ANÁLISE DO COMPORTAMENTO ESTÁTICO DE MANCAIS HIDRODINÂMICOS PELO MÉTODO DE ELEMENTOS FINITOS

Documentos relacionados
ANÁLISE DO COMPORTAMENTO DE MANCAIS ELASTO-HIDRODINÂMICOS ATRAVÉS DO MÉTODO DOS ELEMENTOS FINITOS

Capítulo 5. Torção Pearson Prentice Hall. Todos os direitos reservados.

Universidade Federal do Paraná Setor de Tecnologia Departamento de Engenharia Mecânica. Eixos e árvores

Professor: Estevam Las Casas. Disciplina: MÉTODOS DE ELEMENTOS FINITOS MEF TRABALHO

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Programa de Pós-graduação em Engenharia Mecânica da UFABC. Disciplina: Fundamentos de Mecânica dos Sólidos II. Lista 2

Elementos de Máquinas II. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica

Figura 4.1: a)elemento Sólido Tetraédrico Parabólico. b)elemento Sólido Tetraédrico Linear.

Resistência dos Materiais. Aula 6 Estudo de Torção, Transmissão de Potência e Torque

Torção. Deformação por torção de um eixo circular. Deformação por torção de um eixo circular. Capítulo 5:

RESISTÊNCIA DOS MATERIAIS AULAS 02

Rolamentos Rígidos de Esferas

OTIMIZAÇÃO E ANÁLISE ESTRUTURAL POR ELEMENTOS FINITOS DE UMA CAÇAMBA DE ENTULHOS

- MANCAL DE FRICÇÃO -

O carro de boi foi um meio de transporte

- MANCAIS - Mancal é um suporte que serve de apoio para eixos e rolamentos que são elementos girantes em máquinas.

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II. Capítulo 2 Torção

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ELEMENTOS FINITOS PARA ANÁLISE DE ESTRUTURAS

Quarta Lista de Exercícios

Modelagem numérica e computacional com similitude e elementos finitos CONCLUSÕES

Ensaio de compressão

ELEMENTOS ELÁSTICOS MOLAS

PQI. Rotor em Balanço Bipartida Radialmente. Linha. Bombas de Processo ISO 13709/API 610 (OH2) Soluções em Bombeamento. Soluções em Bombeamento

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 9. Elementos de máquinas 2 Eixos e árvores

2 Fundamentos para a avaliação de integridade de dutos com perdas de espessura e reparados com materiais compósitos

Distribuição Transversal para Pontes em Vigas Múltiplas Protendidas

IMETEX ÍNDICE. PDF created with pdffactory trial version

Capítulo 3: Propriedades mecânicas dos materiais

Aplicações Mecânicas Aula 3

Prof. Willyan Machado Giufrida. Torção Deformação por torção de um eixo circular

Projeto: Análise Numérica de Integridade Estrutural de uma Prancha. Cliente: ZINQUE IND. COM. LTDA.

Resistência dos Materiais

RESISTÊNCIA DOS MATERIAIS CONTROLE DE QUALIDADE INDUSTRIAL Aula 03 TENSÃO

ELEMENTOS DE MÁQUINAS (SEM 0241)

Capítulo 3 Propriedades Mecânicas dos Materiais

Estabilidade. Marcio Varela

LISTA DE EXERCÍCIOS ÁREA 1. Disciplina: Mecânica dos Sólidos MECSOL34 Semestre: 2016/02

Capítulo 4 Propriedades Mecânicas dos Materiais

AVALIAÇÃO DA COMPRESSÃO DE UMA LIGA DE ALUMÍNIO: EXPERIMENTAL X NUMÉRICO

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 8. Elementos de máquinas 2 Eixos e árvores

ANÁLISE ESTRUTURAL DE PISTÕES AXIAIS DE MÁQUINAS TIPO SWASHPLATE UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS

Anel de fixação MMP - Principais Características

CIDADE PASSO FUNDO INSTRUÇÕES GERAIS. a c d

Tels.: Campinas-sp Itupeva-sp

MÉTODO DE RUNGE-KUTTA APLICADO À DEFLEXÃO DE VIGA 1 RUNGE-KUTTA METHOD APPLIED TO BEAM DEFLECTION

Lubrificação Industrial. Prof. Matheus Fontanelle Pereira Curso Técnico em Eletromecânica Departamento de Processos Industriais Campus Lages

DIMENSIONAMENTO PARA TRELIÇAS DE MODO A MINIMIZAR CUSTOS MATERIAIS E OTIMIZAR A RESISTÊNCIA A DESLOCAMENTO

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 30/08/2009

3. Materiais e Métodos

Propriedades mecânicas dos materiais

VERIFICAÇÃO DE UMA ENGRENAGEM ATRAVÉS DE ELEMENTOS FINITOS

MANCAIS AUTOLUBRIFICANTES

Resistência dos Materiais

ELEMENTOS DE MÁQUINAS (SEM 0241)

DETERMINAÇÃO DA CONTRAÇÃO LATERAL DO DIÂMETRO EM LIGAS METÁLICAS UTILIZANDO- SE O SCILAB

1 ESCOLA POLITÉCNICA DA USP Estrutura Mecânica Eduardo L. L. Cabral ESCOLA POLITÉCNICA DA USP

Anel de fixação MMP - Principais Características

Teste de tração - compressão

RESISTÊNCIA DOS MATERIAIS

5 Descrição do modelo estrutural

Desenvolvimento de um Modelo de Contato de uma Superfície Idealmente Lisa Contra uma Rugosa pelo Método dos Elementos Finitos

Objetivo do capítulo. O ensaio de tração e compressão

0RGHODJHP&RPSXWDFLRQDO$WUDYpVGR3URJUDPD$%$486

LEONARDO CAMPANINE SICCHIERI COMPARAÇÃO DE MODELOS MATEMÁTICOS PARA MANCAIS HIDRODINÂMICOS SEGMENTADOS

CENTRO UNIVERSITÁRIO PLANALDO DO DISTRITO FEDERAL

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas 1ª Parte

ROLAMENTOS PARA EQUIPAMENTOS VIBRATÓRIOS

ESTUDO DA DISTRIBUIÇÃO DE TENSÕES EM DENTES DE SERRA FITA COMERCIAL PARA CORTE DE MADEIRA, UTILIZANDO ANÁLISE NUMÉRICA E IMAGENS DIGITAIS.

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

Análise Dinâmica de uma plataforma mista aço-concreto de uma estação de carregamento de materiais

Atuadores pneumáticos

APLICAÇÕES. Você vê engrenagens em quase tudo que tem partes giratórias. Transmissão de carro. Redutor de velocidade. Relógios

Aula 6 Propriedades dos materiais

Os modelos numéricos propostos foram elaborados a partir do elemento Shell 63 disponibilizado na biblioteca do programa ANSYS.

Prof. Willyan Machado Giufrida Curso de Engenharia Química. Ciências dos Materiais. Propriedades Mecânicas dos Materiais

Estudo Comparativo Entre Ligações Parafusadas e Soldadas em Estruturas Metálicas

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLOGIA INSTITUTO FEDERAL DE EDUCAÇÃO, CIENCIA E TECNOLOGIA DE MINAS GERAIS

Deformação. - comportamento de um material quando carregado

Prof. Alfredo Gay Neto Prof. Miguel Bucalem PEF 5716

MEMÓRIA DE CÁLCULO. Figura 1 - Dimensões e eixos considerados no provete submetido a ensaio.

UNIVERSIDADE FEDERAL DO ABC MATERIAIS E SUAS PROPRIEDADES (BC 1105) ENSAIOS MECÂNICOS ENSAIOS DE TRAÇÃO E FLEXÃO

A UTILIZAÇÃO DE FERRAMENTAS DE SIMULAÇÃO NUMÉRICA NA OTIMIZAÇÃO DE PROJETOS DE MECANISMOS DE VÁLVULA GAVETA*

TUTORIAL 7 LIGAÇÃO PARAFUSADA

MODELAGEM DE ATUADORES MAGNÉTICOS DE UMA BANCADA COM ROTOR FLEXÍVEL SUSPENSO POR MANCAIS MAGNÉTICOS ATIVOS

7 RESULTADOS EXPERIMENTAIS

Professor: José Junio Lopes

6. Conclusões e Sugestões

Relações entre tensões e deformações

CONTEÚDOS PROGRAMADOS (Aerodinâmica de Turbomáquinas - EEK 511) Pás e escoamentos, trabalho, escalas. 2

6 Análise Dinâmica. 6.1 Modelagem computacional

ANÁLISE NÃO LINEAR DE SISTEMAS TRELIÇADOS ESPACIAIS UTILIZADOS PARA ESCORAMENTOS DE ESTRUTURAS DE AÇO E MISTAS

MECÂNICA DOS SÓLIDOS PROPRIEDADES MECÂNICAS DOS MATERIAIS. Prof. Dr. Daniel Caetano

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica

Carga axial. Princípio de Saint-Venant

PROPRIEDADES MECÂNICAS II

FIS-14 Mecânica I. Ronaldo Rodrigues Pela

7 Análise Método dos Elementos Finitos

Introdução ao estudo das Estruturas Metálicas

Disciplina: Sistemas Fluidomecânicos. Análise de Turbomáquinas

Transcrição:

ANÁLISE DO COMPORTAMENTO ESTÁTICO DE MANCAIS HIDRODINÂMICOS PELO MÉTODO DE ELEMENTOS FINITOS Bento, R. T. (1) ; Ferrus Filho, A. (2) Avenida Lineu Prestes, 2242, 05508-000 - Cidade Universitária - São Paulo SP rodrigo.bento@ipen.br (1) Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP) (2) Faculdade de Tecnologia Termomecanica (FTT-CEFSA) RESUMO Mancais são dispositivos empregados em conjuntos mecânicos a fim de suportar cargas e dar apoio aos componentes gerais de um sistema, guiando ou restringindo os graus de liberdade durante a sua movimentação. Dentre os modelos de mancais mais empregados, os mancais hidrodinâmicos são largamente utilizados por suportarem situações onde há a necessidade de altas cargas, altas rotações e boa precisão. Desta maneira, o presente estudo visa através do modelamento da bucha um mancal hidrodinâmico realizar a análise estrutural estática do componente, empregando-se o Método de Elementos Finitos. Para validação do perfil geométrico da bucha, foi desenvolvido um estudo de materiais liga de bronze TM 23 e TM 620; liga de alumínio 6061 e alumínio-lítio 8090 avaliando o desempenho sob os esforços solicitados de acordo com as condições do projeto. Os resultados indicaram valores promissores para liga de bronze TM 23, validando o seu emprego em sistemas de alta rotação. Palavras-chave: Mancais; Análise Estrutural; Elementos Finitos; Materiais. 6317

INTRODUÇÃO Mancal é um dispositivo fixo fechado, sobre o qual é apoiado um eixo (1), tendo por função suportar cargas e dar apoio aos componentes gerais de uma transmissão, guiando ou restringindo os graus de liberdade durante a movimentação do eixo (1-3). São responsáveis pela ligação entre a parte móvel e a estrutura fixa de uma máquina rotativa e de grande relevância para o perfeito funcionamento dos conjuntos mecânicos (4). Podem ser classificados, quanto ao tipo de carga que suportam, em: Radiais: suportam esforços radiais, impedindo o deslocamento no sentido transversal do eixo; Axiais: podem ser submetidos apenas a esforços axiais, impedindo o deslocamento no sentido longitudinal do eixo; Mistos: suportam tanto cargas axiais quanto radiais, impedindo o deslocamento do eixo em ambos os sentidos. Há duas formas principais de classificação quanto a sua construção: o mancal de deslizamento, que possui uma bucha (geralmente de ferro fundido ou de aço) separando a base do mancal e o eixo; e o mancal de rolamento. Segundo Melconian (5), os mancais deslizantes, quando comparados com os rolamentos, apresentam as seguintes vantagens e desvantagens: Tabela 1 Comparação entre mancais de deslizamento e rolamentos Vantagens Desvantagens Mancais de deslizamento Amortece os choques, vibrações e ruídos Construção simples Suportam altas pressões Atrito maior de partida Alto consumo e manutenção de lubrificação Rolamentos Maior sensibilidade ao choque Alto custo de fabricação, ocupando maior espaço radial Não suportam cargas tão elevadas Pouca variação do coeficiente de atrito Baixa exigência de lubrificação 6318

Dentre os diversos modelos de mancais deslizantes, os mancais hidrodinâmicos são largamente utilizados em turbomáquinas por suportarem situações de altas cargas, altas rotações e boas precisões (6). Podem ser definidos, de maneira simplificada, como um conjunto mecânico formado por um eixo e uma bucha, no qual o diâmetro do eixo é muito próximo ao diâmetro interno da bucha de tal modo que a folga entre eles seja muito pequena (1,4), onde essa lubrificação passiva é gerada a partir da rotação do mancal, atingindo o regime de lubrificação hidrodinâmica. O termo hidrodinâmico, segundo Da Silva (4), refere-se a fina camada de fluído responsável por suportar os carregamentos do mancal, fenômeno possível devido à geração de um campo de pressão no óleo, resultante do movimento do rotor e das características geométricas de sua construção. A Fig. 1 esquematiza o princípio de funcionamento do mancal hidrodinâmico, onde ho representa a espessura mínima do óleo. Devido a presença do óleo e por efeito de cunha dos fluídos, o eixo árvore se posiciona no espaço e, devido à pressão hidrodinâmica, estabiliza-se sem contato com a bucha (1,2,4). Figura 1 Transição do Regime de Lubrificação do Mancal Hidrodinâmico. Fonte: Do próprio autor (2018). A pressão hidrodinâmica depende de vários fatores, tais como rotação do sistema, folga do mancal, diâmetro, comprimento da bucha e carga aplicada (1,5). Conhecer as condições do sistema em operação e os esforções exigidos em seu funcionamento são importantes parâmetros para se definir o dimensionamento dos componentes e os materiais a serem aplicados em estudo. 6319

A análise do comportamento, estático e dinâmico, do conjunto mecânico requer uma interação entre a prática e a teoria por meio do emprego de ferramentas computacionais matemáticas. Nesse sentido, uma série de pesquisas vêm sendo desenvolvidas em torno do desempenho de mancais quando trabalham em altas rotações (7-9). O presente trabalho visa dar continuidade aos estudos já desenvolvidos pelo grupo de pesquisa referentes a máquinas de alta rotação (10). Foi realizada a análise estrutural estática pelo Método de Elementos Finitos (MEF) da bucha do mancal hidrodinâmico, avaliando o seu comportamento sob as condições desejadas. MATERIAIS E MÉTODOS Adotando os valores da Tab. 2, para o dimensionamento da bucha do mancal é necessário ter o conhecimento de parâmetros como: força centrífuga, carga radial e torque, além das relações dimensionais do mancal. Esses parâmetros são fundamentais para o estudo dos movimentos de componentes rotativos, verificando se o mesmo suporta as solicitações a quais será exigido (10). Tabela 2 Parâmetros Gerais do Mancal Hidrodinâmico Dados do Mancal Valor Unidade Diâmetro do eixo 30 mm Rotação do sistema 30.000 rpm 500 rps Carga radial 93 N Torque 15,915 Nm Força centrífuga média 23,8 kn Para a confecção da bucha deslizante foi adotada uma rotação inicial de 30.000 rpm. A folga ho entre o mancal e o eixo é definida através da Tab. 3 (11). Tabela 3 Cálculo da folga entre o mancal e o eixo Para diâmetro do eixo em torno de: Folga (ho) 25 a 50 mm D/1000 50 a 100 mm D/1500 100 a 200 mm D/2000 6320

30 mm: Sabendo-se que o diâmetro do eixo D onde serão alocados os mancais é de (A) Como o amortecimento e a rigidez de um mancal são altamente sensíveis à folga, este parâmetro é de suma importância para o controle de dinâmica do conjunto. Diversos materiais são comumente utilizados na fabricação da bucha (5), dentre os quais destacam-se as ligas de bronze, o tambaque (bronze vermelho), ligas de alumínio, metal patente, metais sinterizados, Nylon e Teflon. Melconian (5) sugere que, para se definir o material de construção da bucha, é importante levar em consideração o coeficiente de dilatação linear dos materiais φ, recomendando-se em 10-3. Metal branco: 0,5 φ 1,0; Bronze de chumbo: 1,0 φ 1,5; Liga de Alumínio: 2,0 φ 3,0; Ferro sinterizado: 1,0 φ 2,0; Material Plástico: 3,0 φ 4,0. Aplicando-se a Equação B, onde D é o diâmetro do mancal (em mm); e d é o diâmetro do eixo (em mm), tem-se: (B) Com o resultado, optou-se pelo emprego de uma bucha de Bronze, pois é o material com as características mais próximas do metal patente e a ação do chumbo (Pb) entre o eixo e o mancal é a de se interpor entre o eixo e o metal que o suporta, impedindo ou retardando o engripamento e prolongando a vida útil do mancal (11). Especificamente, recomendamos a utilização das ligas de bronze TM23 e TM620 por suas características químicas e propriedades mecânicas (Tab. 4). 6321

Tabela 4 Comparação das propriedades mecânicas do Bronze TM23 e do Bronze TM620 (11) Para efeito de comparação, duas ligas de alumínio foram selecionadas para a realização do estudo (Tab. 5), em virtude de sua baixa densidade e por apresentar baixo custo de produção (10). Tabela 5 Propriedades dos materiais em estudo Propriedade Alumínio 6061 Alumínio 8090 Densidade 2710 kg/m 3 2538 kg/m 3 Módulo de Elasticidade 68 GPa 80 GPa Coeficiente de Poisson 0,33 0,34 Limite de Escoamento 275 MPa 450 MPa Tensão de Ruptura 310 MPa 500 MPa Fonte: adaptado da biblioteca do software Inventor Autodesk 2015. As demais medidas construtivas da bucha foram obtidas conforme Norma DIN 1850-5 (12). Considerando que o diâmetro interno foi definido em 30,03mm, então: - d2 = 38 mm (diâmetro externo da bucha); - d3 = 44 mm (diâmetro da borda de apoio); - b1 = 30 mm (comprimento da bucha); - b2 = 4 mm (largura da borda de apoio). 6322

Com os dados dimensionais disponíveis, iniciamos o modelamento do componente. Para o seu desenvolvimento foi utilizado o software de modelamento Autodesk Inventor 3D CAD (Computer Aided Design). Toda a etapa de modelamento da bucha foi seguida de acordo com a metodologia apresentada, utilizando como referência de construção os valores dimensionados. A Fig.2 apresenta o projeto final da bucha do mancal hidrodinâmico. Figura 2 Bucha do Mancal Hidrodinâmico. Fonte: Do próprio autor (2018). Tela captada do software Autodesk Inventor 3D. RESULTADOS E DISCUSSÕES Inicialmente, definem-se as restrições de apoio simulando a carcaça do mancal e aplicando-se as condições do sistema, bem como a malha sólida a fim de fornecer as subdivisões nodais, denominados nós, no qual será regido o comportamento físico do componente. Foi empregado nas análises de tensão e deformação das estruturas o Método de Von Misés, critério que apresenta resultados mais confiáveis visto que considera como referência a tensão intermediária (10), trabalhando-se na região de deformação elástica dos materiais. Os resultados apresentados na Fig. 3 sugerem que a liga de bronze TM 23 não sofrerá deformação nas condições solicitadas. O valor de tensão máxima obtida foi de 125 MPa, 20,4% menor que seu limite de escoamento (157 MPa). Além disso, o deslocamento sofrido pela bucha durante a simulação foi de apenas 7,9 µm, relativamente baixo em relação à precisão de movimento do corpo e aos esforços exigidos pelo sistema. Desta forma, constata-se que a liga de bronze TM 23 pode ser empregada para a construção da bucha do mancal nessas condições. 6323

Figura 3 (a) Máxima tensão equivalente e (b) deslocamento máximo exercido sobre a bucha de bronze TM 23. Fonte: Do próprio autor (2018). Tela captada do software Autodesk Inventor 3D. A Fig. 4 apresenta o resultado da análise estática para a liga de bronze TM 620 cujo limite de escoamento é de 167 MPa É possível notar que o respectivo material não suportou os esforços exigidos, uma vez que a tensão máxima encontrada foi de, aproximadamente, 233 MPa cerca de 39% superior ao seu escoamento. Figura 4 (a) Máxima tensão equivalente e (b) deslocamento máximo exercido sobre a bucha de bronze TM 620. Fonte: Do próprio autor (2018). Tela captada do software Autodesk Inventor 3D. Embora o bronze TM 23 possua uma resistência mecânica menor que a do bronze TM 620, o mesmo apresenta em sua composição em torno de 15% a mais de chumbo, elemento que otimiza suas propriedades autolubrificantes, reduzindo o seu coeficiente de atrito e facilitando os movimentos de rotação da bucha. Desta maneira, o bronze TM 620 é indicado para aplicações de sistemas com trabalho a baixas rotações. 6324

A fim de se reduzir a massa da bucha do mancal hidrodinâmico e, consequentemente, os esforços provocados pela resultante centrífuga, foi realizada uma análise empregando-se a liga de alumínio 6061 (Fig. 5) e a liga de alumínio-lítio 8090 (Fig. 6). Figura 5 (a) Máxima tensão equivalente e (b) deslocamento máximo exercido sobre a bucha de alumínio 6061. Fonte: Do próprio autor (2018). Tela captada do software Autodesk Inventor 3D. Figura 6 (a) Máxima tensão equivalente e (b) deslocamento máximo exercido sobre a bucha de alumínio-lítio 8090. Fonte: Do próprio autor (2018). Tela captada do software Autodesk Inventor 3D. É possível notar que a liga de alumínio 6061 não suportou os esforços exigidos, pois a tensão máxima obtida na simulação foi de 721 Mpa, extremamente superior ao seu limite de escoamento (275 MPa). A liga de alumínio-lítio 8090, ainda que tenha apresentado valores de tensão máxima abaixo da tensão de escoamento do material (450 MPa), exibiu um comportamento de deformação semelhante ao 6325

alumínio 6061, levando à sugestão que o seu emprego nas presentes condições do projeto não é indicado. Os valores de tensão máxima obtidos ao longo das simulações por Elementos Finitos estão ligados à resultante centrífuga gerada pelo movimento rotacional do sistema (10). Sendo assim, tendo em vista que tal ação é diretamente proporcional ao comprimento do raio e ao módulo da velocidade angular, nota-se que a variação nos resultados foi dada principalmente pelas propriedades e composição química dos materiais propostos em estudo. CONCLUSÃO Considerando as pressões, forças e restrições aplicadas na bucha do mancal hidrodinâmico, após as análises estruturais realizadas através do Método de Elementos Finitos, foi possível concluir que a liga de bronze TM 23 apresentou excelentes resultados, o que torna evidente o seu emprego para a construção do respectivo componente. O TM 23 suportou os esforços a que foi exigido durante a simulação, sem sofrer ruptura, e apresentando baixa deformação mecânica. Os demais materiais bronze TM 620, alumínio 6061, alumínio 8090 obtiveram valores de tensão e deformação insatisfatórios, levando à conclusão o seu uso, nas condições apresentadas, levará o componente à ruptura. 6326

REFERÊNCIAS 1. ANDRADE JÚNIOR, I. G. Tecnologia de rolamento. São Paulo: Associação Brasileira Técnica de Celulose e Papel, 1994, 32p. 2. WASILCZUK, M. et al. Large hydrodynamic thrust bearings and their application in hydrogenerators. Encyclopedia of Tribology, v. 135, 2013, p. 1912-1926. 3. ZHAI, L. et al. Numerical simulations for the fluid-thermal-structural interaction lubrication in a tilting pad thrust bearing. Engineering Computations, v. 34, n. 4, 2017, p.1149-1165. 4. DA SILVA, Edson Luiz. Dinâmica de rotores: modelo matemático de mancais hidrodinâmicos. 2004. 110 f. Dissertação (Mestrado) - Curso de Pós-graduação em Engenharia Mecânica, Setor de Tecnologia, Universidade Federal do Paraná, Curitiba, 2004. 5. MELCONIAN, S. Elementos de máquinas. 9. ed. São Paulo: Érica Ltda, 2011. 363p. 6. MACHADO, T. H.; CAVALCA, K. L. Modeling of hydrodynamic bearing wear in rotor-bearing systems. Mechanics Research Communications, v. 69, 2015, p. 15-23. 7. ZHAI, L. M. et al. 3D two-way coupled TEHD analysis on the lubricating characteristics of thrust bearings in pump-turbines by combining CFD and FEA. Chinese Journal of Mechanical Engineering, v. 29 n. 1, 2016, p. 112-123. 8. WODTKE, M. et al. Large hydrodynamic thrus bearing: comparison of the calculations and measurements. Proceedings do Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, v. 228 n. 9, 2014, p. 1-10. 9. CHASALEVRIS, A. C.; NIKOLAKOPOULOS, P. G.; PAPADOPOULOS, C. A. Dynamic effect of bearing wear on rotor-bearing system response. ASME J. Vib. Acoust., v. 135, n. 1, 2013, p. 1-12. 10. FERRUS FILHO, A.; BENTO, R. T. Análise estrutural do rotor de um turbogerador de alta rotação. FTT Journal of Engineering and Business, v. 1, n. 1, p. 91-106, 2016. 11. TERMOMECANICA São Paulo S. A. Catálogo do bronze. São Bernardo do Campo. 2007. 23 p. Disponível em: <http://www.termomecanica.com.br/website/files/materiais-tecnicos/catálogo do Bronze.pdf>. Acesso em: 15 jan. 2018. 12. RK. Buchas autolubrificantes compostos D-Glide. São Paulo. 2008. 5 p. Disponível em: <http://pregaoeletronico.cesp.com.br/licita\dv_int.nsf/4.2.v/465af0e515f4b773832 579B200477493/$File/D-Glide_NET.pdf>. Acesso em: 15 jan. 2018. 6327

STATIC BEHAVIOR ANALYSIS OF HYDRODYNAMIC BEARINGS BY FINITE ELEMENT METHOD ABSTRACT Bearings are devices used in mechanical assemblies in order to support loads and the general components of a system, guiding or restricting the degrees of freedom during its movement. Among the most commonly used bearings models, hydrodynamic bearings are widely used because they support situations where there is a need for high loads, high rotations and good precision. In this way, the present study aims at the modeling of the bushing a hydrodynamic bearing and its static structural analysis, using the Finite Element Method. To validate the geometric profile of the bushing, a study of materials TM 23 and TM 620 bronze alloys; 6061 aluminum alloy and 8090 aluminum-lithium alloy evaluating the performance under the requested efforts in accordance with the project conditions. The results indicated promising values for TM 23 bronze alloy, validating its use in high rotation systems. Key words: Bearings; Structural analysis; Finite Element; Materials. 6328