DATA MINING & MACHINE LEARNING (I) Thiago Marzagão
|
|
|
- Ana Carolina Campos Schmidt
- 7 Há anos
- Visualizações:
Transcrição
1 DATA MINING & MACHINE LEARNING (I) Thiago Marzagão
2 Média xi N É influenciada por valores extremos.
3 Moda É valor mais freqüente. Não é muito informativa quando a distribuição é multimodal.
4 Mediana É valor que divide a distribuição em duas metades. Não é muito informativa quando a distribuição é bimodal.
5 Variância (amostral) s 2 = (xi x) 2 n 1
6 Desvio-padrão (amostral) (xi x) 2 s = n 1 Vantagem: está na mesma unidade da variável.
7 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas?
8 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos:
9 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário.
10 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário. Horas de estudo por semana X nota na disciplina.
11 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário. Horas de estudo por semana X nota na disciplina. Emissões de CO2 X temperatura.
12 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário. Horas de estudo por semana X nota na disciplina. Emissões de CO2 X temperatura. Idade X acidentes de carro.
13 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário. Horas de estudo por semana X nota na disciplina. Emissões de CO2 X temperatura. Idade X acidentes de carro. Consumo de carne vermelha X longevidade.
14 como medir a associação entre duas variáveis? Como medir o quanto duas variáveis andam juntas? Exemplos: Anos de estudo X salário. Horas de estudo por semana X nota na disciplina. Emissões de CO2 X temperatura. Idade X acidentes de carro. Consumo de carne vermelha X longevidade. Horas de academia por semana X peso.
15 Solução #1: gráfico de dispersão. velocidade vs parada parada velocidade
16 Solução #1: gráfico de dispersão. altura vs peso peso altura
17 Solução #2: covariância. Breve revisão: variância (amostral). s 2 (yi ȳ) 2 = n 1
18 Solução #2: covariância. Covariância (amostral): (xi x)(y i ȳ) s xy = n 1 s xy nos diz o quanto as variáveis x e y andam juntas... ou seja, o quanto x e y co-variam
19 Solução #2: covariância. altura:
20 Solução #2: covariância. altura: , , , , , , , , , , , , , ,
21 Solução #2: covariância. altura: , , , , , , , , , , , , , , altura média: x = 165.1
22 Solução #2: covariância. altura: , , , , , , , , , , , , , , altura média: x = peso:
23 Solução #2: covariância. altura: , , , , , , , , , , , , , , altura média: x = peso: , , , , , , , , , , , , , ,
24 Solução #2: covariância. altura: , , , , , , , , , , , , , , altura média: x = peso: , , , , , , , , , , , , , , peso médio: ȳ = 61.94
25 Solução #2: covariância. altura: , , , , , , , , , , , , , , altura média: x = peso: , , , , , , , , , , , , , , peso médio: ȳ = (fazer tabela no quadro: x i, y i, (x i x), (y i ȳ), (x i x)(y i ȳ))
26 Solução #2: covariância. Problema: como saber se uma dada covariância é grande ou pequena? Covariância depende da escala das duas variáveis. Como comparar duas covariâncias quando as escalas são diferentes?
27 Solução #3: correlação. r xy = s xy s x s y r xy = coeficiente de correlação amostral s xy = covariância (amostral) s x = desvio-padrão amostral de x s y = desvio-padrão amostral de y r xy varia sempre entre -1 e 1, não importa a escala das duas variáveis r xy = 1: correlação negativa perfeita r xy = +1: correlação positiva perfeita
28 Solução #3: correlação. Voltando ao exemplo do peso X altura:
29 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , ,
30 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , ,
31 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , , Já calculamos a covariância: 79.39
32 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , , Já calculamos a covariância: Falta calcular s x e s y
33 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , , Já calculamos a covariância: Falta calcular s x e s y (xi x) 2 s x = n 1
34 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , , Já calculamos a covariância: Falta calcular s x e s y (xi x) 2 s x = n 1 (yi ȳ) 2 s y = n 1
35 Solução #3: correlação. Voltando ao exemplo do peso X altura: x: , , , , , , , , , , , , , , y: , , , , , , , , , , , , , , Já calculamos a covariância: Falta calcular s x e s y (xi x) 2 s x = n 1 (yi ȳ) 2 s y = n 1 r xy = s xy s x s y = (11.35)(7.02) = 0.99
36 Como assim amostral? Se os dados são da população e não de uma amostra, é só substituir n 1 por N nas fórmulas da covariância e do desvio-padrão. (xi x)(y i ȳ) σ xy = N (xi x) 2 σ x = N (yi ȳ) 2 σ y = N
37 Cuidado! Correlação!= causação. Correlação pode não ser linear.
Física Geral - Laboratório (2013/1) Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório (2013/1) Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Lembrando: Bibliografia Estimativas e Erros em Experimentos de Física (EdUERJ) 2 Resumo:
Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais
Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais
Laboratório Física Geral
Laboratório Física Geral 1 Lab Física Geral Professora Helena Malbouisson Sala 3018A. email da turma: [email protected] 2 Objetivos do curso Organizar e descrever conjuntos de dados (histogramas);
MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões
MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm
Para caracterizar um conjunto de dados é importante não só a média, mas também a dispersão dos valores em torno da média
1 É muito diferente ter uma situação em que o salário médio mensal é R$600 e todos ganham R$600, ou ter o mesmo salário médio mas em que metade das pessoas ganha R$300 e a outra metade ganha R$900. Para
Física Geral - Laboratório. Aula 3: Estimativas e erros em medidas diretas (I)
Física Geral - Laboratório Aula 3: Estimativas e erros em medidas diretas (I) 1 Experimentos: medidas diretas Experimento de medidas diretas de uma grandeza: Aquisição de um conjunto de dados através de
Unidade III Medidas Descritivas
Unidade III Medidas Descritivas Autor: Anderson Garcia Silveira Anderson Garcia Silveira Na aula anterior... Medidas de Tendência Central 2 Na aula anterior... Medidas de Tendência Central Moda Mediana
Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas
Medidas Estatísticas NILO FERNANDES VARELA
Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar
Estatística Descritiva
C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística
MAIS SOBRE MEDIDAS RESUMO. * é muito influenciada por valor atípico
MAIS SOBRE MEDIDAS RESUMO Medidas de Tendência Central (1) média (aritmética) * só para variáveis quantitativas exceção: variável qualitativa nominal dicotômica, com categorias codificadas em 0 e 1; neste
MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha Universidade Estadual de Londrina. 26 de abril de 2017
MEDIDAS DE POSIÇÃO Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de abril de 2017 Introdução Medidas de posição São utilizadas para sintetizar,
Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais
Medidas de Centralidade
Medidas de Centralidade Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 28 de março de 2018 Londrina 1 / 26 Medidas de centralidade São utilizadas para sintetizar,
Aula 02 mtm B MATEMÁTICA BÁSICA
Aula 0 mtm B MATEMÁTICA BÁSICA Estatística Medidas de Tendência Central Para melhor caracterizar um conjunto de números de uma amostra, é preciso escolher um valor único que represente todos os outros
MEDIDAS DE DISPERSÃO
MEDIDAS DE DISPERSÃO Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 10 de maio de 2017 relativo (DPR) São medidas que visam fornecer o grau de
Exemplo 1. Conjunto de dados de uma amostra de 12 meninas da escola: y i x i
Exemplo 1 Y : peso (kg) de meninas de 7 a 11 anos de uma certa escola de dança X : altura (m) das meninas A partir de 3 valores prefixados de X, foram obtidas, para cada valor de X, 4 observações independentes
Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017
Bioestatística Medidas de tendência central, posição e dispersão PARTE II Roberta de Vargas Zanini 11/05/2017 10/03/2016 As medidas de tendência central são uma boa forma para descrever resumidamente
Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina
Medidas de Dispersão Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 11 de abril de 2018 Londrina 1 / 18 São medidas que visam fornecer o grau de variabilidade
Medidas de Dispersão. Prof.: Joni Fusinato
Medidas de Dispersão Prof.: Joni Fusinato [email protected] [email protected] 1 Dispersão Estatística As medidas de posição (média, mediana, moda) descrevem características dos valores numéricos
2) Dados os valores a seguir, , determinar a moda dos mesmos.
1) O gráfico abaixo, apresenta dados referentes a faltas por dia em uma classe, durante um certo período de tempo. 1 De acordo com o gráfico, no período observado, ocorreram: (A) 15 faltas em 8 dias. (B)
Aula 2 Regressão e Correlação Linear
1 ESTATÍSTICA E PROBABILIDADE Aula Regressão e Correlação Linear Professor Luciano Nóbrega Regressão e Correlação Quando consideramos a observação de duas ou mais variáveis, surge um novo problema: -as
Métodos Quantitativos II
Métodos Quantitativos II MEDIDAS DE VARIABILIDADE O que significa Variabilidade? As medidas de tendência central nos dão uma ideia da concentração dos dados em torno de um valor. Entretanto, é preciso
Física Geral - Laboratório. Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções
Física Geral - Laboratório Aula 8: Estimativas e erros em medidas indiretas: Ajuste de funções 1 Medidas indiretas: Ajuste de funções Ajuste de funções y = f (x; a 1,a 2,...,a p ) Medidas de duas grandezas
Preparatório CEA. Módulo 6 Fundamentos de Estatística
Preparatório CEA Módulo 6 Fundamentos de Estatística Medidas de posição central Média As medidas de posição central buscam representar uma série de dados. Por exemplo: em média na Suiça cada pessoa come
Modelos de Regressão Linear Simples parte I
Modelos de Regressão Linear Simples parte I Erica Castilho Rodrigues 27 de Setembro de 2017 1 2 Objetivos Ao final deste capítulo você deve ser capaz de: Usar modelos de regressão para construir modelos
DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO
PLANO DE AULA DISCIPLINA: ESTATÍSTICA I (CÓD. ENEC60015) PERÍODO: 3º PERÍODO TOTAL DE SEMANAS: 20 SEMANAS TOTAL DE ENCONTROS: 40 AULAS Aulas Conteúdos/ Matéria Tipo de aula Textos, filmes e outros materiais
Estatística Descritiva
Estatística Descritiva Cristian Villegas [email protected] Departamento Ciências Exatas, ESALQ (USP) Agosto de 2012 Cristian Villegas. Departamento Ciências Exatas, ESALQ-USP 1 1 Medidas de tendência central
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação LEG/DEST/UFPR 1 / 48 Sumário 1 Distribuições conjuntas
Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos
-PPGEAB Dados que podem ser necessários na resolução de algumas questões: I. Dados da Tabela t de Student com ν graus de liberdade. P (t > t α ) = α ν 0,05 0,025 4 2,132 2,776 5 2,015 2,571 6 1,943 2,447
Estatísticas Descritivas. Estatística
Estatística Estatísticas descritivas: usadas para mostrar/descrever algumas informações da amostra, ou seja, servem para fazer um resumo ou descrição dos dados. Não consideram a origem dos dados. Exemplos:
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS
ANÁLISE ESTATÍSTICA DA RELAÇÃO ENTRE A ATITUDE E O DESEMPENHO DOS ALUNOS Nível de significância No processo de tomada de decisão sobre uma das hipóteses levantadas num estudo, deve-se antes de tudo definir
Análise de regressão linear simples. Diagrama de dispersão
Introdução Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente
Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável
Correlação Definição Há correlação entre duas variáveis quando os valores de uma variável estão relacionados, de alguma maneira, com os valores da outra variável Exemplos Perímetro de um quadrado e o tamanho
Estatística. Correlação e Regressão
Estatística Correlação e Regressão Noções sobre correlação Existem relações entre variáveis. Responder às questões: Existe relação entre as variáveis X e Y? Que tipo de relação existe entre elas? Qual
P x. 2 i = P y. 2 i = Analise os dados e comente a possibilidade de existir uma relação linear entreasvariáveisemestudo.
8 Regressão Linear Exercício 8.1 Indique, justificando, qual dos valores abaixo indicados se aproxima mais do coeficiente de correlação dos dados descritos nas seguintes nuvens de pontos, X X X 1. r xy
ESTATÍSTICA. Estatística é o conjunto de métodos para a obtenção, organização, resumo, análise e interpretação dos dados.
ESTATÍSTICA Termo vem de status Aspectos de um país (tamanho da população, taxas de mortalidade, taxas de desemprego, renda per capita). Estatística é o conjunto de métodos para a obtenção, organização,
Análise Descritiva de Dados
Análise Descritiva de Dados Resumindo os dados de variáveis quantitativas Síntese Numérica Descrição e Apresentação de Dados Dados 37 39 34 34 30 35 38 32 32 30 46 36 40 31 39 33 33 35 29 27 39 Ferramentas
Revisões de Matemática e Estatística
Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................
Medidas de dispersão. 23 de agosto de 2018
23 de agosto de 2018 Dispersão de dados A representação feita pelas medidas centrais, ao mesmo tempo que permite uma visualização rápida das informações acaba levando ao embaralhamento do conjunto. A média
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Análise Exploratória e Estimação PARA COMPUTAÇÃO
Análise Exploratória e Estimação MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Médias Média Aritmética (valor médio de uma distribuição) n x = 1 n i=1 x i = 1 n x 1 + + x n Média Aritmética
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal MEDIDAS DE DISPERSÃO As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual,
Estatística Aplicada
Estatística Aplicada Medidas Descritivas Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada ESTATÍSTICA DESCRITIVA Classificação de variáveis QuaLitativas (categóricas) Descrevem
VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS. Capítulo 1 VARIÁVEIS E AMOSTRAS 1
PREFÁCIO VERIFICAÇÃO DOS RECURSOS NECESSÁRIOS xiii DO EXCEL... xv Capítulo 1 VARIÁVEIS E AMOSTRAS 1 VARIÁ VEIS 4 NÚMERO DE VARIÁVEIS 5 CLASSIFICAÇÃO DAS VARIÁVEIS 6 ESCALA DE MEDIÇÃO DAS VARIÁVEIS 7 POPULAÇÃO
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível
Regressão. PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei
Regressão PRE-01 Probabilidade e Estatística Prof. Marcelo P. Corrêa IRN/Unifei Regressão Introdução Analisar a relação entre duas variáveis (x,y) através da equação (equação de regressão) e do gráfico
Estatística para Cursos de Engenharia e Informática
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 3 Análise exploratória de dados APOIO: Fundação de Apoio
Aula 03 Estatística, Correlação e Regressão
BIS0005-15 Bases Computacionais da Ciência Aula 03 Estatística, Correlação e Regressão http://bcc.compscinet.org Prof. Rodrigo de Alencar Hausen [email protected] 1 Medidas de tendência central: Média,
Estatística Aplicada a Negócios
Prof. Dr. Gilberto de Andrade Martins aula 02 1 Estatística Descritiva Aula 2 Ao final desta aula você : - Conhecerá a Estatística Descritiva. - Saberá quais são as principais medidas de dispersão. 2 Medidas
Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.
Estatística Aplicada II. } Correlação e Regressão
Estatística Aplicada II } Correlação e Regressão 1 Aula de hoje } Tópicos } Correlação e Regressão } Referência } Barrow, M. Estatística para economia, contabilidade e administração. São Paulo: Ática,
Medidas de dispersão. Dr. Nielsen Castelo Damasceno Dantas. Slide 8
Medidas de dispersão Dr. Nielsen Castelo Damasceno Dantas Slide 8 Introdução Medida de variabilidade. Medir o grau de variabilidade dos valores observados. Empregado A: 70, 71, 69, 70, 70 = 70 Empregado
Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO
Medidas de Dispersão para uma Amostra Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Para entender o que é dispersão, imagine que quatro alunos
Probabilidade e Estatística
Probabilidade e Estatística Aula 3 Medidas Numéricas Descritivas Leitura: Levine et al. Capítulo 3 Cap 3-1 Objetivos Nesta parte, aprenderemos: a descrever as propriedades de tendência central, variação
3 3. Variáveis Aleatórias
ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50
EXAME DE ESTATÍSTICA / ESTATÍSTICA I
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de
- 1 - EDITAL ANTERIOR PRF 2013 Matemática Noções de estatística. MÉDIA ARITMÉTICA (x )
EDITAL ANTERIOR PRF 013 Matemática Noções de estatística. MÉDIA ARITMÉTICA (x ) Sejam x1, x,..., xn, portanto n valores da variável X. A média aritmética simples, ou simplesmente média de X, representada
Estatística
Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha 10 de maio de Universidade Estadual de Londrina
MEDIDAS DE POSIÇÃO [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 10 de maio de 2017 Introdução Medidas de posição São utilizadas para sintetizar, em um único número,
Métodos Quantitativos II
Métodos Quantitativos II MEDIDAS DE TENDÊNCIA CENTRAL O que você deve aprender? o Como encontrar a média, a mediana e a moda de uma população ou de uma amostra; o Como encontrar a média ponderada de um
Unidade I ESTATÍSTICA DESCRITIVA. Profa. Isabel Espinosa
Unidade I ESTATÍSTICA DESCRITIVA Profa. Isabel Espinosa Estatística Veremos nesta unidade: Variáveis Tabela de frequência Gráficos Medidas de tendência central - media,mediana e moda Medidas de dispersão
Medidas de Tendência Central
ESTATÍSTICA DESCRITIVA Medidas de Tendência Central 3 MEDIDAS DE TENDÊNCIA CENTRAL 3.1 Média Aritmética Uma das mais importantes medidas estatísticas utilizadas é a média. Ela é, por exemplo, utilizada
Amostragem Aleatória e Descrição de Dados - parte I
Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:
Variáveis bidimensionais
Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis
Medidas de Centralidade
Medidas de Centralidade Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 11 de abril de 2018 Londrina 1 / 26 São utilizadas para sintetizar, em um único número,
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano [email protected] Aula 4 09/2014 Estatística Descritiva Medidas de Variação Probabilidade e Estatística 3/42 Medidas de Variação Vamos
Correlação e Regressão
Correlação e Regressão Exemplos: Correlação linear Estudar a relação entre duas variáveis quantitativas Ou seja, a força da relação entre elas, ou grau de associação linear. Idade e altura das crianças
EXAME DE ESTATÍSTICA / ESTATÍSTICA I
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de
n = 25) e o elemento (pois = 19) e terá o valor 8. Verifique que antes e depois do 19 o elemento, teremos 18 elementos.
V) Mediana: A Mediana de um conjunto de números, ordenados crescente ou decrescentemente em ordem de grandeza (isto é, em um rol), será o elemento que ocupe a posição central da distribuição de freqüência
Medidas de Posição. Tendência Central. É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média. mediana.
Tendência Central É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média mediana moda Análise exploratória de dados Histograma Simétrico Uniforme Média = Mediana Assimétrico
Estatística CORRELAÇÃO E REGRESSÃO LINEAR. Prof. Walter Sousa
Estatística CORRELAÇÃO E REGRESSÃO LINEAR Prof. Walter Sousa CORRELAÇÃO LINEAR A CORRELAÇÃO mede a força, a intensidade ou grau de relacionamento entre duas ou mais variáveis. Exemplo: Os dados a seguir
BIOESTATÍSTICA. Unidade III - Medidas de Tendência Central e de Dispersão
BIOESTATÍSTICA Unidade III - Medidas de Tendência Central e de Dispersão 0 INTRODUÇÃO Vamos abordar um assunto importante no que diz respeito a transmissão das informações relativas à amostra ou população
Estatística. O que é Estatística? Estatística pode ser: Estatística Descritiva. Ivonete Melo de Carvalho. Conteúdo
Estatística Estatística Descritiva Ivonete Melo de Carvalho Conteúdo Definições; Tabelas e Gráficos; Medidas de tendência central; Medidas de dispersão. Objetivos Diferenciar população e amostra. Elaborar
Medidas Descritivas de Posição, Tendência Central e Variabilidade
Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 27 de Março de 2017 Material de Apoio e-mail: [email protected] Sumário 1 Introdução
Estatística. 1 Medidas de Tendência Central 2 Medidas de Posição 3 Medidas de Dispersão. Renata Souza
Estatística 1 Medidas de Tendência Central 2 Medidas de Posição 3 Medidas de Dispersão Renata Souza Medidas Depois que você conheceu os conceitos de coleta de dados, variação, causas comuns e causas especiais,
MEDIDAS DE DISPERSÃO
MEDIDAS DE DISPERSÃO [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 31 de maio de 2017 relativo (DPR) São medidas que visam fornecer o grau de variabilidade ou dispersão
