Métodos Quantitativos II
|
|
|
- Victoria Assunção
- 6 Há anos
- Visualizações:
Transcrição
1 Métodos Quantitativos II MEDIDAS DE TENDÊNCIA CENTRAL
2 O que você deve aprender? o Como encontrar a média, a mediana e a moda de uma população ou de uma amostra; o Como encontrar a média ponderada de um conjunto de dados e a média de uma distribuição de frequência o Como descrever a forma da distribuição simétrica, uniforme ou assimétrica e como comparar a média a mediana de cada um desses aspectos.
3 o As medidas de tendência central são utilizadas para caracterizar um conjunto de valores, representando-o adequadamente. o A denominação medida de tendência central se deve ao fato de que, por ser uma medida que caracteriza um conjunto, tenderá a estar no meio dos valores.
4 Conceito o Uma medida de tendência central é um valor que representa uma entrada típica ou central do conjunto de dados. o Média o Mediana o Moda
5 Média o É a soma das entradas de dados dividida pelo número de entradas. μ = N x x = n x Média Populacional Média Amostral
6 Exemplo 1 Os preços para uma amostra de voos de ida e volta partindo de fortaleza para São Paulo são listados a seguir. Qual é a média dos preços dos voos? x = = x = x n = , 9
7 Exemplo 2 o As notas dos alunos da disciplina de Métodos Quantitativos II estão apresentadas abaixo: 8,0 8,0 10,0 10,0 8,0 8,0 10,0 8,0 8,0 10,0 10,0 8,0 10,0 8,0 10,0 10,0 8,0 9,0 9,0 9,0 8,0 8,0 9,0 10,0 9,0 8,0 8,0 10,0 8,0 10,0 10,0 9,0 9,0 8,0 9,0 8,0 10,0 10,0 8,0 8,0 μ = x N = = 8, 9
8 Mediana o A mediana de um conjunto de dados é um valor que está no meio dos dados quando o conjunto de dados é ordenado. o A mediana mede o centro de um conjunto de dados ordenados dividindo-se em duas partes iguais. o Se o conjunto de dados tem um número ímpar de entradas, a mediana é a entrada de dados do meio. Se o conjunto de dados tem um número par de entradas, a mediana é a média das duas entradas do meio.
9 Exemplo 3 o Encontra e Mediana dos dados abaixo: o Como os dados já estão ordenados e o número de entradas é ímpar, a Mediana será o termo central: 427.
10 Exemplo Número entradas é par; Organizar os dados; Média aritmética dos dois números centrais. ( ) 2 = 45.
11 Moda o A moda de um conjunto é uma entrada do conjunto que ocorre com a maior frequência. Se nenhuma entrada é repetida, não há moda. Se há duas entradas de mesma frequência e chama-se bimodal A moda é o número 397.
12 Moda Cursos Frequência f Administração 430 Contabilidade 344 Turismo 289 Publicidade 371 Qual a classe modal?
13 Vantagens e Desvantagens o Embora a Média, Mediana e Moda descrevam, cada uma, determinada entrada típica de dados, há vantagens e desvantagens no uso de cada uma delas. o Valores Outlier o Entrada de dados que está muito afastada das outras entradas de dados.
14 Exemplo 5 Encontra a Média, a Mediana e a Moda da amostra das idades dos alunos da turma. Qual medida central melhor descreve uma entrada típica desse conjunto de dados? Há valores discrepantes? x = x n = , Mediana= = 21,5 A moda é igual a 20 anos.
15
16 Média Ponderada o É a média de um conjunto de dados cujas entradas têm pesos variados. o x = (x.w) w o Onde w é o peso de cada entrada.
17 Exemplo 6 o Você está frequentando uma aula na qual sua nota é determinada com base em 5 fontes: 50% média do exame, 15% do exame bimestral, 20% do exame final, 10% dos trabalhos em sala 5% das atividades em casa. o As notas foram, respectivamente: Qual a média ponderada das notas? Fonte Nota x Peso w xw Média do exame 86 0,5 43,00 Exame bimestral 96 0,15 14,40 Exame final 82 0,2 16,40 Trabalhos 98 0,1 9,80 Casa 100 0,05 5, ,6 x = x = 88,6 1 (x. w) w
18 Medidas de Tendência Central em Dados Agrupados o A média em uma distribuição de frequência para uma amostra é aproximada por: x = x. f n o Onde x é o ponto médio e f a frequência de uma classe; o E n é igual a f.
19 Exemplo 7 (Média) PM f (x.f) 12, ,0 24, ,0 36, ,5 48, ,0 60, ,5 72, ,0 84, , x = x. f f x = ,8
20 Exemplo 8 (Média) x f (x.f) x = x. f f x = ,24
21 Exemplo 8 (Média) (Média) o Calcular a média do conjunto de dados abaixo: Notas Nº de Alunos x = x. f f 1x2=2 3x3=9 4x6=24.. =296 x = x. f f = = 5,92
22 Exemplo 9 (Média) Nº de Acidentes Nº de Motoristas a) Qual a média de motoristas que já sofreram acidente? b) Qual a classe modal? c) O número de motoristas que não sofreram acidentes? d) O número de motoristas que sofreram pelo menos 4 acidentes? e) O número de motoristas que sofreram menos de 3 acidentes? f) A percentagem de motoristas que sofreram no máximo 2 acidentes?
23 Exemplo 10 (Mediana) Calcule a Mediana Se n for ímpar Nº de irmãos e/ ou irmãs fi Fac EMe = (n + 1) 2 = 32 2 = Se n for par EMe = n 2 Identificar a classe tal que Eme Fac Me = 3
24 Exemplo 11 (Mediana) Calcule a Mediana xi fi Fac EMe = n 2 = 4 Identificar a classe tal que Eme Fac Como EMe = Fac Então, Me = ( ) 2 = 15,5
25 Exemplo 12 (Mediana) Calcule a Mediana xi fi Fac EMe = n 2 = 5 Identificar a classe tal que Eme Fac Me = (16+16) 2 =16
26 Exemplo 13 (Mediana) o Estatura de 40 candidatos a cargos de garis da EMLURB Estatura (cm) fi Fac EMe = n 2 = 20 Identificar a classe tal que Eme Fac Me = li + Ak EMe Fac fme
27 Exemplo 13 (Mediana) o Estatura de 40 candidatos a cargos de garis da EMLURB Estatura (cm) fi Fac EMe = n 2 = 20 Me = li + h EMe Fac fme li = limite inferior da classe Med h= Largura de classe EMe = Elemento mediano Fac = Frequencia acumulada da classe anterior fme = frequencia absoluta da classe mediana
28 Exemplo 14 (Moda) Qual a moda? xi fi xi fi e 13, bimodal
29 Exemplo 15 (Moda) Salários (R$) fi Moda bruta Moda de King Moda de Czuber Mo = Mo = li + h Mo = Mo = li + h Mo = = 799,5 fpost fant + fpost = 790,9 fmáx fmín 2fmax (fant + fpost) (2x31) ( ) = 789,7
30 Passos para a escolha da melhor medida o Verifique se a distribuição é de variável qualitativa. Se sim, a melhor medida é a moda. o Se não for variável qualitativa, verifique se ela é de alta ou média dispersão. Se for de alta dispersão, a melhora medida será a mediana ou a moda. Se não for, isto é, de baixa de dispersão, a melhor medida será a média.
31 Formas de distribuição o Simétrica: quando a linha vertical pode ser desenhada ado meio do gráfico da distribuição e as metades resultantes são aproximadamente espelhadas.
32 Formas de distribuição o Uniforme (simétrica): quando todas as entradas, ou classes, na distribuição tem frequências iguais ou aproximadamente iguais.
33 Formas de distribuição o Assimétrica: quando a cauda do gráfico se alonga mais em um dos lados, podendo ser assimétrica à esquerda (negativamente assimétrica) se a cauda se estende à esquerda, e assimétrica à direita (positivamente assimétrica) se a cauda se estende à direita.
34 Formas de distribuição o Se a distribuição for simétrica e unimodal, a média, a mediana e a moda são iguais! o Se for assimétrica à esquerda, a média é menos que a mediana e a mediana é igualmente menor que a moda. o Se for assimétrica à direita, a média é maior que a mediana e igualmente maior que a moda. o A média sempre irá na direção em que a distribuição for assimétrica. Por exemplo, quando a distribuição é assimétrica a esquerda, a média está à esquerda da mediana.
Módulo III Medidas de Tendência Central ESTATÍSTICA
Módulo III Medidas de Tendência Central ESTATÍSTICA Objetivos do Módulo III Determinar a média, mediana e moda de uma população e de uma amostra Determinar a média ponderada de um conjunto de dados e a
Medidas de Centralidade
Medidas de Centralidade Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 28 de março de 2018 Londrina 1 / 26 Medidas de centralidade São utilizadas para sintetizar,
MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha Universidade Estadual de Londrina. 26 de abril de 2017
MEDIDAS DE POSIÇÃO Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de abril de 2017 Introdução Medidas de posição São utilizadas para sintetizar,
MEDIDAS DE POSIÇÃO. Lucas Santana da Cunha 10 de maio de Universidade Estadual de Londrina
MEDIDAS DE POSIÇÃO [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 10 de maio de 2017 Introdução Medidas de posição São utilizadas para sintetizar, em um único número,
25/08/2016. Estatística. Estatística. Medidas Estatísticas Medidas de Posição. Mariele Bernardes. Mariele Bernardes
s 12/08/2016 As medidas estatísticas resumem as informações obtidas dando uma visão global dos dados. s ou estimadores dados da amostra Parâmetros dados populacionais. de posição de dispersão de posição
Medidas de Centralidade
Medidas de Centralidade Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 11 de abril de 2018 Londrina 1 / 26 São utilizadas para sintetizar, em um único número,
Estatística e Probabilidade
Aula 3 Cap 02 Estatística Descritiva Nesta aula... estudaremos medidas de tendência central, medidas de variação e medidas de posição. Medidas de tendência central Uma medida de tendência central é um
Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Análise de Assimetria Separatrizes
Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Análise de Assimetria Separatrizes Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central
ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO
ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO 1 ESTATÍSTICA MEDIDAS DE TENDÊNCIA CENTRAL MEDIDAS DE DISPERSÃO 2 Estatística ELEMENTOS TÍPICOS DE UMA DISTRIBUIÇÃO:
Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas
ESTATÍSTICA Medidas de Síntese
2.3 - Medidas de Síntese Além das tabelas e gráficos um conjunto de dados referente a uma variável QUANTITATIVA pode ser resumido (apresentado) através de Medidas de Síntese, também chamadas de Medidas
Estatística Descritiva
Probabilidade e Estatística Prof. Dr.Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Estatística Descritiva Distribuição de frequência Para obter informações de interesse sobre a característica
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ MEDIDAS DESCRITIVAS Vimos que é possível sintetizar os dados sob a forma de distribuições
Estatística Descritiva. Prof. Paulo Cesar F. de Oliveira, BSc, PhD
Estatística Descritiva Prof. Paulo Cesar F. de Oliveira, BSc, PhD 1 Seção 2.3 Medidas de Tendência Central 2 Ø Medidas de Tendência Central Ø São valores de um conjunto de dados que representam uma entrada
Unidade II ESTATÍSTICA. Prof. Celso Guidugli
Unidade II ESTATÍSTICA Prof. Celso Guidugli Medidas ou parâmetros estatísticos Valores que permitem uma imagem sintetizada do comportamento de uma amostra. Dividem-se em dois grandes grupos: medidas de
Medidas de Tendência Central
Capítulo 3 Medidas de Tendência Central Desenvolvimento: 3.1 Introdução 3.2 Média Aritmética 3.3 Mediana 3.4 Moda 3.5 Média Geométrica 3.6 Média harmônica 3.7 Relação entre as médias 3.8 Separatrizes 3.1
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser
As outras medidas de posição são as separatrizes, que englobam: a própria mediana, os decis, os quartis e os percentis.
RESUMO Medidas de Posição são as estatísticas que representam uma série de dados orientando-nos quanto à posição da distribuição em relação ao eixo horizontal do gráfico da curva de frequência As medidas
Análise Descritiva de Dados
Análise Descritiva de Dados Resumindo os dados de variáveis quantitativas Síntese Numérica Descrição e Apresentação de Dados Dados 37 39 34 34 30 35 38 32 32 30 46 36 40 31 39 33 33 35 29 27 39 Ferramentas
CURSO DE SPSS AULA 2 MEDIDAS DESCRITIVAS. UFBA/FACED José Albertino Lordello Sheila Regina Pereira
CURSO DE SPSS AULA 2 MEDIDAS DESCRITIVAS UFBA/FACED José Albertino Lordello Sheila Regina Pereira MEDIDAS RESUMO Uma maneira conveniente de descrever um grupo como um todo é achar um número único que represente
ESTATÍSTICA. Estatística é o conjunto de métodos para a obtenção, organização, resumo, análise e interpretação dos dados.
ESTATÍSTICA Termo vem de status Aspectos de um país (tamanho da população, taxas de mortalidade, taxas de desemprego, renda per capita). Estatística é o conjunto de métodos para a obtenção, organização,
AULA 2 UNIDADE 1 DISTRIBUIÇÃO DE FREQUÊNCIAS 1.1 INTRODUÇÃO
AULA UNIDADE 1 DISTRIBUIÇÃO DE FREQUÊNCIAS 1.1 INTRODUÇÃO As tabelas estatísticas, geralmente, condensam informações de fenômenos que necessitam da coleta de grande quantidade de dados numéricos. No caso
MEDIDAS DE TENDÊNCIA CENTRAL
MEDIDAS DE TENDÊNCIA CENTRAL Professor Jair Wyzykowski Universidade Estadual de Santa Catarina Média aritmética INTRODUÇÃO A concentração de dados em torno de um valor pode ser usada para representar todos
Aula 2 MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE POSIÇÃO
MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE POSIÇÃO Aula META Visualizar o comportamento de um conjunto de dados por intermédio de um único valor, neste caso representado pelo parâmetro médio, bem como em
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Medidas Estatísticas de Posição
Medidas Estatísticas de Posição 1 - Medidas de Tendência Central Denição medida de tendência central é um único valor que representa ou tipica um conjunto de valores. Nunca pode ser menor que o menor valor
Medidas de Posição. Tendência Central. É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média. mediana.
Tendência Central É um valor que representa uma entrada típica, ou central, de um conjunto de dados. média mediana moda Análise exploratória de dados Histograma Simétrico Uniforme Média = Mediana Assimétrico
2. Estatística Descritiva
2. Estatística Descritiva ESTATÍSTICA Conjunto de técnicas e ferramentas que descreve, organiza, resume e interpreta as informações a partir dos dados coletados Estatística descritiva Conjunto de técnicas
Estatística Descritiva
Estatística Descritiva Cristian Villegas [email protected] Departamento Ciências Exatas, ESALQ (USP) Agosto de 2012 Cristian Villegas. Departamento Ciências Exatas, ESALQ-USP 1 1 Medidas de tendência central
meninos =34
Moda e Mediana Profª Ms. Mara Cynthia 3. Moda (Mo) Denominamos moda o valor que ocorre com maior frequência em uma série de valores. Desse modo, o salário modal dos empregados de uma indústria é o salário
Aula 03. Medidas Descritivas de Variáveis Quantitativas. Parte 1 Medidas de Tendência Central
Aula 03 Medidas Descritivas de Variáveis Quantitativas Parte 1 Medidas de Tendência Central Stela Adami Vayego - DEST/UFPR 1 Medidas de Tendência Central dos Dados Para uma variável quantitativa, uma medida
PROBABILIDADE E ESTATISTICA. Unidade III Medidas de Posição
PROBABILIDADE E ESTATISTICA Unidade III Medidas de Posição 0 1 MEDIDAS DE POSIÇÃO As medidas de posições mais importantes são as medidas de tendência central e as medidas separatrizes. As medidas de tendência
Medidas de Tendência Central. Prof.: Joni Fusinato
Medidas de Tendência Central Prof.: Joni Fusinato [email protected] [email protected] 1 Medidas de Tendência Central Informam o valor em torno do qual os dados se distribuem. Tem por objetivo
2) Dados os valores a seguir, , determinar a moda dos mesmos.
1) O gráfico abaixo, apresenta dados referentes a faltas por dia em uma classe, durante um certo período de tempo. 1 De acordo com o gráfico, no período observado, ocorreram: (A) 15 faltas em 8 dias. (B)
n = 25) e o elemento (pois = 19) e terá o valor 8. Verifique que antes e depois do 19 o elemento, teremos 18 elementos.
V) Mediana: A Mediana de um conjunto de números, ordenados crescente ou decrescentemente em ordem de grandeza (isto é, em um rol), será o elemento que ocupe a posição central da distribuição de freqüência
Unidade I ESTATÍSTICA DESCRITIVA. Profa. Isabel Espinosa
Unidade I ESTATÍSTICA DESCRITIVA Profa. Isabel Espinosa Estatística Veremos nesta unidade: Variáveis Tabela de frequência Gráficos Medidas de tendência central - media,mediana e moda Medidas de dispersão
Estatística Descritiva
Estatística Descritiva Tabela s Gráficos Números x, s 2, s, m o, Q 1, Q 2, Q 3,...etc. 1 Estatística Descritiva 3. Números 3.1. Medidas de posição (ou tendência ) 3.2. Medidas de dispersão 2 3.1. Medidas
Bioestatística UNESP. Prof. Dr. Carlos Roberto Padovani Prof. Titular de Bioestatística IB-UNESP/Botucatu-SP
Bioestatística UNESP Prof. Dr. Carlos Roberto Padovani Prof. Titular de Bioestatística IB-UNESP/Botucatu-SP Perguntas iniciais para reflexão I - O que é Estatística? II - Com que tipo de informação (dados)
Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana
Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar
Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística
Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Coleção de números n estatísticas sticas O número n de carros vendidos no país aumentou em 30%. A taxa de desemprego atinge, este mês,
Estatística. 1 Medidas de Tendência Central 2 Medidas de Posição 3 Medidas de Dispersão. Renata Souza
Estatística 1 Medidas de Tendência Central 2 Medidas de Posição 3 Medidas de Dispersão Renata Souza Medidas Depois que você conheceu os conceitos de coleta de dados, variação, causas comuns e causas especiais,
Medidas de Posição ou Tendência Central
Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor
Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.
Estatística I Aula 3 Prof.: Patricia Maria Bortolon, D. Sc. Estatística: Prof. André Carvalhal Dados quantitativos: medidas numéricas Propriedades Numéricas Tendência Central Dispersão Formato Média Mediana
Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.
Número: Dois. Lista de Exercícios Estatística
Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.
CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA
DISCIPLINA: MÉTODOS QUANTITATIVOS PROFESSORA: GARDÊNIA SILVANA DE OLIVEIRA RODRIGUES CONCEITOS BASICOS, ORGANIZAÇÃO E APRESENTAÇÃO DOS RESULTADOS, DISTRIBUIÇÃO DE FREQUÊNCIA MOSSORÓ/RN 2015 1 POR QUE ESTUDAR
Distribuição de frequências:
Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em
Plano da Apresentação. Medidas de localização central. Medidas de localização central. Média. Média. Exemplo nota média em Metodologias
Metodologia de Diagnóstico e Elaboração de Relatório FASHT Plano da Apresentação Mediana Moda Outras médias: a média geométrica Profª Cesaltina Pires [email protected] Metodologias de Diagnóstico Profª
Número: Dois. Lista de Exercícios Estatística/Introdução a Estatística
/Introdução a Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação. Engenharia
Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos
Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados 3-1 Visão Geral 3-2 Medidas de
Medidas Descritivas de Posição, Tendência Central e Variabilidade
Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 29 de Agosto de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores
UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível
Métodos Quantitativos Aplicados a Gestão
Métodos Quantitativos Aplicados a Gestão Cálculos estatísticos para análise e tomada de decisão Responsável pelo Conteúdo: Prof. Carlos Henrique e Prof. Douglas Mandaji Revisão Textual: Profa. Ms. Alessandra
Prof. Francisco Crisóstomo
Unidade II ESTATÍSTICA BÁSICA Prof. Francisco Crisóstomo Unidade II Medidas de posição Medidas de posição Tem como característica definir um valor que representa um conjunto de valores (rol), ou seja,
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 4 a Aula Prática Medidas de Dispersão
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 4 a Aula Prática Medidas de Dispersão 1) Os dados apresentados a seguir referem-se ao levantamento dos intervalos
Para caracterizar um conjunto de dados é importante não só a média, mas também a dispersão dos valores em torno da média
1 É muito diferente ter uma situação em que o salário médio mensal é R$600 e todos ganham R$600, ou ter o mesmo salário médio mas em que metade das pessoas ganha R$300 e a outra metade ganha R$900. Para
Medidas resumo numéricas
Medidas descritivas Medidas resumo numéricas Tendência central dos dados Média Mediana Moda Dispersão ou variação em relação ao centro Amplitude Intervalo interquartil Variância Desvio Padrão Coeficiente
Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados. Seção 3-1 Visão Geral. Visão Geral. Estatísticas Descritivas
Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados 3-1 Visão Geral 3-2 Medidas de Centro 3-3 Medidas de Dispersão 3-4 Medidas de Forma da Distribuição 3-5 Análise Exploratória de
Medidas de Tendência Central. Prof.: Joni Fusinato
Medidas de Tendência Central Prof.: Joni Fusinato [email protected] [email protected] 1 Medidas de Tendência Central A Estatística trabalha com diversas informações que são apresentadas por meio
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte 4.3 Medidas de posição 4.4 Medidas de dispersão 4.5 Separatrizes Prof. franke 2 Vimos que a informação contida num conjunto de dados pode ser resumida
Professor: Alessandro Monteiro Curso: Probabilidade e Estatística Lista 4: Estatística
Professor: Alessandro Monteiro Curso: Probabilidade e Estatística Lista 4: Estatística 01. A distribuição abaixo indica o número de acidentes ocorridos com 80 motoristas de uma empresa de ônibus. Determine:
Medidas de Centralização
Medidas de Centralização Disciplina de Estatística 2012/2 Curso de Administração em Gestão Pública Profª. Me. Valéria Espíndola Lessa e-mail: [email protected] 1 Medidas - Resumo Eemplo: Em um ponto
Métodos Estatísticos Básicos
Aula 3 - Medidas de tendência central Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 014 Média aritmética Denição As medidas de tendência central são estatísticas que caracterizam
Estatística Aplicada
Estatística Aplicada Medidas Descritivas Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada ESTATÍSTICA DESCRITIVA Classificação de variáveis QuaLitativas (categóricas) Descrevem
Bioestatística Aula 2
Bioestatística Aula 2 Anderson Castro Soares de Oliveira Anderson Bioestatística 1 / 60 Estatística Descritiva Um dos objetivos da Estatística é sintetizar os valores que uma ou mais variáveis podem assumir
Aula 4: Medidas Resumo
Aula 4: Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da Silva (UFPR) ce003 - Estatística II
Medidas de Tendência Central
ESTATÍSTICA DESCRITIVA Medidas de Tendência Central 3 MEDIDAS DE TENDÊNCIA CENTRAL 3.1 Média Aritmética Uma das mais importantes medidas estatísticas utilizadas é a média. Ela é, por exemplo, utilizada
Estatística Aplicada à Educação
Estatística Aplicada à Educação Curvas de Frequência p. 75 Aprendemos na aula passada a representação gráfica por meio de histogramas e polígono de frequências. 27 24 21 18 15 12 9 6 3 0 150 154 158 162
Estatística Aplicada ao Serviço Social AULA 06. Estatística Descritiva - Medidas de dispersão. Universidade Federal da Paraíba
Universidade Federal da Paraíba Curso de Serviço Social - Turma 01 Estatística Aplicada ao Serviço Social Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística Universidade Federal da Paraíba
5.1 Introdução: As distribuições de freqüências não diferem apenas quanto ao valor médio e a variabilidade, mas também quanto a sua forma.
Capítulo 5 Assimetria e Curtose Desenvolvimento: 5.1 Introdução 5.2 Assimetria 5.3 Curva simétrica 5.4 Curtose 5.5 Graus de achatamento 5.1 Introdução: As distribuições de freqüências não diferem apenas
Unidade I ESTATÍSTICA APLICADA. Prof. Luiz Felix
Unidade I ESTATÍSTICA APLICADA Prof. Luiz Felix O termo estatística Provém da palavra Estado e foi utilizado originalmente para denominar levantamentos de dados, cuja finalidade era orientar o Estado em
Medidas de Dispersão ou variabilidade
Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou
Análise Exploratória e Estimação PARA COMPUTAÇÃO
Análise Exploratória e Estimação MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Médias Média Aritmética (valor médio de uma distribuição) n x = 1 n i=1 x i = 1 n x 1 + + x n Média Aritmética
Medidas Estatísticas NILO FERNANDES VARELA
Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar
Mediana. Dr. NIELSEN CASTELO DAMASCENO DANTAS AULA 5
Mediana Dr. NIELSEN CASTELO DAMASCENO DANTAS AULA 5 Introdução Uma segunda medida de tendência central de um conjunto de números é a mediana. Mediana é o valor que ocupa a posição central do conjunto dos
Bioestatística. Luiz Ricardo Nakamura Cristiane Mariana Rodrigues da Silva. Ciências biológicas a USP ESALQ. Estatística
Bioestatística Luiz Ricardo Nakamura Cristiane Mariana Rodrigues da Silva Ciências biológicas a USP ESALQ LR Nakamura Estatística ESALQ 1 / 67 Estatística e o método científico Circularidade do método
ESTATÍSTICA COMPUTACIONAL AULA 5 ASSIMETRIA E CURTOSE
ASSIMETRIA E CURTOSE 1 RELAÇÃO ENTRE MÉDIA, MEDIANA E MODA O valor da mediana, como o próprio nome diz, ocupa a posição central numa distribuição de frequência. A mediana deve estar em algum lugar entre
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Medidas de Posição e Dispersão Professora Renata Alcarde Piracicaba fevereiro 2014 Renata Alcarde Estatística Geral 7 de Março de
Elementos de Estatística
Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único
Estatística descritiva
Estatística descritiva Para que serve a estatística? Qual o seu principal objectivo? obter conclusões sobre a população usando uma amostra? População Amostragem Amostra Uma ou mais variáveis (X) são observadas
BIOESTATÍSTICA AULA 2. Anderson Castro Soares de Oliveira Jose Nilton da Cruz. Departamento de Estatística/ICET/UFMT
BIOESTATÍSTICA AULA 2 Anderson Castro Soares de Oliveira Jose Nilton da Cruz Departamento de Estatística/ICET/UFMT Estatística Descritiva ESTATÍSTICA DESCRITIVA Um dos objetivos da Estatística é sintetizar
Física Geral - Laboratório. Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação
Física Geral - Laboratório Aula 2: Organização e descrição de dados e parâmetros de dispersão e correlação 1 Física Geral - Objetivos Ao final do período, o aluno deverá ser capaz de compreender as principais
MAIS SOBRE MEDIDAS RESUMO. * é muito influenciada por valor atípico
MAIS SOBRE MEDIDAS RESUMO Medidas de Tendência Central (1) média (aritmética) * só para variáveis quantitativas exceção: variável qualitativa nominal dicotômica, com categorias codificadas em 0 e 1; neste
Estatística descritiva básica: Medidas de tendência central
Estatística descritiva básica: Medidas de tendência central ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto [email protected] www.each.usp.br/lauretto *Parte do conteúdo
Métodos Experimentais em Ciências Mecânicas
Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Pertencem ao grupo de ferramentas estatísticas que permitem caracterizar um conjunto de dados sob ponto de vista da tendência
- 1 - EDITAL ANTERIOR PRF 2013 Matemática Noções de estatística. MÉDIA ARITMÉTICA (x )
EDITAL ANTERIOR PRF 013 Matemática Noções de estatística. MÉDIA ARITMÉTICA (x ) Sejam x1, x,..., xn, portanto n valores da variável X. A média aritmética simples, ou simplesmente média de X, representada
Probabilidade e Estatística. Medidas de Tendência Central. Cláudio Henrique Albuquerque Rodrigues, M. Sc.
Probabilidade e Estatística Medidas de Tendência Central Cláudio Henrique Albuquerque Rodrigues, M. Sc. Introdução No estudo de uma série estatística é conveniente o cálculo de algumas medidas que a caracterizam
Estatística Descritiva
Estatística Descritiva Cristian Villegas [email protected] http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Parte I Tabela de frequências e gráficos http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/
