. Henrique I. Longo 1 1. Histórico FUNDAMENTOS DO CONCRETO ARMADO Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com Para entendermos melhor as características do concreto armado, é importante conhecer uma breve história do concreto armado, GORETTI (2013). Em 1849, um agricultor francês, Joseph Louis LAMBOT, construiu um barco com argamassa armada, composta de telas de fios finos com argamassa (fig.1). Ele registrou a patente de sua descoberta em 1855 e apresentou este barco na Feira Mundial de Paris, mas sua obra não teve muita repercussão. Fig.1 Barco de Lambot (1849) Em 1851, outro francês Joseph MONIER fabricou vasos de flores de argamassa de cimento com arames (fig.2a) para substituir os vasos de cerâmica que quebravam com facilidade. Ele também construiu tubos e tanques (1868) e reservatórios de água (1872). A primeira ponte de concreto armado foi construída por MONIER em 1875 no castelo Chazelet (fig.2b). MONIER conseguiu de uma forma empírica e intuitiva avaliar as características dos materiais para combiná-los de forma adequada. Ele percebeu que o concreto era facilmente moldado e tinha considerável resistência à compressão e ao esmagamento, porém apresentava deficiências em relação ao cisalhamento e à tração. Por outro lado o aço era extremamente resistente à tração e era facilmente encontrado. Fig.2 Vaso e ponte construída por MONIER

Fundamentos do Concreto Armado prof. Henrique I. Longo 2 Em 1886, o engenheiro alemão Gustav Adolf WAYSS comprou as patentes de MONIER para desenvolvê-las. Ele conduziu suas pesquisas para o uso do concreto armado como material de construção em sua empresa e realizou muitos ensaios com o material. Em 1902 foi erguido o primeiro prédio comercial de grande altura (64 metros), o Ingalls Building em Ohio, Estados Unidos. A construção gerou polêmica na época, devido aos comentários de que o edifício poderia não resistir às ações do vento e à retração do concreto. A história do concreto armado no Brasil começou em 1904 com a construção de um conjunto de seis prédios no Rio de Janeiro. Outras obras importantes foram feitas ao longo dos anos. Em 1926, foi construída a marquise no Jockey Clube (RJ) com um balanço de 22,4m, recorde mundial na época. Em 1969, o Museu de Arte de São Paulo foi executado com uma laje de 30m x 70m, também um recorde na época. Em 1982, foi construída a barragem da Usina Hidrelétrica de Itaipu (Paraná), com 190m de altura e mais de 10 milhões de metros cúbicos de concreto. Oscar Niemeyer, considerado um dos expoentes da arquitetura moderna, projetou várias obras importantes de concreto armado e em concreto protendido no Brasil (fig.3) e em vários países do mundo. Fig.3 Museu Oscar Niemeyer em Curitiba Nos últimos anos, foram construídos enormes edifícios em vários países. O Edifício Burj Khalifa (fig.4), localizado em Dubai nos Emirado Árabes Unidos, é um edifício com 828 metros de altura e 160 andares. Esta construção usou 330 mil metros cúbicos de concreto e 55.000 toneladas de vergalhões de aço. Fig. 4 - Edifício Burj Khalifa em Dubai

Fundamentos do Concreto Armado prof. Henrique I. Longo 3 2. Composição do concreto armado O cimento misturado com a água forma uma pasta, que se misturada a um agregado miúdo forma a argamassa. O concreto é um material composto pela mistura em proporções adequadas de cimento, agregados e água. Assim sendo, temos: Pasta = cimento + água Argamassa = cimento + água + agregado miúdo_ Concreto = cimento + água + agregado miúdo + agregado graúdo O concreto armado é constituído pelo concreto e pelas armaduras, trabalhando em conjunto devido à aderência entre estes dois materiais. De acordo com o tipo de armadura, temos: Concreto Armado = concreto + armadura de aço passiva Concreto Protendido = concreto + armadura ativa 3. Características do concreto armado O concreto armado é um material que tem uma boa resistência à compressão, mas uma baixa resistência à tração. No dimensionamento das vigas, deve-se levar em conta que o concreto resiste melhor aos esforços de compressão enquanto que as armaduras aos esforços de tração. A figura 5 mostra uma viga biapoiada de concreto armado submetida a uma carga concentrada. A armadura longitudinal principal é colocada na parte inferior desta viga para resistir aos esforços de tração. Fig. 5 Viga biapoiada de concreto armado A figura 6 mostra uma viga contínua com dois vãos submetida a várias cargas concentradas. Neste caso, as armaduras longitudinais também devem ser colocadas nas partes tracionadas da viga. Fig. 6 Viga contínua com dois vãos de concreto armado

Fundamentos do Concreto Armado prof. Henrique I. Longo 4 Desafio - Desenhe o diagrama de momentos fletores e um esquema de armaduras das vigas mostradas nas figuras. a) Viga biapoada com um balanço no extremo submetida a uma carga uniformemente distribuída b) Viga engastada e apoiada submetida a uma carga uniformemente distribuída 4. Vantagens e Desvantagens do Concreto Armado Dentre as vantagens do concreto armado, temos: Boa resistência aos esforços de compressão Economia em comparação com estrutura metálica, exceto em casos de grandes vãos Adaptação a vários tipos de fôrmas Facilidade e rapidez na execução de peças pré-moldadas Durabilidade elevada Possibilita a utilização de concretos de alta resistência. Boa resistência a choques, fogo, vibrações e altas temperaturas. Dentre as desvantagens do concreto armado, temos: Má resistência aos esforços de tração Peso próprio elevado Aparecimento de fissuras provocadas pela baixa resistência à tração Consumo elevado de fôrmas e escoramentos Dificuldade de modificações na obra no caso de alterações de projeto

Fundamentos do Concreto Armado prof. Henrique I. Longo 5 5. Características do Concreto Classes do concreto As classes do concreto são definidas pela sua resistência à compressão característica f ck. A NBR-6118 (2014) se aplica a concretos entre a classe C20 (20MPa) até a classe C90 (90MPa). Massa específica do concreto concreto simples ρ = 24 kn/m 3 concreto armado ρ = 25 kn/m 3 Coeficiente de dilatação térmica do concreto α = 10-5 / C Resistência à compressão As prescrições da NBR-6118 (2014) referem-se à resistência à compressão do concreto f ck obtida em ensaios de cilindros moldados. Quando não for indicada a idade, as resistências referem-se à idade de 28 dias. A resistência à compressão de cálculo do concreto f cd vale: f cd = f ck / γ c sendo γ c coeficiente de segurança para o concreto (γ c = 1,4) Resistência à tração Na falta de ensaios, a resistência à tração pode ser avaliada pelas equações: f ctk,inf = 0,7 f ct,m f ctk,sup = 1,3 f ct,m (em MPa) (em MPa) Sendo que a resistência média à tração do concreto deve ser: para concretos de classes até C50 f ct,m = 0,3 f ck 2 / 3 (em MPa) para concretos de classes de C55 até C90 f ct,m = 2,12 ln (1 + 0,11 f ck ) (em MPa) Módulo de elasticidade do concreto De acordo com a NBR-6118 (2014), quando não forem feitos ensaios, pode-se estimar o valor do módulo de elasticidade inicial do concreto: E ci = a E.5.600 f ck E ci = 21,5. 10 3. a E ( f ck /10 + 1,25) 1/3 para f ck de 20 MPa a 50 MPa para f ck de 55 MPa a 90 MPa a E = 1,2 a E = 1,0 a E = 0,9 a E = 0,7 para basalto e diabásico para granito e gnaisse para calcário para arenito O módulo de elasticidade secante pode ser estimado por: E cs = a i E ci sendo a i = 0,8 + 0,2 (f ck / 80) 1,0

Fundamentos do Concreto Armado prof. Henrique I. Longo 6 No projeto estrutural, a NBR-6118(2014) permite usar os valores estimados do módulo de elasticidade em função da resistência características à compressão do concreto, considerando o uso de granito como agregado graúdo (tabela 1). Tabela 1 Valores estimados do módulo de elasticidade pela NBR-6118 (2014) Na avaliação do comportamento de um elemento estrutural ou seção transversal pode ser adotado um módulo de elasticidade único, à tração e à compressão, igual ao módulo de elasticidade secante. O módulo de elasticidade do concreto jovem em uma idade menor do que 28 dias pode ser avaliado pelas expressões da NBR-6118(2014), item 8.2.8. Coeficiente de Poisson ν Para tensões de compressão menores que 0,5 f c e tensões de tração menores que f ct pode-se considerar o coeficiente de Poisson: ν = 0,2 Módulo de elasticidade transversal G c Para tensões de compressão menores que 0,5 f c e tensões de tração menores que f ct pode-se considerar o módulo de elasticidade transversal: G c = E cs / 2,4 Desafio 1) Para os concretos de classes C40 e C90, determine: a) resistência à compressão característica e de cálculo b) resistência média à tração do concreto c) módulo de elasticidade secante 2) Analise os valores encontrados anteriormente e explique como deve ser escolhido a classe do concreto.

Fundamentos do Concreto Armado prof. Henrique I. Longo 7 Diagrama tensão-deformação do concreto para tensões de compressão Pela NBR-6118 (2014), para tensões menores do que 0,5 f c, pode-se admitir uma relação linear de tensões e deformações, adotando-se o módulo de elasticidade o valor secante. Para análises no estado limite último, podem ser empregados o diagrama tensão-deformação mostrado na figura 7 ou o diagrama simplificado retangular. Fig. 7 Diagrama tensão-deformação do concreto pela NBR-6118 (2014) A tensão de compressão no concreto σ C na parte curva da figura 7 é dada pela equação: para fck 50MPa n =2 para fck > 50MPa n = 1,4 + 23,4 {(90- f ck ) / 100 } 4 As deformações especificas de encurtamento do concreto (fig.7 ) são: a) para concretos de classes até C50: e C2 = 2 %0 e CU = 3,5 %0 b) para concretos de classes C55 até C90: e C2 = 2 %0 + 0,085 %0 (f ck 50) 0,53 e CU = 2,6 %0 + 35 %0. [(90 - f ck )/100] 4 Diagrama tensão-deformação do concreto para tensões de tração Para o concreto não fissurado, pode ser adotado o diagrama tensão-deformação bilinear de tração, indicado na figura 8. Fig. 8 Diagrama tensão-deformação para tensões de tração no concreto pela NBR-6118(2014)

Fundamentos do Concreto Armado prof. Henrique I. Longo 8 6. Características do aço das armaduras passivas Resistência de escoamento do aço Nos projetos de estruturas de concreto armado deve ser utilizado aço com o valor da resistência característica de escoamento f yk nas categorias seguintes: CA-25 f yk = 25 kn/cm 2 CA-50 f yk = 50 kn/cm 2 CA-60 f yk = 60 kn/cm 2 A resistência de escoamento do aço de cálculo vale: f yd = f yk / γ s sendo γ s coeficiente de segurança para o aço (γ s = 1,15) Tipos de superfície aderente Os fios e barras podem ser lisos, entalhados ou providos de saliências ou mossas. A capacidade aderente entre o aço e o concreto está relacionada ao coeficiente de aderência η 1 da tabela 2. Tabela 2 Coeficiente de aderência η 1 pela NBR-6118 (2014) Massa específica A massa específica do aço de armadura passiva vale: 7.850 kg/m 3 = 78,5 kn/m 3 Coeficiente de dilatação térmica do aço 10-5 / C para temperaturas entre 20 C e 150 C. Módulo de elasticidade Na falta de ensaios ou valores fornecidos pelo fabricante, o módulo de elasticidade do aço pode ser admitido igual a: E s = 210 GPa = 210 x 10 6 kn/m 2 Desafio Determine a relação entre o módulo de elasticidade do aço E s e o modulo de elasticidade secante do concreto E sc de classe C30. Explique por que E s é maior do que E sc.

Fundamentos do Concreto Armado prof. Henrique I. Longo 9 Diagrama tensão-deformação do aço à tração O diagrama tensão-deformação do aço e os valores característicos da resistência ao escoamento f yk, da resistência à tração f stk e da deformação na ruptura ε uk devem ser obtidos de ensaios de tração realizados. O valor de f yk para os aços sem patamar de escoamento é o valor da tensão correspondente à deformação permanente de 0,2%. Para cálculo nos estados limites de serviço e último podese utilizar o diagrama simplificado mostrado na figura 9 para os aços com ou sem patamar de escoamento. Este diagrama pode ser aplicado para tração e compressão. Dutilidade Fig. 9 Diagrama tensão-deformação para aços das armaduras Os aços CA-25 e CA-50 que atendam aos valores da NBR-7480 podem ser considerados de alta dutilidade. Os aços CA-60 que atendam também a esta norma podem ser considerados de dutilidade normal. Desafio 1) Determine para o aço CA-50: a) resistência característica de escoamento e a resistência de escoamento de cálculo b) desenhe o diagrama tensão-deformação e determine neste diagrama o valor da deformação específica para a resistência de escoamento de cálculo 2) Explique por que o coeficiente de segurança da resistência de escoamento de cálculo do aço é menor do que a resistência à compressão de cálculo do concreto.

Fundamentos do Concreto Armado prof. Henrique I. Longo 10 7. Estados Limites para as estruturas de concreto armado No projeto de estruturas de concreto armado, é preciso verificar a segurança da estrutura no Estado Limite Último (ELU) e no Estado Limite de Serviço (ELS). Estados Limites Últimos (ELU) O Estado Limite Último está relacionado ao colapso ou qualquer forma de ruína da estrutura. Este estado limite pode acontecer por duas maneiras: Ruptura do concreto Alongamento excessivo do aço das armaduras No ELU, é preciso garantir a segurança adequada, isto é, uma probabilidade suficientemente pequena de ruína e garantir também uma boa dutilidade, de forma que uma eventual ruptura ocorra de forma suficientemente avisada, alertando os usuários. No Estado Limite Último, devem ser considerados os valores de cálculo, ou seja: as solicitações são majoradas pelo coeficiente de segurança g f a resistência do concreto é minorada por um coeficiente g c a resistência do aço é minorada por um coeficiente g s Com estes valores de cálculo, são calculadas as armaduras das estruturas. Estados Limites de Serviço (ELS) O Estado Limite de Serviço está relacionado ao bom desempenho da estrutura em serviço, respeitando limitações de flechas, de abertura de fissuras ou de vibrações, conforto térmico ou acústico etc. No ELS devem ser consideradas as solicitações em serviço, sem majoração das cargas. A norma NBR-6118(2014) define os seguintes estados limites de serviço para o concreto armado: Estado limite de formação de fissuras (ELS-F) Início da formação de fissuras. Admite-se que este estado limite é atingido quando a tensão de tração máxima na seção transversal for igual a resistência à tração na flexão f ct,f. Estado limite de abertura das fissuras (ELS-W) As fissuras se apresentam com aberturas iguais aos máximos especificados na NBR- 6118(2014). Estado limite de deformações excessivas (ELS-DEF) As deformações atingem os limites estabelecidos para a utilização normal da NBR- 6118(2014). Estado limite de vibrações excessivas (ELS-VE) As vibrações atingem os limites estabelecidos para a utilização normal da construção.

Fundamentos do Concreto Armado prof. Henrique I. Longo 11 8. Combinações de ações Pela NBR-6118 (2014), um carregamento é definido pela combinação de ações que têm probabilidades não desprezíveis de atuarem simultaneamente sobre a estrutura, durante um período pré-estabelecido. Esta combinação de ações deve ser feita de modo que possam ser determinados os efeitos mais desfavoráveis para a estrutura. A verificação da segurança em relação aos estados limites último e aos estados limites de serviço deve ser feita em função de combinações últimas e combinações de serviço. Combinações Últimas no Estado Limite Último (ELU) Combinações últimas normais ações permanentes e a ação variável principal com seus valores característicos e as demais ações variáveis, consideradas como secundárias com seus valores reduzidos de combinação, conforme NBR-8681. Combinações últimas especiais ou de construção - ações permanentes e a ação variável especial, quando existir, com seus valores característicos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme NBR-8681. Combinações últimas excepcionais - ações permanentes e a ação variável excepcional (sismo, incêndio, colapso progressivo), quando existir, com seus valores característicos e as demais ações variáveis com probabilidade não desprezível de ocorrência simultânea, com seus valores reduzidos de combinação, conforme NBR-8681. No caso de vigas de edifícios usuais, pode-se considerar as combinações últimas normais com um coeficiente de majoração único para as ações permanentes F g e para as ações variáveis F q. Assim sendo, o valor de cálculo das ações para combinação última F d vale: F d = 1,4 F g + 1,4 F q Combinações de Serviço no Estado Limite de Serviço (ELS) Combinações quase permanentes de serviço (CQP) Estas ações podem atuar durante grande parte do período da vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de deformações excessivas. Combinações freqüentes de serviço (CF) Estas ações se repetem muitas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação dos estados limites de formação de fissuras, de formação de estruturas e de vibrações excessivas. Podem também ser consideradas para verificações de estados limites de deformações excessivas decorrentes de vento ou temperatura que podem comprometer as vedações. Combinações raras (CR) Estas ações ocorrem algumas vezes durante o período de vida da estrutura e sua consideração pode ser necessária na verificação do estado limite de formação de fissuras. As combinações no Estado Limite de Serviço estão mostradas em LONGO (2017).

Fundamentos do Concreto Armado prof. Henrique I. Longo 12 9. Hipóteses básicas no Estado Limite Último A norma NBR-61118 (2014) estabelece critérios para a determinação de esforços resistentes nas vigas, pilares e tirantes, submetidas a esforços normais e momentos fletores. As hipóteses básicas no ELU para elementos estruturais em concreto armado são as seguintes: As seções transversais se mantém planas após a deformação A deformação das barras das armaduras deve ser a mesma do concreto em seu entorno As tensões de tração no concreto, normais à seção transversal, devem ser desprezadas A distribuição de tensões no concreto é feita de acordo com o diagrama parábola retângulo com tensão máxima igual a 0,85 f cd. Este diagrama de tensões pode ser substituído por um diagrama retangular de profundidade lx (figura 10), sendo: l = 0,8 l = 0,8 (f ck 50) / 400 para f ck 50 MPa para f ck > 50 MPa Onde a tensão constante atuante até a profundidade y pode ser tomada igual a: a C f cd no caso da largura da seção, medida paralelamente à linha neutra, não diminuir a partir desta para a borda comprimida 0,9 a C f cd no caso contrário Os valores de a C são os seguintes: concretos de classes até C50 a C = 0,85 concretos de classes de C50 até C90 a C = 0,85 {1,0 (f ck 50) / 200} σ cd α c f cd x lx h d A S d b Fig.10 Diagramas de tensões no concreto A tensão nas armaduras deve ser obtida a partir dos diagramas tensão-deformação

Fundamentos do Concreto Armado prof. Henrique I. Longo 13 O Estado Limite Último é caracterizado quando a distribuição das deformações na seção transversal pertencer a um dos domínios de deformação definidos na figura 11. Fig. 11 Domínios de Estado Limite Último de uma seção transversal pela NBR-6118 (2014) De acordo com a distribuição das deformações da figura 11, temos os seguintes tipos de ruptura: Rupturas por deformação plástica excessiva Reta a tração uniforme (tirante) e s = +10% o (constante) Domínio 1 tração não uniforme sem compressão (tração com pequena excentricidade) e s inf = +10%o +10%o e sup 0 Domínio 2 flexão simples ou flexão composta com grande excentricidade sem ruptura à compressão e alongamento máximo da armadura e s inf = +10%o 0 e c - 3,5%o Rupturas por encurtamento do concreto Domínio 3 flexão simples (seção subarmada) ou flexão composta com grande excentricidade com ruptura à compressão e com escoamento do aço e yd e s inf 10%o e c = - 3,5%o Domínio 4 flexão simples (seção superarmada) ou flexão composta com pequena excentricidade com ruptura à compressão do concreto e sem escoamento do aço e yd e inf 0 e c = - 3,5%o Domínio 5 compressão não uniforme sem tração (flexo compressão com pequena excentricidade) 0 e inf - 2 %o - 2 %o e c - 3,5%o Reta b compressão uniforme e c = -2 %o (constante)

Fundamentos do Concreto Armado prof. Henrique I. Longo 14 10. Comportamento de uma viga de concreto armado Para entender o comportamento de uma viga de concreto armado, vale a pena conhecer os chamados ensaios de Stuttgart realizados por LEONHARDT e WALTHER e apresentados por SÜSSEKIND (1983). Este ensaio consiste em aplicar duas cargas concentradas em uma viga de seção transversal retangular biapoiada de concreto armado. Estas cargas são aplicadas gradativamente até a ruptura da viga. As etapas deste ensaio são as seguintes: Etapa 1 viga não apresenta fissuras (Estádio I) No início do ensaio, nenhuma fissura aparece na viga, que se comporta como material homogêneo. Esta fase (fig.12), chamada de Estádio I, é caracterizada por tensões pequenas e menores do que às tensões de tração de ruptura. P 1 P 1 ESTÁDIO I σ Fig.12 Início do ensaio de uma viga biapoiada de concreto armado S A distribuição de tensões e de deformações é linear, sendo que a tensão em uma seção S é calculada pela equação (fig. 12): σ = M y / I M momento fletor atuante na seção S y distância da linha neutra ao ponto onde se quer calcular a tensão I momento de inércia da seção transversal em relação à linha neutra Etapa 2 viga com primeiras fissuras (Estádio II) Nesta etapa para as cargas P=P 2, aparecem as primeiras fissuras verticais no trecho central da viga que são absorvidas pelas armaduras. Neste trecho central, a viga está no Estádio II e o trecho da extremidade continua ainda no Estádio I (fig. 13). No Estádio II, a resistência à tração do concreto não é considerada, sendo que a distribuição de tensões de compressão é linear e o concreto ainda se encontra na fase elástica. P 2 P 2 ESTÁDIO II σ S Fig.13 Viga com as primeiras fissuras no trecho central S

Fundamentos do Concreto Armado prof. Henrique I. Longo 15 Etapa 3 viga quase toda fissurada Com o aumento da carga, um pouco antes da ruptura da viga, as fissuras nos trechos extremos ficam inclinadas, tendo em vista que as tensões principais de tração são inclinadas (fig.14). P 3 P 3 Etapa 4 ruptura da viga (Estádio III) Fig.14 Viga quase toda fissurada Quando a carga atinge a um valor limite último (P= P u ), ocorre a ruptura da viga (fig.15). No Estádio III, a distribuição de tensões de compressão no concreto não é mais linear. O diagrama de tensões de compressão é considerado como parábola retângulo. A ruptura de uma viga pode acontecer de várias maneiras, conforme mostrado nas figuras 15 a 19. P u RUPTURA P u ESTÁDIO III σ S Fig. 15 - Ruptura por flexão com o escoamento do aço das armaduras e esmagamento do concreto S RUPTURA Fig. 16 - Ruptura pelo esforço cortante por tração

Fundamentos do Concreto Armado prof. Henrique I. Longo 16 RUPTURA Fig. 17 - Ruptura pelo cortante por esmagamento do concreto da parte superior RUPTURA Fig. 18 - Ruptura pelo cortante por esmagamento do concreto da biela comprimida RUPTURA Fig. 19 - Ruptura por ancoragem deficiente das armaduras longitudinais nos apoios Desafio 1) Explique como evitar a ruptura de uma viga nos casos mostrados nas figuras 15 a 19. 2) Verifique se haveria ruptura para as configurações de deformações específicas abaixo e, caso haja, explique qual o tipo de ruptura: a) e s =+ 8%o e c = -3,5%o b) e s = +9%o e c = - 2,0%o c) e s = e syd e c = -3,5%o d) e sinf = -2 %o e s sup = -2 %o

Fundamentos do Concreto Armado prof. Henrique I. Longo 17 Bibliografia ABNT - NBR 6118 Projeto de Estruturas de Concreto Procedimento, 2014. FUSCO, P.B. Estruturas de Concreto, Solicitações Normais, Guanabara Dois, 1981. GORETTI, C. - Uma Breve História do Concreto Armado, Blog do PET Civil da UFJF, https://blogdopetcivil.com/2013/07/31/a-historia-do-concreto-armado/, 2013. LONGO, H.I. Verificação dos Estados Limites de Serviço em Vigas de Concreto Armado, apostila, 2017. SÜSSEKIND, J.C. Curso de Concreto, vol.1, Ed. Globo, 1983.