RAIAS ESPECTRAIS. I. Introdução. II. Fórmulas espectrais empíricas

Documentos relacionados
Principais modelos atômicos. Modelo Atômico de Thomson (1898)

Teoria Atômica da Matéria

NOTAS DE AULAS DE FÍSICA MODERNA

QUANTIZAÇÃO DA ELETRICIDADE, DA LUZ E DA ENERGIA

Astrofísica Geral. Tema 05: Noções de Óptica

Roteiro do Experimento Efeito Fotoelétrico Modelo Ondulatório da Luz versus Modelo Quântico da Luz

Problemas de Mecânica e Ondas 8

UNIVERSIDADE FEDERAL DE SERGIPE -UFS CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA- CCET DEPARTAMENTO DE QUÍMICA - DQI PROF.: ANTONIO REINALDO CESTARI

Efeito fotoeléctrico Determinação da constante de Planck

Leupico a matéria é discreta ou contínua? - átomos

Medição de comprimentos, massas e tempos

ESTRUTURA DO ÁTOMO. 3. (G1 - cftmg 2016) Sobre as propriedades do íon sulfeto ( ) verdadeiro ou (F) para falso.

Praticando... Um composto com peso molecular de 292,16 foi dissolvido em um balão volumétrico

PRINCIPAIS CONCEITOS EXERCÍCIOS

Simulado Ondulatória

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Laboratório de Física Moderna I

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

Profª.. Carla da Silva Meireles

1.2. Grandezas Fundamentais e Sistemas de Unidades

defi departamento de física

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

FÍSICA RADIOLOGICA. Prof. Emerson Siraqui

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Escalas ESCALAS COTAGEM

MÓDULO 2 ÓPTICA E ONDAS Ronaldo Filho e Rhafael Roger

Capítulo 2 Estrutura Atômica

Difração = Desvio da propagação retilínea da luz

Universidade Estadual de Campinas. Relatório Disciplina F 609

16 N. Verifica-se que a menor distância entre duas cristas da onda é igual a 4,0 m. Calcule a freqüência desta onda, em Hz.

SOLDAGEM DOS METAIS CAPÍTULO 4 FÍSICA DO ARCO ARCO ELÉTRICO

Fenômenos Ondulatórios

ESTRUTURA ELETRÔNICA DOS ÁTOMOS

RESOLUÇÃO DE EXERCÍCIOS PROPOSTOS AULA 01 TURMA ANUAL. 05. Item A

AS BELEZAS DO ARCO-ÍRIS E SEUS SEGREDOS

Modelos atômicos. Modelo de Bohr

ANÁLISE DE CIRCUITOS LABORATÓRIO

Universidade Federal do Paraná Departamento de Física Laboratório de Física Moderna

ESTUDO DE UM CIRCUITO RC COMO FILTRO

MATEMÁTICA. Questões de 01 a 06

Física. A) retilíneo uniforme. A) 3g B) retilíneo com aceleração de módulo constante. B) 4g C) circular com aceleração de módulo constante.

Dualidade onda-corpúsculo para a matéria. Relação de De Broglie Princípio de Incerteza e Mecânica Quântica Física em acção

FÍSICA APLICADA A RADIOLOGIA. Proº. Lillian Lemos lillianlemos@yahoo.com.br

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO

COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS

Matemática. A probabilidade pedida é p =

A Natureza Elétrica da Matéria

ANALOGIA NO ENSINO DA FÍSICA

COMPOSIÇÃO DAS CORES

Campo Magnético Girante de Máquinas CA

Física IV Escola Politécnica GABARITO DA PR 5 de fevereiro de 2013

DIÂMETRO DE UM FIO DE CABELO POR DIFRAÇÃO (UM EXPERIMENTO SIMPLES) *

Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo

Max von Laue sugeriu que se os raios X fossem uma forma de radiação eletromagnética, efeitos de interferência deveriam ser observados.

CONTEÚDO CIÊNCIAS REVISÃO 1 REVISÃO 2 REVISÃO 3 E HABILIDADES. Conteúdo: - Movimento, velocidade e aceleração - Força, ótica e som

Física IV. Fótons e Natureza Ondulatória da Luz. Sears capítulo Prof. Nelson Luiz Reyes Marques

Física Experimental - Óptica - EQ192.

ELÉTRONS EM ÁTOMOS. Depois do modelo de Rutherford: Como é o comportamento dos elétrons nos átomos? Rutherford: estrutura planetária, com o

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Termômetros de Radiação. Prof. Valner Brusamarello

ESTRUTURA E PROPRIEDADES DOS MATERIAIS DIFUSÃO ATÔMICA

01. (UECE-1996) Um menino, parado em relação ao solo, vê sua imagem em um espelho plano E colocado à parede traseira de um ônibus.

Desenvolvimento de Veículos Autônomos em Escala. Identificação de Parâmetros e Calibração dos Modelos dos Sistemas de Propulsão, Frenagem e Direção

Ângulo limite e reflexão total

Gráfico da tensão em função da intensidade da corrente elétrica.

Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE

Circuito Elétrico - I

1ª LISTA DE EXERCÍCIOS SOBRE ÓPTICA Professor Alexandre Miranda Ferreira

Ondas Eletromagnéticas. Cap. 33

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADEMICA DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 1. Erros e Tolerâncias

1) Camada Física. Camada física. Par trançado. Prof. Leandro Pykosz

ANÁLISE EXPLORATÓRIA DE DADOS

Evolução dos Modelos Atômicos A DESCOBERTA DO ÁTOMO

Exercícios: Espelhos planos. 1-(PUC-CAMPINAS-SP) Um pincel de raios paralelos quando refletido por um espelho plano: a) conserva-se paralelo

Química Geral I Aula 11 14/04/2016

Introdução à ondulatória.

LINHAS DE TRANSMISSÃO DE ENERGIA LTE

FÍSICA - Tomás ESPELHOS PLANOS ÓPTICA

Capítulo 6 ESCALAS E DIMENSIONAMENTO

Tópico 6. Aula Prática: Aparelhos básicos de medida de comprimento e massa: Determinação de grandezas indiretas

As Transformações de Lorentz

Luz Polarizada. Luz natural. Luz Polarizada. Luz polarizada

Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8

5. Modelo atômico de Bohr

Capacitor em corrente contínua

CINEMÁTICA DO PONTO MATERIAL

Propriedades Elétricas do Materiais

SOLUÇÕES N item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

Vestibular Comentado - UVA/2011.1

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO. Professor Leonardo Gonsioroski

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

Aula 6 Propagação de erros

Perturbação que se transmite de um ponto para o outro (que se propaga no espaço), transportando energia.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

ESTRUTURA GERAL DO ÁTOMO. NÚCLEO - Prótons: p + - Nêutrons: n o. ELETROSFERA - Elétrons: e - o 3) CARGA ATÔMICA E CARGA IÔNICA

Características das Figuras Geométricas Espaciais

Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda

MEDIDAS FÍSICAS FEX 1001

Escola Básica e Secundária Gonçalves Zarco. Física e Química A, 10º ano Ano lectivo 2006 / Nome: n.º aluno: Turma:

Ondas. Ondas termo genérico com relação ao meio marinho, vários mecanismos de formação.

Transcrição:

AIAS ESPECTAIS Gil Bazanini Depto. de Engenharia Mecânica -FEJ/UDESC Ivani T Lawall Depto. de Física -FEJ/UDESC Joinville SC I. Introdução Quando a luz emitida por uma fonte luminosa atravessa um prisma ou uma rede de difração, tem-se a decomposição do feixe luminoso em um espectro, fato há muito tempo conhecido. Quando a fonte luminosa é um sólido ou um líquido em incandescência diz-se que esse espectro é contínuo, ou seja, nele encontram-se todos os comprimentos de onda da luz visível. Porém, quando a fonte luminosa é constituída por um gás, através do qual passa uma descarga elétrica, ou por uma chama na qual se introduziu um sal volátil, ao invés de surgir uma faixa brilhante contínua com todas as cores do espectro visível ( espectro contínuo ), aparecem apenas algumas cores, formando linhas isoladas umas das outras e paralelas entre si. A essas linhas, dá-se o nome de raias espectrais. O comprimento de onda das raias espectrais é característico do elemento que as produz. Um grupo de raias denomina-se série. II. Fórmulas espectrais empíricas A regularidade das raias parecia indicar que havia uma relação entre elas. Os trabalhos de análise espectral foram iniciados por Kirchhoff e Bunsen por volta de 859. Nos vinte e cinco anos que se seguiram, uma série de dados inexplicáveis relativos às raias espectrais emitidas por elementos excitados foi se acumulando. Tão logo tornou-se possível efetuar medidas de comprimentos de onda com segurança, numerosos investigadores lançaram-se à procura de relações entre as raias encontradas no espectro de um dado elemento. Nada se conseguiu além de algumas relações de diferentes tipos. Por volta de 880, Liveing e Dewar chamaram a atenção para sucessivos pares de raias no espectro do sódio e ressaltaram que estes pares estavam alternadamente juntos e afastados, e que os mesmos se aglomeravam na direção da região de menores comprimentos de onda do espectro, sugerindo alguma relação entre eles, a qual eles não conseguiram descobrir. Em 883, Hartley descobriu uma importante relação numérica 9 Cad. Cat. Ens. Fís., v., n. 3: p. 9-35, dez. 995.

entre os componentes de duplas e trios no espectro de um dado elemento. Se são utilizadas freqüências no lugar de comprimentos de onda, Hartley descobriu que a diferença nas freqüências dos componentes de um grupo (dupla ou trio) de um determinado espectro, é a mesma para todos os grupos de raias deste espectro. Foi somente em 885 que Johann Balmer, um professor suíço, conseguiu obter uma fórmula que relacionava os comprimentos de onda das diversas raias com relativa precisão, para o hidrogênio: 3645,6n n 4 () onde: é o comprimento de onda em angstrom; A 0 N=3, 4, 5,..., para os respectivos comprimentos de onda. 0 m Em 906, Lyman descobriu uma série na região do ultravioleta para o hidrogênio e em 908, Paschen descobriu uma nova série na região do infravermelho: Série de Lyman: Série de Paschen: n=, 3,... () n n= 4, 5,... (3) 3 n Surgiram ainda as séries de Brackett Pfund, também no infravermelho: Série de Brackett: n= 5, 6,... (4) 4 n Série de Pfund: 5 n n=6, 7, 8,... (5) onde é a constante de ydberg e vale,09678 x 077 m - Balmer sugeriu que sua fórmula poderia ser um caso particular de uma expressão mais geral, aplicável aos espectros de outros elementos. ydberg tentou descobrir essa expressão e chegou a: Bazanini, G. E Lawall, I.T. 30

A (6) N onde A e são constantes ajustáveis ao elemento da série espectral em estudo, sendo n números inteiros sucessivos. A fórmula de ydberg vale tanto para li série espectral de Balmer, como para outras séries espectrais. Além disso, o valor de permanecia quase o mesmo, qualquer que fosse o elemento. Hoje, sabe-se que esta pequena variação de de um elemento para outro, deve-se ao peso atômico do elemento. Para elementos muito pesados, aproxima-se do valor,097373xl0 7 m -. Em 908, W. itz, notando que a constante A da fórmula de ydberg continha um termo análogo ao outro termo da fórmula, reescreveu-a: K n (7) onde: e são constantes ajustáveis ao elemento; K apresenta valores diferentes para diferentes séries espectrais de um mesmo elemento. Para se obter a freqüência, pode-se utilizar a expressão: c = f (8) onde c = 3 x 08 m/s, é a velocidade da luz no vácuo. Após ter se tomado possível a representação das freqüências das raias espectrais através de fórmulas matemáticas, era necessário estabelecer uma ligação destas freqüências com a estrutura do átomo e descobrir como a energia do átomo se transformava em energia luminosa. Foi somente em 93 que Niels Bohr, trabalhando no Laboratório utheford, em Manchester, obteve sucesso ao explicar as raias espectrais observadas para o hidrogênio, combinando o modelo do átomo de utherford com os quanta de Planck e os fótons de Einstein. III. edes de difração Uminstrumentoimportantenaanálisedaluzéaredededifração, a qual consiste numa chapa de vidro ou metal, onde são gravadas ranhuras igualmente espaça- 3 Cad. Cat. Ens. Fís., v., n. 3: p. 9-35, dez. 995.

das. Para o espectro visível, utiliza-se redes contendo de 400 a 00 traços por milímetro. Admitindo-se que cada fenda tenha uma largura muito pequena e que uma onda luminosa incida normalmente em haverá a formação de uma figura de interferência em um anteparo à grande distância da rede, onde teremos um grande número de fontes lineares igualmente espaçadas, cujos máximos de interferência são dados por: d sen = m (9) onde: d é o espaçamento entre as fendas é o ângulo entre a normal ao anteparo e a raia espectral de ordem m (m=0,,,... ). Vide Fig.. é o comprimento de onda da raia de posição angular, em angstrom O poder de resolução de uma rede de difração é determinado por: mn (0) onde é a diferença entre dois comprimentos de onda vizinhos, cada qual aproximadamente igual a. IV. esultados de algumas medições Algumas medições de comprimento de onda foram realizadas pelo primeiro autor, quando estagiário no departamento de Física da Faculdade de Engenharia Industrial, em São Bernardo do Campo S.P.. Foi analisado o espectro de hélio, contido num tubo, de acordo com a, disposição abaixo: Bazanini, G. E Lawall, I.T. 3

Fig. Os raios de luz, ao passarem pela rede de difração, sofrem dispersão de a- cordo com o seu comprimento de onda, segundo a equação (9), de modo que se pode visualizar as raias, cada uma correspondendo a um comprimento de onda e, portanto, uma determinada cor, formando o espectro do hélio. Só foi possível observar a série espectral de primeira ordem, ou seja, para m=. Deve-se observar que há simetria no espectro observado, isto é, a raia situada à direita do centro do anteparo graduado está à mesma distância do centro que a raia de mesma cor situada à esquerda. Mediu-se a distância de cada raia ao centro (x) e a distância entre a rede de difração e o anteparo (d) com uma régua graduada: Calcula-se: L d x () x sen () L A rede de difração utilizada contém 4440 linhas por polegada, ou seja, 568,5 linhas por milímetro. Portanto d = / 568,5 =,759 x 0- mm =,759 x 0 4 A Como m = (primeira ordem), pode-se calcular o comprimento de onda para cada raia, pela equação (9). 33 Cad. Cat. Ens. Fís., v., n. 3: p. 9-35, dez. 995.

Assim, o espectro do hélio medido resulta: Também foi utilizado o equipamento de raios laser do laboratório, que e- mite luz em um único comprimento de onda (correspondente a uma única cor) que, nesse caso, é o do vermelho. Foram observadas as posições do máximo central (m = O), primeiro máximo ( m = ) e segundo máximo ( m = ), e foi calculado o comprimento de onda para m = e m = do mesmo modo que para as raias espectrais: m (A) 65 630 V. Conclusões A tabela abaixo mostra intervalos nos quais costumam se situar os comprimentos de onda de cada cor. Como pode-se observar, os valores de comprimento de onda calculados caem dentro dos respectivos intervalos. Bazanini, G. E Lawall, I.T. 34

CO (A 0 ) violeta 3900-4550 azul 4550-490 verde 490-5770 amarelo 5770-5970 laranja 5970-60 vermelho 60-7800 No caso do equipamento de raios laser, ambos os comprimentos de onda correspondem ao do vermelho, pois o laser utilizado só emitia luz vermelha. Para efeito de comparação, vale ressaltar que os valores tabelados na literatura dos comprimentos de onda da lâmpada de hélio são: 447, 506, 5876 e 6678 A 0, para as cores violeta, verde, amarela e vermelha, respectivamente. eferências BUECHE, F. J. Introduction To Physics For Scientists And Engineers. McGraw-Hill. Japan. 975. EISBEG,.; LENE, L. S. Física, Fundamentos e Aplicações. Vol. 4. Editora Macgraw-Hill. São Paulo. 983. EISBEG,.; ESNICK,. Física Quântica. Editora Campus. io de Janeiro. 986. KAPLAN, I. Física Nuclear. Editora Guanabara Dois. io de Janeiro. 97. SEAS, F. W. Física: Ótica. Ao Livro Técnico S. A.. io de Janeiro. 956. SEMA T, H. Fundamentals Of Physics. Holt, inehart And Winston. New York. 964. 35 Cad. Cat. Ens. Fís., v., n. 3: p. 9-35, dez. 995.