PROPOSTA METODOLÓGICA PARA O CÁLCULO DA FORÇA DE CONTATO PATELOFEMORAL

Documentos relacionados
ANÁLISE DAS FORÇAS SOBRE A PATELA DURANTE A EXTENSÃO DO JOELHO EM CADEIA CINÉTICA ABERTA

DETERMINAÇÃO DE PARÂMETROS BIOMECÂNICOS PARA O MODELAMENTO DA ARTICULAÇÃO DO JOELHO

ESTIMATIVA IN VIVO DA DISTÂNCIA PERPENDICULAR EFETIVA DO TENDÃO DO QUADRÍCEPS NO PLANO SAGITAL.

AVALIAÇÃO DA FORÇA DO LIGAMENTO PATELAR COM BASE NA LEI DE HOOKE

ANÁLISE DA FORÇA DO LIGAMENTO PATELAR A PARTIR DE DUAS PROPOSTAS METODOLÓGICAS

ESTIMATIVA DO CENTRO DE ROTAÇÃO TIBIOFEMORAL A PARTIR DE SISTEMAS DE REFERÊNCIA LOCAL NA TÍBIA E NO FÊMUR

AVALIAÇÃO DA PRESSÃO NA ARTICULAÇÃO PATELOFEMORAL EM INDIVÍDUOS SAUDÁVEIS

COMPARAÇÃO DE MÉTODOS PARA DETERMINAÇÃO DA TRAJETÓRIA DO CENTRO DE ROTAÇÃO ARTICULAR TIBIOFEMORAL

EFEITO DA CARGA EXTERNA SOBRE A ARTICULAÇÃO TIBIOFEMORAL DURANTE O EXERCÍCIO DE EXTENSÃO DE JOELHO

EFEITO INERCIAL DO EXERCÍCIO DE EXTENSÃO DE JOELHO SOBRE A FORÇA ARTICULAR TIBIOFEMORAL

DETERMINAÇÃO DO TILT PATELAR ANTERO-POSTERIOR A PARTIR DE IMAGENS RADIOGRÁFICAS NO PLANO SAGITAL

ESTIMATIVA IN VIVO DA DISTÂNCIA PERPENDICULAR DO LIGAMENTO PATELAR A PARTIR DO MÉTODO GEOMÉTRICO.

PROPOSTA METODOLÓGICA PARA O CÁLCULO DA FORÇA DE CONTATO PATELOFEMORAL

AVALIAÇÃO DO JOELHO. Articulação Tibiofibular Superior: É uma articulação sinovial plana entre a tíbia e a cabeça da fíbula.

OBJETIVIDADE E FIDEDIGNIDADE DO PROCESSO DE DIGITALIZAÇÃO MANUAL DE IMAGENS DE VIDEOFLUOROSCOPIA

MÉTODO PARA A CORREÇÃO DA DISTORÇÃO DE IMAGENS OBTIDAS POR VIDEOFLUOROSCOPIA.

Fig.1: Método da prancha em balanço: (a) determinação experimental do CM do corpo, (b) determinação da massa de um segmento distal.

U IVERSIDADE FEDERAL DO RIO GRA DE DO SUL ESCOLA DE EDUCAÇÃO FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊ CIAS DO MOVIME TO HUMA O

ANÁLISE DO CENTRO DE ROTAÇÃO TIBIOFEMORAL EM UM INDIVÍDUO COM RUPTURA DO LIGAMENTO CRUZADO POSTERIOR

BIOMECÂNICA DA AÇÃO MUSCULAR EXCÊNTRICA NO ESPORTE. Prof. Dr. Guanis de Barros Vilela Junior

MODELAGEM DE MARCHA E SIMULAÇÃO DE DESGASTE EM PRÓTESE DE JOELHO

Estudo dos momentos e forças articulares. Problema da dinâmica inversa. Ana de David Universidade de Brasília

Modelamento Biomecânico. Prof. Dr. Guanis de Barros Vilela Junior

Análise Clínica da Marcha Exemplo de Aplicação em Laboratório de Movimento

ESTIMATIVA DAS FORÇAS NA ARTICULAÇÃO TÍBIO-FEMORAL NO EXERCÍCIO DE EXTENSÃO DOS JOELHOS EM CADEIA CINÉTICA ABERTA REALIZADO EM MÁQUINA DE MUSCULAÇÃO

13/4/2011. Quantidade de movimento x Massa Quantidade de movimento x Velocidade. Colisão frontal: ônibus x carro

Comparação entre a realização da flexão de joelhos na máquina e com peso livre: modelamento baseado na mecânica newtoniana

Curso de Fisioterapia Disciplina de Biofísica Prof. Valnir de Paula Biomecânica

10/17/2011. Conhecimento Técnico. Construir Argumentos

Cinemática do Movimento

Biomecânica Módulo Básico. Característica do esforço em exercícios com peso-livre. Carga durante a flexão de cotovelo (peso-livre)

TÉCNICAS RADIOLÓGICAS APLICADAS NOS ESTUDOS DAS INSTABILIDADES

CARACTERIZAÇÃO DO COMPORTAMENTO DO TORQUE MUSCULAR DOS MÚSCULOS ADUTORES E ABDUTORES DO QUADRIL

Centro de Gravidade e Equilíbrio. Prof. Dr. André L. F. Rodacki

Biomecânica do. Complexo Articular do Joelho 08/08/2016. COMPLEXO ARTICULAR do JOELHO. Isabel Sacco

Aula 5 Biomecânica da postura sentada. Cadeira de rodas e adequação postural.

Exame do Joelho. -A maior das junturas sinoviais do corpo humano, bem como uma das mais complexas e discutidas.

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II OS PÊNDULOS SIMPLES E FÍSICO

Efeito das variações de técnicas no agachamento e no leg press na biomecânica do joelho Escamilla et al. (2000)

JUSTIFICATIVA DA EXISTÊNCIA DE MOMENTO FLEXOR DO JOELHO DURANTE A FASE PROPULSIVA DE UM SALTO HORIZONTAL.

FORÇA E CONTATO PATELOFEMORAL COMO F UNDAMENTOS BIOMECÂNICOS PARA REABILITAÇÃO DA SÍNDROME PATELOFEMORAL

Comparação dos exercícios em cadeia cinética aberta e cadeia cinética fechada na reabilitação da disfunção femoropatelar

Universidade Federal do Rio Grande do Sul Escola de Educação Física Programa de Pós-graduação em Ciências do Movimento Humano

Análise cinemática comparativa do salto estendido para trás

Treinamento Contrarresistência Conceitos Básicos

EFEITOS DO TAPING NO TILT PATELAR ANTERO-POSTERIOR DURANTE OS MOVIMENTOS DE EXTENSÃO E FLEXÃO DO JOELHO

Dr. Ricardo Anatomia dos membros inferiores junho site recomendado para estudar anatomia KENHUB

Prof. Ms. Sandro de Souza

Cinesiologia aplicada a EF e Esporte. Prof. Dr. Matheus Gomes

JOELHO INTRODUÇÃO ESTRUTURA ÓSSEA ESTRUTURA ÓSSEA ESTRUTURA ÓSSEA ESTRUTURA ÓSSEA 28/08/2015. Mais complexa articulação do corpo

Lesões Traumáticas dos Membros Inferiores

EFEITO DO TREINAMENTO DE EXERCÍCIOS DE FLEXIBILIDADE SOBRE A MARCHA DE IDOSAS

Análise de Forças no Corpo Humano. = Cinética. = Análise do Salto Vertical (unidirecional) Exemplos de Forças - Membro inferior.

RESUMO ABSTRACT. Palavras-chaves: Síndrome da Dor Patelofemoral. Joelho. Retropé.

ANÁLISE DOS FATORES ANTROPOMÉTRICOS EM BIOMECÂNICA

Médico Cirurgia de Joelho

Avaliação Física. Avaliação Física. wwww.sanny.com.br.

AVALIAÇÃO DO JOELHO. Clique para adicionar texto

DIFERENÇAS NA PRODUÇÃO DE TORQUE E FORÇA DE ROTAÇÃO EXTERNA DO OMBRO NOS PLANOS TRANSVERSO E SAGITAL

BIOMECÂNICA : PROGRAMA E NORMAS ORIENTADORAS

Revista Brasileira de Fisioterapia ISSN: Associação Brasileira de Pesquisa e Pós- Graduação em Fisioterapia Brasil

RECONSTRUÇÃO DO LIGAMENTO PATELOFEMORAL MEDIAL ESTUDO COMPARATIVO DAS ATUAIS ABORDAGENS CIRÚRGICAS

ANÁLISE DA EFICACIA DO USO DA CINESIOTERAPIA NO TRATAMENTO PÓS OPERATÓRIO DE LESÃO DO LIGAMENTO CRUZADO ANTERIOR ESTUDO DE CASO

CÁLCULO DE FORÇAS E MOMENTOS ARTICULARES RESULTANTES PELO MÉTODO DA DINÂMICA INVERSA

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20

TIPOS DE RESISTÊNCIA TIPOS DE RESISTÊNCIA TIPOS DE RESISTÊNCIA TIPOS DE RESISTÊNCIA TIPOS DE RESISTÊNCIA 4- CADEIAS CINÉTICAS 19/8/2011 PESOS LIVRES:

DETERMINAÇÃO EXPERIMENTAL DA VELOCIDADE DE UM PROJÉTIL UTILIZANDO UM PÊNDULO BALÍSTICO

PROGRAD / COSEAC Padrão de Respostas Física Grupo 04

AVALIAR A ANATOMIA DE SUPERFÍCIE DO MEMBRO PÉLVICO DO CÃO.

Mecânica. CINEMÁTICA: posição, velocidade e aceleração ESTÁTICA: equilíbrio DINÂMICA: causas do movimento

ANÁLISE ELETROMIOGRÁFICA DO QUADRÍCEPS DURANTE A EXTENSÃO DO JOELHO EM DIFERENTES VELOCIDADES

Músculos do Quadril e Coxa. Profa. Dra. Cecília H A Gouveia Departamento de Anatomia, ICB, USP

Biomecânica. É a ciência que se ocupa do estudo das leis físicas sobre o corpo humano (Amadio, 2000)

Cinesiologia. Cinesio = movimento Logia = estudo. Cinesiologia = estudo do movimento

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE EDUCAÇÃO FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DO MOVIMENTO HUMANO MARCELO LA TORRE

MOVIMENTO OSCILATÓRIO

Cinesiologia e Biomecânica Prof. Sandro de Souza

CARACTERIZAÇÃO DO TORQUE DE RESISTÊNCIA A PARTIR DAS CARACTERÍSTICAS MUSCULARES DO QUADRÍCEPS

Biomecânica aplicada ao esporte. Biomecânica aplicada ao esporte SÍNDROME PATELOFEMORAL

ADAPTAÇÃO DO BRAÇO MECÂNICO DO DINAMÔMETRO ISOCINÉTICO CYBEX (MODELO NORM) PARA MEDiÇÕES DE FLUTUAÇÕES DE FORÇA

Acta Ortopédica Brasileira ISSN: Sociedade Brasileira de Ortopedia e Traumatologia.

É importante compreender a biomecânica do joelho (fêmoro tibial e patelo femoral ao prescrever exercícios para o joelho em um programa de

Ossos da Perna Vista Anterior

Estudo preliminar da cinemática da locomoção de crianças em idade escolar transportando mochilas às costas

Avaliação isocinética de indivíduos portadores de Síndrome Patelofemoral após a aplicação de bandagem funcional

RELAÇÃO ENTRE TÉCNICA DE PEDALADA E OS MOMENTOS MUSCULARES DO QUADRIL, JOELHO E TORNOZELO

FEP Física Geral e Experimental para Engenharia I

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

ANÁLISE DOS MOVIMENTOS DO MÉTODO PILATES LUCIANA DAVID PASSOS

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

para ante-perna e joelho.

SISTEMA PARA DETERMINAR ÂNGULOS DOS MOVlMENTOS DO CORPO HUMANO DURANTE O EXERCíCIO FíSICO

FREQÜÊNCIA DE AMOSTRAGEM E FILTRAGEM NA CINEMÁTICA

Pós Graduação em. Exercício e lesões do Joelho. Prof. Dr. Rafael Cusatis Neto

ASPECTOS BIOMECÂNICOS APLICADOS AO TREINAMENTO DE FORÇA. Professor Marcio Gomes

Universidade Federal do Rio de Janeiro Instituto de Física Lista de Revisão Física 1. prof. Daniel Kroff e Daniela Szilard 20 de junho de 2015

Biomecânica do Movimento Humano: Graus de Liberdade, Potência articular e Modelamento Biomecânico. Prof. Dr. Guanis de Barros Vilela Junior

PROGRAMA DE AVALIAÇÃO DO CONDICIONAMENTO FÍSICO E TREINAMENTO ORIENTADO À COMPETIÇÃO: PERFIL DO TIPO DE PÉ E PISADA EM CORREDORES DE RUA

Análise Cinemática. Prof. Dr. André L. F. Rodacki

Tendinopatia Patelar

Transcrição:

PROPOSTA ETOOLÓGICA PARA O CÁLCULO A ORÇA E CONTATO PATELOEORAL João Paulo Cañeiro 1, Caroline Bernardes 1, Luis elipe Silveira 1, anoel Ângelo de Araújo 2, Jefferson agundes Loss 1 1 Laboratório de Pesquisa do Exercício (Lapex) / Escola de Educação ísica / Universidade ederal do Rio Grande do Sul; 2 Hospital ãe de eus Center. Abstract: The goal of this study is propose a method to calculate the patellofemoral contact force in vivo during a dynamic activity. In order to do that, is intended to operacionalize a protocol to determine the biomechanical parameters of the tibiofemoral and patellofemoral joints using inverse dynamics. To determine such parameters were used dynamic radiographycal images, obtained in the sagital plane, from one individual executing an exercise of knee s extension in open kinetic chain, without external load. The images obtained were reproduced and digitalized using a capture plate Silicon Graphics 320. Computer routines were developed with the software atlab to analyze the data. The results suggest that the use of inverse dynamics as a way to determine the patellofemoral contact force is appropriated. Key-words: contact force, patelofemoral, inverse dynamics Introdução A execução de atividades motoras humanas contempla a utilização de cargas externas como forma de oferecer ao organismo estímulos que desenvolvam força muscular, reestruturação tecidual, bem como proporcionem a manutenção da integridade articular [1]. No entanto, a impossibilidade de quantificar os efeitos articulares causados por essas cargas externas pode transformar estímulos benéficos em resultados agressivos, que vão de encontro à integridade articular. Isto pode ser notado principalmente nos exercícios que envolvem diretamente a articulação do joelho devido a íntima relação entre as articulações tibiofemoral e patelofemoral [2]. Existe uma diversidade de modelos que visam predizer a força imposta à articulação patelofemoral, ao longo do movimento de extensão do joelho. Nota-se que alguns autores ainda compreendem a patela como uma simples roldana, sendo capaz apenas de modificar a direção das forças que agem sobre a patela [3,4]. No entanto, assumir a igualdade das forças do ligamento patelar e do músculo quadríceps vai de encontro aos resultados encontrados por diversos autores que sugerem a não igualdade destas forças [5,6,7]. Reilly & artens [3], Van Eijden et al. [5] e Chow [8] utilizaram análise estática do exercício em estudo, para determinar parâmetros mecânicos, como a distância perpendicular, utilizados como input em seus modelos de cálculo da força de contato Bressel [4] e Brechter et al. [9] utilizaram dados extraídos da literatura para determinar os parâmetros necessários em seus modelos, como: linha de ação do músculo quadríceps e do ligamento patelar, distância perpendicular do músculo quadríceps e do ligamento patelar, distância efetiva, razão entre as forças do ligamento patelar e do músculo quadríceps. Tendo em vista as considerações feitas, a literatura parece carecer de um modelo que: assuma a não igualdade entre as forças do músculo quadríceps e do ligamento patelar, compreendendo a patela como uma roldana excêntrica. permita análise em situações dinâmicas. determine os parâmetros mecânicos necessários para o cálculo da força de contato patelofemoral a partir da sua amostra (in vivo). essa forma, o objetivo deste estudo é propor uma metodologia para calcular a força de contato ateriais e étodos Caracterização da Amostra: A amostra foi composta por um indivíduo do sexo masculino, praticante de atividade física regular, sem história de lesão na articulação do joelho, apresentando ângulo de 13 e com resposta negativa a testes de instabilidade articular. Instrumentação: Para a determinação dos parâmetros biomecânicos da articulação do joelho foram captadas imagens radiográficas utilizando-se um videofluoroscópio de marca Axiom Siemens Iconos R100 com uma televisão Siemens e um videocassete Philips acoplados à unidade. As imagens obtidas foram reproduzidas e digitalizadas utilizando uma placa de captura da marca silicon graphics 320 com entrada de super vídeo e vídeo composto integrado a sua workstation. O videofluoroscópio e o sistema de vídeo apresentam uma freqüência de amostragem de 30 Hz. oram desenvolvidas rotinas computacionais utilizando o software atlab para a análise dos dados. Procedimentos de Coleta: O indivíduo foi posicionado sentado sobre uma cadeira medindo 74 cm de altura, com a coxa fixa sobre o assento, mantendo um ângulo de 90 entre a coxa e o tronco. A cadeira foi

posicionada de forma a permitir a exposição sagital da articulação do joelho, do membro a ser analisado. Com o indivíduo devidamente posicionado, o videofluoroscópio foi ajustado para que a articulação do joelho fosse contemplada no campo de visão do aparelho. O protocolo de coleta consistiu de três execuções de um exercício de extensão de joelho em cadeia cinética aberta a uma velocidade de 45 o /s (controlada por metrônomo digital), sem aplicação de carga externa. Calibração das imagens de videofluoroscopia: oi utilizado um procedimento de calibração não linear para a correção das imagens, baseado no modelo descrito por Baltzopoulos [10]. A utilização do padrão de calibração não linear atingiu um erro máximo de 0.019 mm e um erro médio de 0.007 mm [11]. iltragem dos dados: Optou-se pela utilização de um filtro digital Butterworth de terceira ordem, com freqüência de corte igual a 5Hz, em função da característica do evento analisado [10,12]. elineamento do étodo para o cálculo da orça de Contato Patelofemoral: A metodologia utilizada no presente estudo baseia-se na utilização da inâmica Inversa. A inâmica Inversa é uma técnica em que as variáveis de movimento (cinemáticas) são conhecidas, e o objetivo é encontrar as forças que causaram tais movimentos. A solução deste problema se dá através da resolução de equações analíticas representativas da situação em análise [13]. essa forma, para determinar os parâmetros biomecânicos necessários para o cálculo da força de compressão patelofemoral a partir da análise de situações dinâmicas, foram utilizadas as equações de equilíbrio das forças descritas por aquet [14]. A utilização das equações descritas por aquet [14] mostrou-se apropriada ao desenvolvimento deste estudo em virtude de não assumir a igualdade entre as forças do músculo quadríceps e do ligamento patelar, permitir a análise de situações dinâmicas e viabilizar a determinação dos parâmetros necessários para solucionar a equação. Por tratar-se de um sistema de equilíbrio de três forças conhecidas, a força do ligamento patelar, a força do quadríceps e a força de contato patelofemoral serão determinadas a partir da aplicação da lei dos cossenos à articulação patelofemoral (igura 1), conforme a equação proposta por aquet [14] (Equação 1). (1) C orça de contato patelofemoral orça do ligamento patelar orça do músculo quadríceps α Ângulo alfa - enor angulo entre as linhas de ação do quadríceps e do ligamento patelar intersecção das retas (em x e y). igura 1: orças envolvidas na articulação A contribuição da massa da patela nas equações de força e momento é desprezível frente a magnitude das forças envolvidas, sendo portanto desconsiderada tanto em relação ao seu peso quanto aos seus efeitos inerciais, de maneira que será desconsiderada das equações. A fim de se obter e, faz-se necessária a divisão da articulação do joelho em dois sistemas de forças : Sistema de forças 1 composto pelas forças que atuam na tíbia (igura 2). Sistema de forças 2 composto pelas forças que atuam na patela (igura 3). igura 2: Sistema de forças 1. igura 3: Sistema de forças 2. A partir da resolução de cada um dos sistemas obtém-se as variáveis necessárias para a solução da equação (1). Em virtude de a atividade analisada ser realizada em velocidade controlada (baixa e constante) assume-se que o sistema de forças 1 é movido apenas pela força do ligamento patelar, desconsiderando uma eventual participação dos músculos ísquios tibiais [8]. essa forma, a solução do sistema 1, permite a obtenção da magnitude da força do ligamento patelar ( ). A

atuando na tuberosidade anterior da tíbia (sistema 1) será considerada de mesma magnitude, direção e sentido contrário à * atuando na patela (sistema 2). Sabendose o valor da * é possível, através das equações dos momentos do sistema 2, obter a magnitude da força do músculo quadríceps ( ). Resolução do sistema de forças 1: Para a resolução do sistema de forças 1 se faz necessária a determinação de quatro parâmetros: o centro de rotação tibiofemoral, a linha de ação do ligamento patelar, a distância perpendicular do ligamento patelar (em relação ao centro de rotação tibiofemoral) e o momento do ligamento patelar. Centro de rotação tibiofemoral: O método do ponto de contato, proposto por Baltzopoulos [10], foi utilizado para determinar a localização do centro de rotação tibiofemoral. Este método consiste na determinação do centro de rotação tibiofemoral a partir de um ponto que represente a menor distância entre o côndilo femoral e o platô tibial (CRT). Linha de ação do ligamento patelar: As imagens radiográficas permitem identificar os pontos anatômicos representativos da origem e inserção do ligamento patelar. Por meio de um procedimento de digitalização manual, estes pontos foram demarcados em cada imagem radiográfica, identificando o ápice da patela e a tuberosidade tibial anterior. A reta que passa por estes pontos define a linha de ação do ligamento patelar no decorrer da execução do movimento. edida da distância perpendicular do ligamento patelar em relação ao CRT: A distância perpendicular do ligamento patelar foi obtida pela medida da distância entre o CRT e a linha de ação do ligamento patelar. Cálculo do momento do ligamento patelar: O modelo utilizado neste estudo para o cálculo do momento do ligamento patelar sobre a tíbia está de acordo com o proposto por Loss et al. [15]. A igura 4 mostra um diagrama esquemático do segmento perna-pé e a representação das forças que nele atuam. onde, T é a força de contato tibiofemoral é a força do ligamento patelar P é a força peso do segmento perna+pé igura 4: iagrama esquemático do segmento perna+pé. A equação (2) rege o movimento de translação do segmento perna-pé. T + + P m a m; massa do centro de massa do segmento a; aceleração linear do segmento (2) Considerando-se que a força de contato tibiofemoral atua no CRT, não gerando momento, a equação (3) representa os momentos envolvidos: + P Iα (3) Isolando-se o momento do ligamento patelar: Iα (4) P ; momento da força do ligamento patelar P ; momento peso do segmento perna+pé I; momento de inércia do segmento α; aceleração angular do segmento Por definição, o pode ser obtido (equação 5): (5) Iα- P ; momento do ligamento patelar ; distância perpendicular do ligamento patelar (ao CRT) A partir da composição das equações (4) e (5), temos: Iα P (6) Os parâmetros antropométricos dos segmentos perna e pé utilizados neste estudo foram obtidos por meio de tabelas propostas por Clauser [16] para os parâmetros de massa e centro de massa, e empster [17] para os parâmetros de momento de inércia. Resolução do sistema de forças 2: Para a resolução do sistema de forças 2 se faz necessária a determinação de quatro parâmetros: o centro de rotação patelofemoral (CRP), a linha de ação do músculo quadríceps, e as distâncias perpendiculares do músculo quadríceps e do ligamento patelar em relação ao CRP. Centro de rotação patelofemoral (CRP): A localização do centro de rotação patelofemoral foi determinada de acordo com o método proposto por Komistek et al. [18] para a determinação, in vivo, das posições de contato O método consiste na localização visual do ponto de menor distância entre a porção mais anterior do côndilo femoral e porção mais

posterior da superfície articular da patela, sendo definido como o ponto de contato entre a patela e o fêmur. Linha de ação do músculo quadríceps: A linha de ação do tendão do quadríceps foi definida a partir de três pontos demarcados na imagem radiológica: base da patela, margem proximal superior do fêmur e margem proximal superior da massa muscular. edida da distância perpendicular do músculo quadríceps e do ligamento patelar (ao CRP): A distância perpendicular do músculo quadríceps e do ligamento patelar foram obtidas pela medida da distância entre o CRP e a linha de ação do músculo quadríceps e do ligamento patelar, respectivamente Sabendo-se a direção das linhas de ação, e a localização do CRP, determina-se a reta que é perpendicular à esta linha de ação e que passa no CRP. A distância entre o ponto de intersecção desta reta com a linha de ação e o CRP determina a distância perpendicular do ligamento patelar. Para solucionar o sistema de forças 2 assume-se que: a contribuição da massa da patela nas equações de força e momento é desprezível, sendo portanto desconsiderada, tanto em relação ao seu peso quanto aos seus efeitos inerciais. as únicas forças que atuam na patela são: a força do ligamento patelar, a força do músculo quadríceps e a força de contato a força de contato patelofemoral é uma resultante e atua no centro de rotação essa forma, a equação dinâmica de momentos pode ser escrita composta apenas pelos momentos produzidos pelo músculo quadríceps e pelo ligamento patelar sobre a patela, em relação ao centro de rotação 0 (7) + ; momento do ligamento patelar, em relação ao CRP ; momento do músculo quadríceps, em relação ao CRP 2 ef (9) ; força do músculo quadríceps * ; força do ligamento patelar com a mesma magnitude e direção, mas com sentido contrário à 2 ; distância perpendicular do ligamento patelar (em relação ao CRP) ; distância perpendicular do músculo quadríceps (em relação ao CRP) Onde ef é a distância efetiva. Esta distância é resultado da relação entre as distâncias perpendiculares do ligamento patelar em relação aos dois centros de rotação (tibiofemoral e patelofemoral) e da distância perpendicular do músculo quadríceps em relação ao centro de rotação Cálculo da força de contato patelofemoral: Para a resolução do cálculo da força de contato patelofemoral (C) ainda resta a determinação do ângulo alfa. O ângulo alfa é o menor ângulo formado entre a linha de ação do ligamento patelar e a linha de ação do músculo quadríceps (igura 1). Para sua determinação são necessárias as linhas de ação do ligamento patelar e do quadríceps. Resultados A igura 5 apresenta os valores da força de contato patelofemoral obtidos a partir da metodologia proposta. Os dados são referentes a fase concêntrica de um exercício de extensão de joelho em cadeia cinética aberta, sem carga externa. A força de contato patelofemoral apresenta um comportamento crescente no início da execução do exercício, e a partir de aproximadamente 60 o de flexão, apresenta um decréscimo de magnitude. Explicitando as componentes de cada momento: * (8) 2 Isolando a : * 2 2 igura 5: Comportamento da orça de Contato Patelofemoral.

iscussão Analisando o cálculo da C, em relação ao aspecto analítico de resolução da equação de aquet [14], a equação (1) pode ser dividida, didaticamente, em três componentes: A, B e C. e calcularam a força de contato através de solução teórica com base em diagramas de corpo livre. Buff et al [6], no entanto, realizaram medida direta da força do ligamento patelar e do músculo quadríceps em cadáveres, e a partir destes dados, calcularam a força de contato a partir da equação proposta por aquet [14]. (1) Em função da similaridade na magnitude destas componentes é possível entender um comportamento variável da C ao longo da amplitude de execução do exercício, dependendo da taxa de variação de cada parcela. Na igura 6, pode-se observar a contribuição dos componente A+B (positivas na equação de aquet [14]) e do componente C durante todo a amplitude de execução do exercício. Analisando o comportamento dos componentes A+B e C na igura 6, nota-se que de 90 até cerca de 60 de flexão a taxa de variação do componente A+B é maior que a taxa do componente C, acarretando um aumento da magnitude da força de contato. Em 60 de flexão ocorre o máximo valor da força de contato, apresentada na igura 5, em função da igualdade das taxas dos componente A+B e C. A partir de 60 em função da maior taxa de variação do componente C ocorre uma diminuição da força de contato. A partir de 40 as taxas de variação se mantém aproximadamente iguais mantendo a tendência de queda da força de contato Com base nestas análises é possível inferir a respeito do porquê a força de contato patelofemoral assume um comportamento decrescente na amplitude final de execução do exercício de extensão do joelho. Apesar da grande diversidade metodológica, serão apresentados os dados obtidos a partir de alguns referenciais bibliográficos na tentativa de estabelecer algumas comparações. Reilly & artens [3], determinaram que a força de contato patelofemoral apresenta um comportamento crescente até aproximadamente 30 o de flexão, quando atinge um pico de 1400N. esta amplitude até a máxima extensão do joelho, ocorre uma diminuição da magnitude da força de contato Cohen et al [7] por sua vez, encontraram um comportamento decrescente da força de contato, que apresenta seu máximo valor (1500N) no início da execução do exercício (90 o de flexão aproximadamente). Buff et al [6] determinaram que a força de contato patelofemoral apresenta um comportamento crescente até, aproximadamente, 50 de flexão, decrescendo a partir dessa angulação. Pode-se observar uma relativa concordância do comportamento da força de contato entre os dados de diferentes autores [3,6]. Reilly & artens [3] realizaram uma análise estática do exercício de extensão do joelho, igura 6: Taxa de variação dos componentes A+B e C na orça de Contato Patelofemoral. Apesar da grande divergência metodológica entre os estudos, o comportamento dos dados apresentados por Reilly & artens [3] e Buff et al [6] é similar ao encontrado neste estudo para a força de contato patelofemoral determinada a partir do método do ponto de contato. As diferenças de magnitude são decorrentes das diferentes cargas utilizadas entre os estudos. Reilly & artens [3] utilizaram uma bota com uma massa de 9kg, diferente da carga apresentada neste estudo. Buff et al [6] apesar de simular a extensão do joelho sem carga externa aplicada à tíbia, relatam que o peso da peça óssea utilizada no experimento é menor do que o peso de um segmento perna-pé. É provável que os resultados apresentados por Cohen et al [7] não estejam de acordo com os deste estudo em virtude de que o seu modelo de extensão de joelho em cadeia cinética aberta representa um exercício que pode ser realizado apenas em uma máquina que mantenha a carga externa aplicada perpendicularmente à tíbia durante toda amplitude do exercício, independente do ângulo de flexão. Esta simulação não representa apropriadamente um exercício realizado sem carga externa ou com uma caneleira aplicada sobre a tíbia, na medida em que apresenta um momento flexor que não varia em função do ângulo de flexão. Conclusão A utilização da dinâmica inversa como forma de resolução dos sistemas de forças, associada ao método do ponto de contato como forma de determinação do centro de rotação tibiofemoral, aparenta ser uma proposta apropriada para a determinação da força de contato patelofemoral in vivo, durante a execução de um

exercício dinâmico de extensão de joelho em cadeia cinética aberta. Agradecimentos: Ao CNPq, pelo apoio financeiro. Referências [1] CURRIER P, NELSON R ynamics of human biologic tissues, avis company: Philadelfia, 1992. [2] ANREWS JR, HARRELSON GL and WILK KE Reabilitação ísica das Lesões esportivas, Guanabara Koogan: Rio de Janeiro, 2000. [3] REILLY T, ARTENS Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities, Acta Orthop Scand. 43(2):126-37, 1972. [4] BRESSEL E The influence of ergometer pedaling direction on peak patellofemoral joint forces, Clinical Biomechanics 16:431-37, 2001. [5] VAN EIJEN TGJ, E BOER W, WEIJS WA The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexionextension angle, Journal of Biomechanics 18(10):803-09, 1985. [6] BU HU, JONES LC, HUNGEROR S Experimental determination of forces transmited through the patellofemoral joint Journal of Biomechanics (21):17-23, 1988. [7] COHEN ZA ET AL Patellofemoral stress during open and closed kinetic chain exercises, American journal of sports medicine 29:480-87, 2001. [8] CHOW JW Knee joint forces during isokinetic knee extensions: a case study, Clinical Biomechanics (14):329-38, 1999. [9] BRECHTER H J, POWERS C Patellofemoral joint stresses during stair ascent and descent in persons with and without patellofemoral pain, Gait and Posture (16):115-23, 2002. [10] BALTZOPOULOS V A Videofluoroscopy ethod for Optical istortion Correction and easurement of Knee-Joint Kinematics, Clinical Biomechanics 10(2):85-92, 1995. [11] SILVEIRA L, CAÑEIRO JP, BERNARES C, ALABE, ARAÚJO A, LOSS J étodo para a Correção da istorção de Imagens obtidas por Videofluoroscopia, Revista Radiologia Brasileira, 2005 (in press). [12] KELLIS E, BALTZOPOULOS V In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion, Clinical Biomechanics (14):118-24, 1999. [13] VAUGHAN CL An optimization approach to closed loop problems in biomechanics, Iowa: University of Iowa, 1980. Tese de outorado. [14] AUET P. Biomechanics of the knee, Springer- Verlang: New York, 1976 [15] LOSS J, CERVIERI A, SOARES, SCARRONE, ZARO, VAN EN BOGERT A.J Cálculo de forças e momentos articulares resultantes pelo método da dinâmica inversa, Rev. Bras. Cienc. Esporte 23(3):93-104, 2002. [16] CLAUSER CE, CCONVILLE JT, YOUNG JW, Weight, volume and center of mass of segments of the human body, ARL Technical Report, Wright-Patterson Air orce Base: Ohio, 1969. [17] EPSTER WT Space Requirements of the seated operator, in WAC Technical Report. Wright- Patterson Air orce Base, Ohio,55-159, 1955. [18] KOISTEK R, ENNIS A, ABE JA WALKER SA An in vivo determination of patelofemoral contact positions, Clinical Biomechanics (15):29-36, 2000. e-mail dos autores: jpcaneiro@pop.com.br carol.bernardes@pop.com.br lf_silveira@yahoo.com.br famaraujo@via-rs.net jefferson.loss@ufrgs.br