260 Direcionamento de Trajetórias

Documentos relacionados
Analisa-se agora o comportamento dinâmico da estrutura sob uma carga harmônica vertical da forma:

IV Rotas para o Caos. E-Crises

Cenário de Ruelle-Takens via Quase-Periodicidade. Iberê L. Caldas Abril de 2009

Caos em Equações Diferenciais. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)

5. ANÁLISE NÃO LINEAR.

X - Variedades Estáveis e Crises. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)

Sistemas caóticos simples

DAFIS/DAQBI - PPGFCET. Sistemas Complexos. [ M.S. Freitas / UTFPR ] Prof. Mário Sérgio Freitas, Dr. - UTFPR/DAFIS.

II- Mapas Bidimensionais. Referência: Chaos, K. Alligood, T. D. Sauer, J. A. Yorke; Springer (1997).

Capítulo 3. Intermitência Tipo III. 3.1 Forma Normal

Evidências Experimentais. Iberê L. Caldas

Um Estudo da Dinâmica da Equação Logística

Carlos A. C. Jousseph

Física no computador. Marcio Argollo de Menezes UFF Niterói

Considerações sobre a Condição Inicial na Construção do Diagrama de Bifurcação para o Mapa Logístico

Multi-Estabilidade, Diagramas de Fase e Propriedades Estatísticas do Rotor Quicado: Um Mapa Onde Coexistem Muitos Atratores

VII Exemplos de Atratores Estranhos

Universalidade. 1.1 Universalidade Estrutural

6 Integridade de sistemas não-lineares

Análise de Mapeamentos Não Lineares e Aplicações

5 Análise Dinâmica da Estabilidade

Diagramas no Espaço de Parâmetros do Mapa Logístico Perturbado e sua Estabilidade

MAT001 Cálculo Diferencial e Integral I

PGF Mecânica Clássica Prof. Iberê L. Caldas

Aula 4 - Experiência 1 Circuitos CA e Caos 2013

Notas de Aula - Parte 6. Estabilidade Estrutural e Bifurcações

período em um laser de semicondutor com

na Órbita Terrestre: um Estudo do Caos Thales Agricola Instituto de Física UFRJ

étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Introdução à Neurociência Computacional (Graduação) Prof. Antônio Roque Aula 6

Experimento 7. Circuitos RC e filtros de frequência. 7.1 Material. 7.2 Introdução. Gerador de funções; osciloscópio;

Controle de Caos e Saltos entre Atratores em um Sistema com Impactos

5 Formulação Dinâmica Não Linear no Domínio da Frequência

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

Bifurcações da região de estabilidade de sistemas dinâmicos autônomos não lineares: Bifurcação Sela-Nó do Tipo-1

Kátia Slodkowski Clerici 2, Cássio L. M. Belusso 3. Projeto de pesquisa PRO-ICT/UFFS 2. Acadêmica do curso de Física da UFFS Campus Cerro Largo 3

6 Exemplos Numéricos no Domínio da Frequência

Circuitos RC e filtros de frequência. 6.1 Material. resistor de 1 kω; capacitor de 100 nf.

6 Análise de Sensibilidade do Método LSM

Caos. Apresentado na disciplina Mecânica Cássica (PGF 5005) IFUSP. Iberê L. Caldas

5 Resultados Dados artificiais Convergência à mediana e à média com dados artificiais

Rotor Não Axissimétrico

Bifurcações de Sistemas Dinâmicos Planares e Aplicações em Sistemas de Potência

Circuitos RC e filtros de frequência. 7.1 Material

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.

Velocidade de uma reação

5.1. Aspectos gerais Aspectos gerais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Comportamento caótico em um circuito RLC não-linear

Instituto de Física - USP FGE Laboratório de Física III - LabFlex

CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA

4 Cálculo de Equivalentes Dinâmicos

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

3 Identificação de Locutor Usando Técnicas de Múltiplos Classificadores em Sub-bandas Com Pesos Não-Uniformes

MODELAGEM DE UM OSCILADOR NÃO LINEAR OBSERVADO NOS CURSOS DE FÍSICA BÁSICA.

4 Cálculo de Equivalentes Dinâmicos

Controle Não LInear. CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro

Estabilidade de tensão.. p.1/44

2 Hiperbolicidade e estabilidade

Pequenas oscilações TÓPICOS FUNDAMENTAIS DE FÍSICA

Modelos de Regressão Linear Simples parte I

PGF Mecânica Clássica Prof. Iberê L. Caldas


Modelos de Regressão Linear Simples - parte I

Trabalho 5 Métodos Computacionais da Física B

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

EXPERIÊNCIA 08 CIRCUITOS COM AMPLIFICADORES OPERACIONAIS ELABORAÇÃO: PROFS ARIANA S. e VITOR N.

I Controle Contínuo 1

Análise de Regressão - parte I

FUNDAMENTOS DE CONTROLE - EEL 7531

MÉTODO GALERKIN DE ELEMENTOS FINITOS NA DETERMINAÇÃO DO PERFIL DE TEMPERATURA NA PAREDE DE UM CONTÊINER ESFÉRICO UTILIZANDO MATLAB

Métodos de Fourier Prof. Luis S. B. Marques

Caos determinístico e mapa logístico num circuito RLD FAP0214 Física Experimental IV 2008/1. Manfredo Harri Tabacniks IFUSP

6 Análise Dinâmica. 6.1 Modelagem computacional

ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA

MAT Resumo Teórico e Lista de

Passeios Aleatórios. 1 Introdução. 2 Passeio aleatório em uma dimensão. Paulo Matias. 11 de outubro de 2011

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

INF Fundamentos da Computação Gráfica Professor: Marcelo Gattass Aluno: Rogério Pinheiro de Souza

Comportamentos dinâmicos em dimensão 1 e seus parâmetros em famílias específicas

aula ANÁLISE DO DESEMPENHO DO MODELO EM REGRESSÕES

Lista No. 5 Gabarito

TREND STRIPS E NÍVEIS DE RUÍDO ADICIONADOS A UM MAPA SENOIDAL

Algoritmos geométricos

Modelagem em Sistemas Complexos

3 Avaliação da segurança dinâmica de sistemas de energia elétrica: Resultados

Estudo Numérico da Dinâmica de Osciladores Forçados no Espaço de Parâmetros

Aula 1, Experiência 1 Circuitos CA e Caos

Experimento 8 Circuitos RC e filtros de freqüência

Descrição do processo de Modelagem e Simulação em quatro etapas no ambiente AMESim

UMA INVESTIGAÇÃO HISTÓRICA SOBRE OS LOGARITMOS COM SUGESTÕES DIDÁTICAS PARA A SALA DE AULA

DAFIS/DAQBI - PPGFCET. Sistemas Complexos. [ M.S. Freitas / UTFPR ] Prof. Mário Sérgio Freitas, Dr. - UTFPR/DAFIS.

CAOS E FRACTAIS: UMA INTRODUÇÃO

distribuição perto do pico

A Análise de Fourier utilizando o software Proteus Isis: Um estudo de caso sobre as harmônicas

6 MÉTODO DE ELEMENTOS FINITOS - MEF

SUMÁRIO PARTE 1 MODELAGEM, COMPUTADORES E ANÁLISE DE ERROS 3. PT1.1 Motivação... 3 Pt1.2 Fundamentos Matemáticos... 5 Pt1.3 Orientação...

Capítulo 1 - Erros e Aritmética Computacional

3. Limites e Continuidade

Transcrição:

260 Direcionamento de Trajetórias Controle - OGY 0,4 Z 0 Z f V C2-0,1 Direcionamento Posicionamento -0,6-3,0-1,0 1,0 V C1 Figura 8.13: Direcionamento da trajetória da equação (8.6), do ponto inicial dado por (8.10) ao ponto Z f com coordenadas dadas por (8.7), aplicando o nosso método de direcionamento. Após atingido o ponto Z f que é o ponto fixo ξ da equação (7.56), iniciamos a aplicação do método OGY para estabilizar a órbita periódica instável apresentada na figura 7.31A.

Capítulo 9 Conclusões 9.1 Introdução As principais conclusões descritas em cada um dos capítulos da tese serão resumidas a seguir. Cada ítem a seguir contém também comentários sobre esses resultados. 9.2 Mapa Logístico Embora o mapa Logístico seja um sistema matemático muito simples, ele descreve um conjunto de órbitas com um comportamento extremamente rico em fenômenos não-lineares [1]. Dos muitos fenômenos presentes neste mapa, destacamos a intermitência tipo I [7], o aparecimento de janelas periódicas (seção 2.4) e as crises [65]. Entretanto, o mais impressionante foi a descoberta da rota para o caos via duplicação de período [1] (rota de Feigenbaum). Este cenário, no qual o caos aparece através da variação de um parâmetro apresenta um comportamento universal e autosimilar na maneira como os períodos das órbitas se duplicam (até aparecer o caos) para determinados valores do parâmetro de controle. Isso também ocorre para qualquer outro sistema unimodal (cuja função tem um único máximo) ao variarmos o seu parâmetro de controle. Assim, qualquer sistema experimental que possa ser modelado por uma função unimodal, e que seja considerada com codimensão 1 (apenas um parâmetro a ser variado), terá o caos aparecendo através do cenário de duplicação de período. Portanto, a identificação de tal cenário é um passo extremamente importante na iden-

262 Conclusões tificação da dinâmica do sistema considerado. Outro interesse na identificação dessa rota é a previsibilidade que teremos desse sistema, mesmo que a sua dinâmica seja desconhecida. Com isso, podemos dizer que não só o comportamento caótico é determinista mas também a maneira como ele surge. 9.3 Mapa Logístico Perturbado O mapa Logístico perturbado corresponde ao mapa Logístico com a adição de um termo constante de amplitude q a cada t iteração [8], [9], [10]. Para esse mapa, diferentes bacias de atração (conjuntos de condições iniciais cujas trajetórias se dirigem aos atratores determinados) coexistem [9], [10] (ver seção 3.2). A existência de mais de um atrator pode levar ao aparecimento da crise de transferência que é caracterizada pela mudança brusca na característica do atrator devido a transferência da trajetória para as diferentes bacias de atração que coexistem. O período das órbitas desse mapa são múltiplos do período da perturbação t (seção 3.3). Além disso, essas órbitas periódicas podem ter uma trajetória na qual pelo menos dois pontos apresentam o mesmo valor. Isso se reflete nos diagramas de bifurcação (seção 3.7) que apresentam cruzamentos de ramos, característica não presente no mapa não perturbado. Isso ocorre devido a existência de dois máximos na função do mapa perturbado. Nesse mapa foi determinado que a intermitência existente é do tipo I, similar a que foi vista no mapa Logístico que apresenta uma lei de escala de potência. Esse resultado é importante já que o mapa perturbado, pode ser interpretado como um mapa descontínuo que apresenta intermitência tipo V, cuja lei de escala é logarítmica [36], [33]. O mapa perturbado também não apresenta um cenário de rota para o caos típico de mapas discontínuos, no qual o aparecimento de novos períodos acontece de forma aditiva [35] e não em potência de dois, como no cenário de Feigenbaum. Quando aumentamos a amplitude da perturbação q, presenciamos o surgimento de cascatas inversas, cujo período da trajetória decresce na razão de dois, para um aumento do parâmetro q. As cascatas inversas só aparecem para variações positivas em q.

9.4 Diagrama no Espaço de Parâmetros do Mapa Logístico Perturbado e sua Estabilidade 263 9.4 Diagrama no Espaço de Parâmetros do Mapa Logístico Perturbado e sua Estabilidade Neste capítulo, realizamos uma análise mais detalhada dos diagramas no espaço de parâmetros, em especial a determinação não só das regiões periódicas, mas na identificação das regiões de diferentes períodos p. Quando em um diagrama mostramos somente as regiões periódicas, este é denominado de diagrama isoperiódico. Demos especial ênfase à estrutura, geometria e estabilidade dos diagramas isoperiódicos. A análise de tal diagrama nós dá condições de afirmar que a introdução de perturbações periódicas e constantes ao mapa Logístico faz este passar de um sistema de codimensão um para um sistema de codimensão dois (número de parâmetros envolvidos). Essa afirmação fica clara analisando-se os diagramas isoperiódicos no espaço de parâmetros (q b), nos quais aparecem as estruturas em forma de camarões, caracterizadas pelo período p que representam (seção 4.2). Camarões com o mesmo perído p aparecem alinhados nos diagramas. A sequência dessa estrutura não é fractal. A existência de diferentes bacias de atração faz com que os diagramas no espaço de parâmetros sejam dependentes da condição inical. Além disso, há regiões para valores de b e q (ver tabela da seção 3.4 do capítulo 3) com atrator não limitado (quando a trajetória sai da região de validade do mapa), além de outros atratores finitos. Para estas regiões observamos que um diagrama de bifurcação pode ter uma estrutura quebrada, ou seja, dependendo do valor do parâmetro, pode haver um atrator finito, identificado visualmente no diagrama, ou um atrator não finito, que não é identificado no diagrama; há uma lacuna no diagrama, correspondente ao parâmetro para o qual o mapa não tem atrator finito. Uma questão a determinar é se a estrutura destes diagramas na região em que aparecem as lacunas (devidas a não existência de um atrator) têm uma estrutura fractal. A análise da estabilidade das órbitas periódicas de período p=2 para perturbações com período t=2, permite determinar a forma da ilha periódica (região que representa os parâmetros b e q para os quais o mapa tem uma trajetória estável) de período p=2, que aparece no diagrama isoperiódico. Isso parece indicar que o formato de qualquer estrutura periódica, que aparece nos diagramas isoperiódicos, pode ser determinado através da análise da estabilidade das órbitas periódicas. Consequentemente, colocamos uma questão: Será possível, analisando a estabilidade dessas órbitas periódicas, provar o alinhamento dos camarões de mesmo período? Acreditamos que o estudo da estabilidade das órbitas periódicas pode nos levar a uma demostração rigorosa dessa característica para sistemas de codimensão 2.

264 Conclusões Para b > 3, 57... e q = 0, situação para a qual o mapa não perturbado passa a apresentar comportamento caótico, aparece movimento periódico para determinados intervalos de b, denominados de janelas periódicas. Ao introduzirmos o termo perturbativo (q 0), as regiões no espaço de parâmetros para b > 3, 57, que apresentam comportamento periódico são prolongamentos das janelas periódicas. Ou seja, aparecem faixas cuja extremidade para q = 0 se localizam sobre as janelas periódicas. 9.5 O Circuito de Matsumoto Da mesma maneira que decidimos iniciar o nosso trabalho perturbando o mapa Logístico, devido a sua simplicidade matemática, escolhemos o circuito de Matsumoto por ser o circuito eletrônico mais simples de se montar entre os que apresentam movimento caótico [160]. Nesse circuito, a determinação dos pontos de equilíbrio pode ser realizada de maneira trivial, já que ele pode ser facilmente modelado por um sistema tridimensional de equações diferenciais de primeira ordem. Também toda a sua estrutura geométrica acaba sendo trivialmente determinada, analisando-se o fluxo ao redor desses pontos de equilíbrio, para diferentes valores de um parâmetro de controle, que nesse caso pode ser o valor de um dos componentes eletrônicos desse circuito. Esse circuito apresenta coexistência de atratores e consequêntemente diferentes bacias de atração. Em especial, um desses atratores, denominado de Double Scroll [12], tem uma característica própria de formação (para uma variação do parâmetro de controle), exposta a seguir. Dois pontos de equilíbrio sofrem bifurcação de Hopf e surgem então dois ciclos limites, cada um com a sua bacia de atração, o que faz com que dependendo da condição inicial, só possamos ver um desses ciclos limites. Esses ciclos vão sendo duplicados, via cenário de Feigenbaum, gerando dois atratores (coexistentes) espirais caóticos do tipo Rössler [43]. Quando as bacias desses atratores se tocam, os dois atratores se fundem dando origem ao Double Scroll. No entanto, nesse ponto, acontece a intermitência caos-caos [11], na qual existe uma predominância da trajetória permanecer em um dos dois atratores espirais. E essa predominância diminui com a variação do parâmetro considerado. Outra característica importante desse sistema é a existência da bifurcação de forquilha [28]. A caracterização do caos desse circuito foi feita determinando-se os coeficientes de Lyapunov e, através deles, a caoticidade desse sistema. Além disso, foi apresentado por Chua [12], uma prova da existência de caos baseada na existência de uma órbita homoclínica, o que

9.6 Circuito de Matsumoto Perturbado Senoidalmente 265 consequentemente mostraria a existência de um espaço topológico descrito pela ferradura de Smalle (mapa que descreve as propriedades de um atrator caótico). Para nós, esses fatores foram suficientes para considerar que este sistema é caótico. Entretanto, a rigor, devemos lembrar que a existência da órbita homoclínica só pode ser associada com a existência de comportamento caótico quando for provado que não há uma tangência homoclínica (apêndice A) [41], fato que parece existir no circuito de Matsumoto. A existência dessa tangência levaria o sistema a ser definido como um quasi-atrator, entidade que pode apresentar infinitas órbitas periódicas para uma infinitésima variação no parâmetro [41]. Entretanto, para o circuito de Matsumoto, a existência dessas infinitas órbitas periódicas não foi provada. Por enquanto, o que podemos dizer é que nem metricamente (através dos coeficientes de Lyapunov), nem topologicamente (existência da órbita homoclínica) há uma prova rigorosa de comportamento caótico no circuito de Matsumoto. Surge, então, a sugestão de aplicar a caracterização simbólica para essa demonstração, o que seria feito através da determinação da dinâmica simbólica das trajetórias do circuito de Matsumoto. A discussão, acerca da caoticidade do circuito de Matsumoto, vem da importância de podermos divulgar a existência de pelo menos um sistema real com uma prova irrefutável de comportamento caótico. Prova que por enquanto só pôde ser realizada no mapa de Hénon. 9.6 Circuito de Matsumoto Perturbado Senoidalmente No capítulo 6, foram analisadas oscilações do circuito de Matsumoto alteradas por uma perturbação senoidal. Na medida que estamos interessados em controlar esse circuito, consideramos não só a eliminação do caos por essa perturbação, mas também outros efeitos causados por ela. Queremos ainda enfatizar que perturbar um sistema qualquer usando uma onda senoidal é, em geral, simples, econômico e versátil. Esse aspecto realça a importância dos resultados obtidos. A introdução de uma perturbação senoidal, caracterizada pela sua frequência f e pela sua amplitude V g, no circuito de Matsumoto, tem um resultado imediato que é o surgimento de uma frequência a mais em relação as que haviam no circuito não perturbado. Com isso, o circuito perturbado pode passar a apresentar movimento em um toro de duas frequências (toro T 2 ). Uma frequência é a da perturbação f e a outra corresponde a frequência característica do circuito perturbado. Com o surgimento do toro T 2 o movimento passa a ser quasi-periódico ao invés de caótico.

266 Conclusões No entanto, sabemos que, além do movimento quasi-periódico em T 2, ocorre, para alguns valores do parâmetro de controle, movimento sincronizado ( phase-locked ) nesse mesmo toro. Uma rota para o caos, investigada nesta tese, é através da quebra desse toro T 2. Verificamos, para este caso, existir duas maneiras dinâmicas de ocorrer essa quebra. Uma maneira é abrupta, onde a destruição total do toro e o caos surgem através da variação infinitesimal de um parâmetro. Isso ocorre pelo surgimento de uma órbita homoclínica. A outra maneira é suave, onde o caos surge deixando o toro rugoso e dobrado, mas sem destruí-lo totalmente. Neste caso, a caoticidade (medida pelo coeficiente de Lyapunov) cresce suavemente com a variação de um parâmetro. Além disso, a determinação exata do valor do parâmetro em que acontece a quebra é difícil porque o caos surge e desaparece para variações ínfimas nesse parâmetro de controle. A caracterização dinâmica dessa quebra pôde ser realizada. Entretando, deixamos como um trabalho futuro a caracterização topológica dessas duas quebras. Sabemos que existem pontos sela-nó e sorvedouros no toro e que o surgimento do caos é determinado pela maneira como as variedades desses pontos se cruzam [76]. Mostramos na tese que os resultados através da simulação são coerentes com os resultados da experiência. Os fenômenos presentes no circuito perturbado podem ser bem descritos através da simulação. Para isso, iremos citá-los e, para uma clara identificação de como aparecem tais fenômenos, usamos o diagrama da figura 6.40. Esse diagrama, como a maioria dos diagramas no espaço de parâmetros do capítulo 6, foi obtido usando o acumulador da equação 5.22 (capítulo 5). Esse acumulador determina, com uma determinada precisão, se a trajetória estudada é periódica, e o seu período p é fornecido pelo código que determina a função acumuladora. A determinação de órbitas periódicas pelo algorítmo do acumulador é muito mais precisa do que a obtida com o uso do cálculo do expoente de Lyapunov. Em vários testes realizados, a função acumuladora mostrou ser digna de confiança. A definição mostrada nos diagramas isoperiódicos desse capítulo, dificilmente seria obtida calculando-se o espectro de Lyapunov. Outra razão é que, o tempo de computação necessário para a obtenção de um diagrama isoperiódico, usando o cálculo do acumulador, é pelo menos quatro vezes menor do que o que seria necessário calculando o coeficiente de Lyapunov. Entretanto, a função acumuladora pode apresentar uma pequena falha quando a somatória no acumulador considerar um laço (o n da somatória, neste trabalho n=5) não muito grande. E a falha recai na determinação da posição exata das línguas de Arnold

9.7 Controle de Caos 267 nos diagramas (ver seção 6.3.14, figura 6.52). Porém, essa imprecisão só deixa incertezas quanto ao formato das bordas externas das línguas. Essa falha na determinação exata do formato das línguas de Arnold é devida ao fato de que a borda de uma língua de Arnold tem um número de rotação aproximadamente racional, fazendo com que um movimento quasi-periódico seja confundido com um movimento periódico. Para resolver esse problema teríamos que aumentar o valor de n e, portanto, o tempo de computação utilizado. No diagrama da figura 6.40, vemos uma grande ilha vermelha no centro deste. Esta ilha corresponde a um ciclo limite de período p=1 e é observada para grandes variações de frequência e amplitude. Nas bordas superiores dessa ilha aparecem as línguas de Arnold, também presentes nas bordas da maioria das ilhas periódicas desse diagrama. Nesse mesmo diagrama, para a região nas proximidades de f=0,3 (próximo à frequência característica f c 0,31), vemos que surgem várias regiões periódicas e regiões quasi-periódicas que podem ser identificadas na figura 6.38. Isso leva-nos a uma conclusão quase esperada. Podemos eliminar o caos, no sistema de Matsumoto, aplicando uma perturbação com frequência f próxima da frequência característica f c. Frequências f muito acima da frequência f c têm pouco efeito no controle do circuito de Matsumoto. No diagrama da figura 6.40 há uma grande ilha negra, correspondente a uma região para a qual ocorre crise exterior e o atrator é destruído. Neste caso preferimos usar a nomenclatura atrator não finito. No entanto, apesar de pequena, há regiões periódicas presentes nessa ilha do atrator não finito. Caso identificado nos diagramas do mapa Logístico Perturbado (no capítulo 4 nas figuras 4.1, 4.2 e 4.3). Por fim, verificamos que estes diagramas não possuem estruturas fractais [10], [30]. Também não foram encontrados neste diagrama os camarões encontrados nos sistemas de codimensão dois [29], [10]. Entretanto, os camarões existem nos diagramas isoperiódicos do sistema de Matsumoto não perturbado. 9.7 Controle de Caos Mostramos, no capítulo 7, como o caos pode ser suprimido, controlado ou então obtido a partir de um comportamento não caótico. O trabalho referente aos capítulos em que perturbamos o mapa Logístico (capítulos 3, 4) e o circuito de Matsumoto (capítulo 6), pode ser colocado no âmbito do assunto do controle de caos, já que mostramos ser possível eliminar o caos desses sistemas através de perturbações periódicas. No caso do mapa Logístico Perturbado, a geração de caos foi

268 Conclusões investigada. Além desses resultados, o capítulo referênte ao direcionamento de trajetórias, onde mostramos como dirigir rapidamento uma trajetória de um sistema caótico para um determinado alvo, deve ser tratado como um tópico integrante do assunto controle de caos. Além desses resultados, aplicamos alguns métodos de controle de caos, que atualmente têm sido vastamente utilizados para aplicações tanto experimentais quanto teóricas. Usando o mapa Logístico, mostramos como a idéia de controle de caos pode ser aplicada perturbando-se o parâmetro de controle b do mapa, ou um parâmetro externo q, adicionado ao sistema [10]. Neste mapa apresentamos adaptações dos métodos de controle de Singer [101], OGY [21], Sinha [127] e Pyragas [90] e, por último, aplicamos o método de Hübbler [89]. Aplicamos o método de Romeiras [117], que é uma generalização do método OGY, ao mapa de Hénon. Esse método foi usado para controlar uma órbita periódica criada para aplicar o nosso método de direcionamento [20] (método apresentado no capítulo 8). Quanto ao sistema de Matsumoto, mostramos como estabilizar uma trajetória periódica aplicando o método OGY [21], e o método de Pyragas [90], [110]. Aplicamos também o método de Sinha [127], para direcionar a trajetória para um ponto de equilíbrio, e o método OPCL [131], para fazer a trajetória do sistema de Matsumoto ser trasferida de um atrator a outro, entre os cinco que coexistem para os parâmetros escolhidos. Devemos salientar que todos os métodos de controle usados neste capítulo usam perturbações lineares e consideram somente um parâmetro a ser perturbado. Entretanto, esses métodos apresentaram resultados satisfatórios para o controle de comportamento caótico dos sistemas considerados. Outros métodos, não aplicados, foram mencionados no decorrer e, principalmente, no final do capítulo. Entre eles citamos métodos que consideram perturbações não lineares [150], [143] ou a perturbação conjunta de mais de um parâmetro [121]. 9.8 Direcionamento de Trajetórias No capítulo 8, nós mostramos que as trajetórias do mapa Logístico, do mapa de Hénon e do sistema de Matsumoto podem ser rapidamente dirigidas de uma posição inicial para um alvo previamente escolhido, aplicando uma sequência de N perturbações constantes em um parâmetro de controle. Nesse método, o parâmetro genérico p assume apenas valores constantes. Neste trabalho, foram considerados somente três valores para o parâmetro de controle: p 0 + δ, p 0 δ e p 0, δ sendo a amplitude da perturbação [20].

9.8 Direcionamento de Trajetórias 269 Para determinar a sequência de N perturbações que devem ser aplicadas ao parâmetro, para dirigir a trajetória do ponto inicial para o alvo, uma grande quantidade de memória é necessária. Para evitar esse problema, nós desenvolvemos um método numérico que requer apenas os 3 N pontos que são gerados na (última) iteração N. A sequência escolhida (responsável por fazer o alvo ser atingido) entre as outras 3 N possibilidades, pode não ser única. Entretanto, qualquer uma das sequências faz a trajetória evoluir ao longo da variedade estável do alvo (figura 8.9). O método pode ser experimentalmente aplicado, como mostrado usando o mapa Logístico Perturbado com um ruído (seção 8.2.2). Usando o método de direcionamento, nós podemos criar novas órbitas periódicas que não estão presentes no atrator do sistema não perturbado. Embora essas novas órbitas sejam instáveis, sua estabilização é possível aplicando o método OGY [21] de controle. O método de direcionamento foi aplicado ao sistema de Matsumoto, um sistema de equações tridimensional, sem que esse sistema fosse unidimensionalmente modelado. Algumas adaptações, ao uso inicial (em mapas) do método, foram introduzidas, como o número N de perturbações que deve ser estimado previamente. A relevância de termos aplicado este método a um sistema com mais de uma dimensão, é que isso não é possível nos métodos de direcionamento tradicionais [22], [23], [24]. Para simular um experimento real, nós não ajustamos a condição inicial como pode ser feito quando se trabalha numericamente com um sistema de equações. Entretanto, antes de aplicar nosso método de direcionamento, o sistema precisa ser dirigido para uma determinada trajetória. Então, para isso, uma perturbação senoidal ressonante foi aplicada ao sistema (como feito no capítulo 6), de maneira que a trajetória se comporte periodicamente via sincronização e, então, nós consideramos o ponto inicial como o cruzamento entre a trajetória periódica e alguma seção de Poincaré escolhida (nesta tese a seção escolhida foi aquela com V C1 =-1,5). Para melhorar a performance do método de controle OGY, nós podemos aplicar nosso método de direcionamento. Como o método OGY requer que a trajetória se aproxime da órbita periódica a ser controlada (fato que pode levar algum tempo), nós usamos nosso método para dirigir rapidamente a trajetória do sistema para um ponto localizado nas vizinhanças da órbita periódica escolhida.

270 Conclusões