Termodinâmica é a ciência que estuda as transformações de energia nas quais as variações de temperatura são importantes. A maioria das transformações químicas resulta em alterações nas temperaturas e, portanto, a Química sempre sempre esteve envolvida na Termodinâmica como ciência. TERMODINÂMICA TERMOQUÍMICA Interesse central da Química: o controle e a compreensão das transformações químicas Algumas questões fundamentais para essa compreensão: 1. Quando duas substâncias são misturadas, haverá reação? 2. Havendo reação, ela será acompanhada por liberação de energia? 3. Iniciada a reação, qual a composição dos reagentes e produtos correspondentes ao término da reação e ao estabelecimento do equilíbrio? Exemplos de conversão de energia: Energia Energia Dispositivo ou fenômeno Térmica Mecânica Motor a explosão Luminosa Elétrica Célula fotovoltaica Química Térmica Combustão Química Elétrica Pilhas Elétrica Química Eletrólise Os exemplos acima mostram que as formas de energia podem ser convertidas umas nas outras mediante o uso do equipamento ou processo adequado [1]. Podemos, por exemplo, converter energia potencial da água caindo em uma cachoeira em energia cinética de uma roda d água, desta em energia elétrica conectando a roda d água a um gerador de energia elétrica, como nas centrais hidrelétricas. Diversos cientistas, ao longo dos séculos, observaram essas transformações e efetuam medições das quantidades de energia envolvidas nelas. Até hoje, em todos os experimentos realizados, sempre, a energia se conservou. O princípio da conservação da energia é um dos mais sólidos da ciência e é apresentado na Termodinâmica através da Primeira Lei da Termodinâmica. ENERGIA: capacidade de realizar trabalho e/ou transferir calor potencial ENERGIA cinética REAÇÕES EXOTÉRMICAS 1
ALGUNS TERMOS TERMODINÂMICOS 1- SISTEMA VIZINHANÇAS UNIVERSO Primeira Lei da Termodinâmica: Lei da Conservação da Energia 2- Estado termodinâmico de um sistema Funções de Estado Mudança de Estado Uso mais importante das funções de estado em termodinâmica: descrever mudanças de estado VARIAÇÕES DE ENTALPIA * ΔH = q, a pressão constante ΔX = X final - X inicial ΔH = H 2 H 1 impossível saber a entalpia absoluta de um sistema A entalpia é uma função de estado: o calor liberado ou absorvido numa reação (variação de entalpia) depende dos estados inicial (reagentes) e final (produtos). 2
Como medir a quantidade de calor desprendida ou absorvida numa reação? em meio aquoso utiliza-se um calorímetro (garrafa térmica) Para reações de combustão utiliza-se uma bomba calorimétrica calorímetro Nos dois casos o calor é transferido para uma massa de água e obtido a partir da expressão q = m. c. Δ T q é a quantidade de calor (cal). m é a massa de água (g) c é o calor específico da água (cal/ g. o C) Δ T é a variação de temperatura ( o C) água + calorímetro = vizinhanças reação em observação = sistema bomba calorimétrica Representações de equações termoquímicas Reações que liberam energia: reações exotérmicas C(g) + O 2 (g) CO 2 (g) + 94 kcal (Diz-se que a vizinhança ganha 94 kcal do sistema) ou C(g) + O 2 (g) CO 2 (g); ΔH = - 94 kcal (Diz-se que o sistema perde/libera 94 kcal para a vizinhança) *Termodinâmica: necessidade de definição de sistema e vizinhança *Pela IUPAC a unidade de ΔH o deve ser em kj mol - 1 *1 cal = 4,184 J Representações de equações termoquímicas Reação exotérmica Reações que absorvem energia: reações endotérmicas H 2 (g) + I 2 (s) 2 HI(g) - 12,4 kcal (Diz-se que a vizinhança perde 12,4 kcal para o sistema) H P < H R ou H 2 (g) + I 2 (s) 2 HI(g) ; ΔH = + 12,4 kcal (Diz-se que o sistema ganha 12,4 kcal da vizinhança) ΔH = Hp - H R ΔH < 0 3
Reação endotérmica Entalpias ou Calores de Reação mais usuais H P > H R ΔH = Hp - H R 1. Calor de Formação 2. Calor de Combustão 3. Calor de Dissolução 4. Calor de Neutralização ΔH > 0 Quantidade de Calor que se refere sempre a 1 mol de substância, na Formação, Combustão, Dissolução ou Neutralização. 1.Calor de formação: Refere-se à formação de 1 mol de substância, a partir de suas substâncias simples. Ex. 1 H 2(g) + ½ O 2(g) 1 H 2 O (l) ΔH o = - 68,3 kcal ΔH o f (H 2 O (l)) = - 68,3 kcal/mol 2.Calor de combustão: Refere-se à combustão de 1 mol de substância. Ex. 1CH 4(g) + 2O 2(g) 1CO 2(g) + 2H 2 O (l) ΔH o = - 212,8 kcal ΔH o comb (CH 4(g) ) = - 212,8 kcal/mol 3.Calor de dissolução: Refere-se à dissolução de 1 mol de substância. 1 NH 4 NO 3(s) + H 2 O (l) NH 4 NO 3(aq) ΔH o = + 6,29 kcal ΔH d (NH 4 NO 3(s) ) = + 6,29 kcal/mol 4.Calor de neutralização: Refere-se à reação de neutralização de um ácido por uma base com formação de 1 mol de H 2 O. HCl (aq) + NaOH (aq) NaCl (aq) + 1H 2 O (l) ΔH o n = - 13,8 kcal/mol ΔH o = - 13,8 kcal Na reação de um ácido forte (α = 1) com base forte (α = 1) a variação de entalpia é aproximadamente constante e igual a 13,8 kcal/mol de água formada pois a reação que verdadeiramente ocorre é H + + OH -! H 2 O 4
Entalpia padrão de formação (ΔH 0 f ): 1 mol da substância. O estado padrão: 1 atm de pressão e, em geral, 25 o C. As condições padrão são indicadas pelo índice superior ( o ). Por convenção, a entalpia padrão de substâncias simples na forma alotrópica mais estável a 25 C e 1 atm é igual a zero. Valores de entalpia padrão de formação: Substância Fórmula H o (kj mol -1 ) Hidrogênio H 2 (g) 0 Metano CH 4 (g) - 74,9 Chumbo Pb(s) 0 Sulfeto de chumbo PbS(s) - 98,3 Amônia NH 3 (g) - 45,9 Cloreto de prata AgCl(s) - 127,0 Óxido de nitrogênio NO(g) 90,3 Água H 2 O(g) -241,8 LEI DE HESS Lei da soma dos calores de reação A variação de entalpia para uma reação é a mesma se ela ocorre em uma única etapa ou se ocorre em várias etapas ENTALPIA É FUNÇÃO DE ESTADO!!!!! 5
Numa reação que ocorre com mais de uma etapa, a soma dos calores de cada reação intermediária será o calor total da reação. C (graf.) + ½ O 2(g)! CO (g) CO (g) + ½ O 2(g)! CO 2(g) C (graf.) + O 2(g)! CO 2(g) ΔH 1 o = - 280,6 kj ΔH 2 o = - 112,8 kj ΔH 3 o = - 393,4 kj Equação termoquímica: Nas equações termoquímicas: C(s) + O 2 (g)! CO 2 (g) ; ΔH o = - 393,4 kj 1. Quando uma equação termoquímica for multiplicada por um fator, deve-se multiplicar o valor da ΔH pelo mesmo fator; 2. Quando a equação química for invertida, o valor da ΔH fica com o sinal trocado. IMPORTANTE!!! 1- ΔH é função de estado 2- ΔH é uma propriedade extensiva 3- É importante mencionar estados físicos das substâncias em uma equação termoquímica!! Cálculos estequiométricos envolvendo calor de reação Exemplo 1. Calcule o calor desprendido quando se obtêm 907 kg de amônia, pela reação representada abaixo. (Admita que a reação ocorra a pressão constante) N 2 (g) + 3H 2 (g) 2NH 3 (g); H o = -91,8 kj Exemplo 2. Calcule a variação de entalpia padrão de vaporização do dissulfeto de carbono a 25 0 C. H 0 f [CS 2 (l)] = 88,0 kj/mol H 0 f[cs 2 (g)] = 117 kj/mol CS 2 (l) CS 2 (g) H 0 reação = Σn H0 f (produtos) - Σn H0 f (reagentes) Exemplo 3. Calcule a variação de entalpia padrão para a reação abaixo. Use os dados da tabela em slide anterior. 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) `` 6
Considere a reação abaixo: CS 2 (g) + 3 Cl 2 (g) S 2 Cl 2 (g) + CCl 4 (g) ΔΗ o Reação = - 232,0 kj Inicialmente, em um reator de 10 L a 25 C, as pressões do CS 2 (g) e do Cl 2 (g) são 2,0 e 4,0 atm respectivamente. a) Calcule o rendimento da reação, admitindo que a energia liberada pela reação foi de 92,8 kj. b) Determine a pressão total no reator, após o término da reação, considerando que o rendimento seja de 100%. Primeira Lei da Termodinâmica A Primeira Lei da Termodinâmica diz que a energia é conservada. A energia interna de um sistema isolado é constante. A Lei de conservação é uma descrição de como a natureza funciona, não uma explicação. Tem aceitação e utilidade, mas é um conceito abstrato ΔU = q + w Onde: ΔU, é a variação da energia interna do sistema (ΔE) q, é o calor que um sistema recebe ou desprende w, é o trabalho que o sistema realiza ou que é realizado sobre ele ESPONTANEIDADE DE PROCESSOS QUÍMICOS E FÍSICOS Espontâneos = favorecimento dos produtos Processos Não-espontâneos = favorecimento dos reagentes 7
Dois aspectos da espontaneidade Energia (calor/entalpia) Matéria Segunda Lei da Termodinâmica - definições Existem vários modos de enunciar essa Lei: "É impossível haver transferência espontânea de calor de um objeto frio para outro mais quente. Espontaneamente, o calor só pode passar de um corpo de temperatura mais alta para outro de temperatura mais baixa É impossível converter todo o calor de uma fonte em trabalho. Sempre haverá uma parcela trocada com o ambiente ENTROPIA (S): medida da desordem de um sistema A entropia total de um sistema fechado sempre aumenta (Um sistema fechado é um sistema que não interage com o ambiente externo. Na prática não existem sistemas fechados, exceto talvez, pelo universo como um todo. Logo, podemos expressar a segunda lei como: a entropia total do universo está sempre aumentando) Previsão da variação de entropia A entropia usualmente aumenta nas seguintes situações: Quando a água é aquecida; Quando a água evapora; Quando um gás passa de um recipiente sob alta pressão para outro de pressão mais baixa... Para todas as substâncias: Previsão da variação de entropia A entropia usualmente cresce nas seguintes situações: 1. Reação em que uma molécula se divide em duas ou mais moléculas pequenas; 2. Reação em que há aumento do número de mol de gás (Este efeito pode ser consequência da divisão de moléculas, e nesse caso está também relacionado à regra anterior); 3. Processo com mudança de estado físico de sólido em líquido ou gás, e, de líquido em gás. 8
Previsão da variação de entropia Resumo 1. Mudanças de fase 2. Variação de temperatura 3. Variações de volume 4. Mistura de substâncias: exemplo água e álcool isopropílico Previsão da variação de entropia Resumo (cont.) 4. aumento no número de partículas As ideias de entropia, ordem e desordem estão relacionadas a probabilidade congelamento abaixo do PF fusão acima do PF ΔS universo = ΔS sistema + ΔS vizinhanças > 0 9
TERCEIRA LEI DA TERMODINÂMICA A entropia de uma substância pura, perfeitamente cristalina, é zero a 0 K. substância S 0 (J/mol.K) C(diamante) 2,38 C(g) 158,0 H 2 O(l) 69,91 H 2 O(g) 188,7 I 2 (s) 116,1 I 2 (g) 260,6 CH 4 186,3 CH 3 CH 3 229,6 CH 3 CH 2 CH 3 269,9 Exemplo: CO(g) + 2H 2 (g) CH 3 OH(l) Dados: S 0 (CO(g)) = 197,6 J/mol.K S 0 (H2(g)) = 130,7 J/mol.K S 0 (CH3OH(l)) = 126,8 J/mol.K ΔH reação = - 128,14 kj ΔS 0 universo = ΔS 0 sistema + (- ΔH 0 sistema)/t ΔS 0 sistema ΔH0 sistema processo + - - + + + - - ΔS universo = ΔS sistema + ΔS vizinhanças ΔS 0 universo = ΔS 0 sistema + ΔS 0 vizinhanças ΔS 0 universo = ΔS 0 sistema + (- ΔH 0 sistema)/t 10
ΔS 0 universo = ΔS 0 sistema + (- ΔH 0 sistema)/t ΔS 0 sistema ΔH 0 sistema processo + - espontâneo - + não-espontâneo + + depende - - depende Energia livre e espontaneidade Energia livre de Gibbs, G, critério direto para a espontaneidade das reações. Gibbs mostrou o seguinte: em qualquer reação a uma dada temperatura (T), existe sempre uma relação simples entre a variação da entalpia ( H), a variação de energia livre ( G), e a variação de entropia ( S). Esta relação é: G 0 = H 0 - T S 0 De acordo com o raciocínio de Gibbs, a energia livre sempre diminui em qualquer reação química espontânea, de forma que a variação de energia livre sempre deve ser negativa. A reação sempre irá no sentido da energia livre decrescente, assim como o calor passa do corpo mais quente para o mais frio, e um corpo pesado rola para o fundo do vale. ΔS 0 universo = ΔS 0 sistema + (- ΔH 0 sistema)/t Energia livre e espontaneidade -TΔS 0 universo = ΔH0 sistema - TΔS0 sistema ΔG 0 sistema = ΔH0 sistema - TΔS0 sistema ΔG 0 sistema = -TΔS0 universo ΔG 0 > 0 ΔS 0 universo < 0 não-espontâneo ΔG 0 < 0 ΔS 0 universo > 0 espontâneo Resumindo: Energia livre de Gibbs, G, critério direto para a espontaneidade das reações. Portanto: G 0 = H 0 - T S 0 Se G < 0, reação espontânea: irreversível (espontâneo) Se G > 0, reação não espontânea: espontâneo no sentido inverso Se G = 0, equilíbrio: reversível (equilíbrio) 11
Energia Livre de Gibbs - G Considerações sobre G: G é uma função de estado A unidade SI de entropia é kj mol -1 É aditiva, portanto: G 0 reação = Σn G 0 f (produtos) - Σn G 0 f (reagentes) 12
Calcule a variação de energia livre, a 25 0 C, na reação abaixo: N 2 (g) + 3H 2 (g) 2NH 3 (g) Dados: H 0 f[nh 3 (g)] = -45,9 kj mol -1 S 0 [N 2 (g)] = 191,5 J K -1 mol -1 S 0 [H 2 (g)] = 130,6 J K -1 mol -1 S 0 [NH 3 (g)] = 193,0 J K -1 mol -1 13