SISTEMAS DE TELECOMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira

Tamanho: px
Começar a partir da página:

Download "SISTEMAS DE TELECOMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira"

Transcrição

1 SISTEMAS DE TELECOMUNICAÇÕES Feixes Hertzianos Paula Queluz Fernando Pereira

2 Feixes Hertzianos: características Portadoras com frequência elevada ( 1 a 20 GHz, possibilitando a utilização de antenas bastante directivas (parabólicas, confinando a maior parte da energia transmitida a um feixe. A propagação faz-se em linha de vista com saltos máximos de, aproximadamente, 50 km. Para ligações longas ou obstruídas pela orografia do percurso, é necessário usar estações intermédias que funcionam como repetidores. Designações inglesas: Radio relay links Ligações rádio com repetidores Microwave radio Rádio em micro-ondas Microwave radio relay links Sistemas de Telecomunicações 2

3 Aplicações Rede de transporte de televisão (entre os centros de produção e os principais emissores; ligação aos estúdios móveis Rede telefónica interurbana (embora a perder peso para a fibra óptica Ligações entre estações de base e centros de controlo, nas redes telefónicas móveis Acesso local via rádio (FWA fixed wireless access Capacidade (feixes digitais: 2 Mbit/s (E1 30 canais de voz 8 Mbit/s (E2 120 canais de voz 34 Mbit/s (E3 480 canais de voz 140 Mbit/s (E canais de voz ou 4 canais de TV a 34 Mbits/s cada 155 Mbit/s (STM-1 como no E4 Sistemas de Telecomunicações 3

4 Rede de transporte de Televisão (1997 Sistemas de Telecomunicações 4

5 Feixes Hertzianos em Comunicações Móveis Sistemas de Telecomunicações 5

6 Antenas As antenas utilizadas são do tipo reflector alimentado no foco por um guia de ondas encurvado e truncado. O reflector é um parabolóide de revolução, com diâmetro habitualmente compreendido entre 1 e 4 m. Em alguns casos, poderá recorrer-se a cornetas reflectoras. Sistemas de Telecomunicações 6

7 Estruturas de suporte das antenas Torres de Emissão/Recepção consoante a importância da estação, a frequência da ligação e a altura das antenas acima do solo, as torres podem ser: a estruturas metálicas, muito simples, autosuportadas, para alturas até 6 m b estruturas metálicas, simples, espiadas, para alturas até 100 m c estruturas metálicas, mais complexas, autosuportadas, para alturas até 100 m d estruturas complexas (metálicas ou de betão para alturas entre 30 e 300 m Sistemas de Telecomunicações 7

8 Emissores/Receptores Os emissores e os receptores podem estar localizados em edifício próprio, na base da torre, quando esta é uma simples estrutura de suporte, ou junto da antena (no alto da torre nas instalações de maiores dimensões. A ligação dos emissores e receptores à antena é feita por cabo coaxial ou, quando a frequência é igual ou superior a cerca de 2 GHz, por guia de ondas. Guia de ondas Guia de ondas Fibra óptica Fibra óptica... Central E/R telefónica E/R Central telefónica... Sistemas de Telecomunicações 8

9 Planos de frequência Cada par emissor-receptor de uma ligação unidireccional, em conjunto com as respectivas antenas, guias de ondas e o próprio meio de propagação entre antenas, é designado por secção radioeléctrica. Secção radioeléctrica f 1 f 1 f 1 f 1 E( f 1 R( f 1 E( f 1 E( f 1 R( f 1 E( f 1 R( f 1 R( f 1 Sistemas de Telecomunicações 9

10 Planos de frequência Em cada secção radioeléctrica, a portadora, modulada pelo sinal a transmitir, ocupa um canal radioeléctrico (ou simplesmente canal. Os canais rádio-eléctricos susceptíveis de serem utilizados numa ligação em feixes hertzianos dependem da capacidade do feixe e do tipo de serviço/aplicação, e são regulados a nível internacional pela ITU-R e a nível nacional pela ANACOM (ex-icp. A largura espectral disponível para cada banda de frequências ( centenas de MHz é dividida em duas metades. Em cada estação, os canais de emissão situam-se todos numa mesma semibanda e os canais de recepção na outra semibanda. Exemplo: 1 2 n 1 2 n f 0 canais de emissão LB disponível canais de recepção f Sistemas de Telecomunicações 10

11 Planos de frequência (cont. As secções radioeléctricas correspondentes aos sinais de ida e de retorno de uma ligação bidireccional devem utilizar canais diferentes. As secções radioeléctricas adjacentes, da mesma ligação, não podem usar os mesmos canais de ida, devido ao risco de retroalimentação entre o emissor e o receptor na estação repetidora. As secções radioeléctricas adjacentes podem utilizar os mesmos canais, desde que os de ida de uma secção, sejam os de retorno nas secções adjacentes, e vice-versa. Secção radioeléctrica f 1 f 1 f 1 f 1 E( f 1 R( f 1 E( f 1 E( f 1 R( f 1 E( f 1 R( f 1 R( f 1 Sistemas de Telecomunicações 11

12 Projecto de uma ligação digital em Feixes Hertzianos Dados do Problema Localização dos pontos terminais da ligação Número de canais telefónicos/vídeo a disponibilizar Banda de frequências e largura de banda disponíveis para os canais/serviço pretendidos Objectivos do Projecto Respeito das normas de qualidade taxas de erro reconhecidas internacionalmente (ITU-R, minimizando o custo do projecto. Respeito das normas de fiabilidade % de tempo em que a ligação está disponível reconhecidas internacionalmente (ITU-R, minimizando o custo do projecto. Sistemas de Telecomunicações 12

13 Projecto de uma ligação digital em Feixes Hertzianos (cont. Elementos a Especificar Canais radioeléctricos a usar (dentro dos disponíveis Diâmetro, localização e orientação das antenas Altura e tipo de mastros Potência dos emissores Tipo de modulação (usualmente, M-QAM Localização e tipo de repetidores Tipo e comprimento de guias Uso e tipo de diversidade e/ou igualação Sistemas de Telecomunicações 13

14 Escolha do percurso Estações terminais em pontos altos de modo a obter, se possível, linha de vista Estações repetidoras (passivas ou activas em linha de vista, com saltos tão longos quanto possível, de modo a minimizar o número de estações repetidoras Estações terminais localizadas de modo a evitar a influência das reflexões Estações terminais tão próximas quanto possível das origens e destinos do tráfego (ligação por cabo coaxial ou fibra óptica Estações terminais com fácil acesso e fornecimento fiável de energia Estações terminais e repetidores com baixo impacto ambiental Sistemas de Telecomunicações 14

15 Escolha do percurso (cont. Sistemas de Telecomunicações 15

16 Cartas Militares Sistemas de Telecomunicações 16

17 Perfil da ligação Percurso directo Percurso alternativo Nota: escalas vertical e horizontal muito diferentes Sistemas de Telecomunicações 17

18 Como relacionar p r com p e? f p e p r E( f d R( f Assume-se propagação em espaço o livre (ausência da atmosfera e da superfície da Terra Sistemas de Telecomunicações 18

19 Propagação em espaço livre Considere-se um modelo simples duma ligação, formada por 2 antenas, em espaço livre, no vazio. Sejam: o o o o o d a distância entre antenas f a frequência da ligação a E, a R os ganhos (<1 dos guias de emissão e recepção g E - o ganho da antena emissora na direcção da antena receptora p E - a potência do emissor Se as 2 antenas estiverem suficientemente afastadas, a densidade de potência (fluxo do vector de Poynting colocada na antena receptora é: R = p E g a E E /( 4 π d 2 A potência disponível à entrada do receptor virá: p = a = p g g a a R R eff E λ /((4π onde a eff é a área efectiva da antena receptora na direcção da antena emissora e g r éo seu ganho na mesma direcção a = ( λ 2 / 4π E R E eff g R R 2 2 d 2 Sistemas de Telecomunicações 19

20 Propagação em espaço livre (cont. A potência disponível aos terminais de entrada do receptor é normalmente expressa em unidade logarítmicas, vindo: com sendo L fs a atenuação em espaço livre P R = P G A P E E, R E, R E, R + G L fs E + G = 10log( p R = 10log( g = 10log( a E, R E, R A E / p A R = 10log( λ /((4π E, R 2 0, p 0 L 2 d 2 fs ( dbm,dbw = 1mW ou 1W ou L fs = logd(km + 20log f Para as antenas parabólicas tem-se: (MHz (db G = 20log( π D / λ + 10logη (db sendo D o diâmetro da antena e η o seu rendimento de abertura ( 0.5 Sistemas de Telecomunicações 20

21 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 21

22 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 22

23 Sistemas de Telecomunicações 23 Influência da diferença de percursos ( ( r r j e r r E r E + + = λ π r j e r E r E λ 2π 0 1 ( = (1 1 1 ( ( ( ( 2 0 ( 2 0 ( r j r j r j r j r r j r j t e e r E e r r r e E e r r E e r E r E r E E = + + = + = λ π λ π λ π λ π λ π λ π φ E t =0 para φ=(2n+1π ou r =(2n+1λ/2

24 Influência dos Obstáculos: Elipsóides de Fresnel Considere-se uma ligação via rádio, na frequência f (comprimento de onda λ, com antenas pontuais, uma em E e outra em R, à distância d tal que d >> λ: P E z r d R Z O ponto P pertence ao enésimo elipsóide de Fresnel se: EP + PR d = λ n 2 Sistemas de Telecomunicações 24

25 Sistemas de Telecomunicações 25 Raio do Elipsóide de Fresnel E R r d P Z z ( 2, 2 ( λ λ λ n z d z r z d z r se n d r z d r z n d PR EP = + << = = + λ d z d z n r ( = ±

26 Elipsóides de Fresnel (cont. se n =1 1 o elipsóide de Fresnel r 1 = ± z( d z λ d : raio do 1 o elipsóide de Fresnel r r z Pode-se demonstrar que a atenuação entre duas antenas, mesmo na presença de obstáculos, é praticamente igual à atenuação em espaço livre desde que os obstáculos não entrem no 1 o elipsóide de Fresnel. Se isso não se verificar, é necessário calcular a atenuação introduzida pelos obstáculos (existem vários métodos de cálculo. Uma vez que muitos dos raios que viajam dentro do 1º elipsóide de Fresnel correspondem a variações pequenas de fase, esses raios vão interferir construtivamente no receptor; outros raios, (p. ex., os do 2º elipsóide interferem contudo destrutivamente. Sistemas de Telecomunicações 26

27 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 27

28 Influência da presença da Terra 1- Terra plana e reflectora perfeita E raio directo (tensão u d à entrada do receptor raio reflectido (tensão u r à R entrada do receptor h e h r Ponto especular (coeficiente de reflexão: R exp(jϕ Para o raio directo, demonstrou-se que p R = a = R eff p E g E g R a E a R 2 λ /((4π 2 d 2 Para o raio reflectido u r u d = Z p R = Zp E g E g R a E a R λ 4 π d e e = Z p g g a a λ E E R E R R exp( jϕexp( j 4πd r reflexão diferença de percursos g e E,R : ganho das antenas emissora e receptora, na direcção do ponto especular Sistemas de Telecomunicações 28

29 Influência da presença da Terra 1- Terra plana e reflectora perfeita (cont. E raio directo (tensão u d raio reflectido (tensão u r R h e h r Ponto especular (coeficiente de reflexão: R exp(jϕ Se d >> h e,h r u r = u d g e g E e R g g E R 4π h h em que e r λ d R exp( jϕexp( j Ângulo de atraso devido à diferença de percursos g e E,R : ganho das antenas emissora e receptora, na direcção do ponto especular Sistemas de Telecomunicações 29

30 Influência da presença da Terra 1- Terra plana e reflectora perfeita (cont. Se R 1 e ϕ = π (típico para polarização horizontal c/ incidências rasantes: P Rt u = d + u Z r 2 = P R + 20log 2sin 10 2 : potência total recebida 4π = λ h r e h d Devido à presença da atmosfera, varia ao longo do tempo (! Sistemas de Telecomunicações 30

31 Influência da presença da Terra 2- Terra plana e difusora A Terra não é um reflector perfeito, apresentando alguma rugosidade. Em consequência, existe uma área em torno do ponto especular (e cuja dimensão depende das características do terreno, como a rugosidade a contribuir com potência dispersa na direcção da antena receptora. Área activa de dispersão Em termos de projecto, é usual exigir que: P S < P D 10 db potência dispersa potência directa Sistemas de Telecomunicações 31

32 Influência da presença da Terra 3- Remédios contra as reflexões Evitar que as ligações atravessem zonas planas muito extensas (mar, lagos ou pântanos Utilizar antenas suficientemente directivas (aumenta a discriminação raio directo/raio reflectido Inclinar as antenas para cima (idem Colocar uma antena muito mais elevada que a outra (aproxima a zona das reflexões da antena mais baixa Escolher a altura/localização das antenas, de modo a que o próprio terreno obstrua o raio reflectido Utilização de diversidade espacial Sistemas de Telecomunicações 32

33 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 33

34 Influência da presença da Terra 4- Terra esférica Designa-se por radiorizonte (d rh de uma antena colocada à altura h sobre a Terra de raio r, a distância, medida à superfície da Terra, entre a base da antena e o ponto no qual o raio emitido pela antena é tangente à superfície da Terra. h Radiorizonte (d rh da antena d rh 2rh A presença da Terra esférica, além de introduzir reflexões com consequências análogas às atrás referidas, vai limitar a distância máxima de propagação em espaço livre entre duas antenas. d máx 2 d rh 50 km Sistemas de Telecomunicações 34

35 Radiorizonte d max d rh h r e h r e r e : raio equivalente da Terra ( r e d d + h rh max 2 = r 2 e 2 2hr + d e 2hr 2 rh e (pois r e >> h Para h=50 m e r e =r 0 =6370 km d max =50 km Sistemas de Telecomunicações 35

36 Influência da atmosfera nas ligações em FH A presença da atmosfera manifesta-se através de três efeitos principais: Atenuação suplementar devido aos gases constituintes da atmosfera (principalmente O 2 e H 2 O e aos hidrometeoritos (chuva, nevoeiro, granizo, neve Alteração dos raios de onda que deixam de ser rectilíneos (função do índice de refracção da atmosfera Desvanecimento multipercurso Sistemas de Telecomunicações 36

37 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 37

38 Atenuação devida ao O 2 e ao H 2 O Teoricamente: onde Aa ( db = [ γ o( x + γ w( x] dx 0 x: comprimento medido ao longo do raio directo (km γ O : coeficiente de atenuação devido ao O 2 (db/km γ w : coeficiente de atenuação devido ao H 2 O (db/km d (γ O e γ w dependem da temperatura, pressão e humidade Para percursos na baixa troposfera: A a ( db = ( γ o0 + γ w0 d Esta forma de atenuação é normalmente desprezável para frequências inferiores a 10 GHz. Sistemas de Telecomunicações 38

39 Atenuação específica do O 2 e do H 2 O Sistemas de Telecomunicações 39

40 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 40

41 Atenuação devida à chuva A atenuação sofrida pelo feixe na presença de chuva deve-se a dois mecanismos: perdas nas gotas de água (que são aquecidas e dispersão. A ITU-R propõe o seguinte método de cálculo da atenuação devida à chuva, não excedida em mais de p por cento do tempo, anualmente, numa ligação em FH com o comprimento d (em km, à frequência f (em GHz : 1. Obter a intensidade de precipitação Ri 0.01 ultrapassada apenas durante 0.01 % do tempo (em Portugal entre 32 e 42 mm/h; 2. Calcular o coeficiente de atenuação (db/km para Ri 0.01 β γ r = k Ri onde k e β dependem de f e da polarização (valores usuais encontram-se tabelados. Sistemas de Telecomunicações 41

42 Atenuação devida à chuva (cont. 3. Calcular o comprimento eficaz do percurso d ef a partir do comprimento real d da ligação (Ri não é uniforme ao longo de toda a zona de chuva d d ef = d 1+ 35exp( Ri Calcular a atenuação devida à chuva não excedida em mais de 0.01% do tempo A (0.01 r = γ r d ef 5. Calcular a atenuação não excedida mais de p% do tempo A ( p (0.01 ( log10 r = Ar 0.12 p p A atenuação devida à chuva aumenta com a frequência, podendo ser o factor mais limitativo para ligações em FH acima de f=10 GHz. Não são normalmente considerados no projecto de FH: A atenuação devida ao nevoeiro (inferior à atenuação da chuva fraca A atenuação devida ao granizo (baixa probabilidade de ocorrência Sistemas de Telecomunicações 42

43 Atenuação devida à chuva: Exemplo de cálculo Considere uma ligação em feixes hertzianos com 50 km de comprimento, à frequência de 4 GHz. Determinar o valor da atenuação devida à chuva não excedido em mais de % do tempo (considere que a polarização é horizontal. admite-se Ri 0.01 = 42 mm/h de [1] tira-se, para f=4 GHz e polarização horizontal: k= e β=1.121, o que conduz a um coeficiente de atenuação de γ r = db/km d ef 50 = exp( = km (0.01 A r = = 0.58 db A r ( log ( = = 0.88 db 10 Sistemas de Telecomunicações 43

44 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 44

45 Efeitos refractivos da atmosfera n 5 n 4 n 3 n 2 n 1 φ 1 φ 2 Índice de refracção do meio i onde c 0 : velocidade da luz no vácuo c i : velocidade da luz no meio i n i =c 0 /c i Lei da refracção: n 1 sinφ 1 = n 2 sinφ 2 se n 1 > n 2 φ 2 > φ 1 Como n 1 > n 2 > n 3 > n 4 > n 5, a trajectória dos raios não é rectilínea mas torna-se convexa. Sistemas de Telecomunicações 45

46 Efeitos refractivos da atmosfera (cont. O índice de refracção da atmosfera n é uma função da pressão atmosférica (p, da pressão de vapor de água (e e da temperatura (T Para as frequências habituais, o índice de refracção é dado por: n = 1+ N 10 em que N, a refractividade, é dada por: e N = ( p + T T Para a atmosfera padrão - p=1017 mb, e=10 mb (50% de humidade relativa, T=291.3 K (18 o C => N=315 e n= A variação do índice de refracção com a altitude (h pode ser expressa por: n( h = 1+ a exp( bh onde a e b são constantes determinadas estatisticamente para cada clima. Para a atmosfera padrão a= ; b=0.136 km -1 Sistemas de Telecomunicações 46

47 Efeitos refractivos da atmosfera (cont. Se a variação de n com h for aproximada por uma expressão linear do tipo válida sobretudo na baixa atmosfera, é possível demonstrar que o efeito da curvatura dos raios pode ser substituído pela consideração de um raio equivalente da Terra dado por: com n ( h = n0 n. h r = k e r 0 k e r 0 1 = r0 1 n n km (raio físico da Terra Em Portugal: n 0 = ; n= km -1 k e =1.34 Sistemas de Telecomunicações 47

48 Efeito do valor de k e no percurso dos raios de onda Modelo físico: raio da Terra fixo e percurso variável Modelo prático: percurso fixo (rectilíneo e raio da Terra variável Sistemas de Telecomunicações 48

49 Factores que condicionam a potência recebida em condições reais de propagação Atenuação provocada pelos obstáculos Reflexões no terreno Efeito da curvatura da Terra Atenuação devida aos gases atmosféricos Atenuação devida à chuva Efeitos refractivos da atmosfera Desvanecimento (fading multipercurso Sistemas de Telecomunicações 49

50 Desvanecimento (Fading Numa ligação entre 2 pontos, através de um meio com características variáveis no tempo, verifica-se que a potência do sinal recebido varia no tempo, mesmo que a potência do sinal emitido se mantenha constante. Este fenómeno é designado por desvanecimento (ou fading. A observação da potência do sinal recebido permite detectar variações de 2 tipos: variações lentas, com períodos de algumas horas (power fading; variações rápidas, com períodos entre a fracção de segundo e alguns minutos, dependendo da frequência e da localização das antenas (multipath fading. Uma vez que o desvanecimento afecta significativamente o nível da potência recebida, há que prever a sua distribuição de amplitude de forma a contabilizar o seu efeito, já que a diminuição da relação portadora/ruído vai aumentar a probabilidade de erro. Sistemas de Telecomunicações 50

51 Desvanecimento (cont. Profundidade do fading (db p=p n Se p n potência recebida em condições ideais de propagação (sem fading p 0 potência recebida em condições reais de propagação (com fading, no instante t a profundidade do fading no instante t em que se recebe a potência p 0 é F(dB = 10 log 10 (p n / p 0 Sistemas de Telecomunicações 51

52 Desvanecimento multi-percurso Raio refractado 2 Raio refractado 1 Raio directo E R Se Raio directo: amplitude unitária e atraso nulo Raio refractado 1: amplitude a 1 e atraso τ 1 Raio refractado 2: amplitude a 2 e atraso τ 2, τ 2 >> τ 1 H(w=1+a 1 exp[-jwτ 1 ]+ a 2 exp[-jwτ 2 ] (função de transferência do canal Se τ 2 >> τ 1 então: H(w a { 1+b exp[-jwτ] }, τ= τ 2 e ab=a2 e a=1+a 1 independente de f (desvanecimento uniforme dependente de f (desvanecimento selectivo Sistemas de Telecomunicações 52

53 Desvanecimento uniforme O desvanecimento uniforme (constante na banda do sinal pode ser visto como mais uma forma de atenuação que contribui para baixar o valor da potência recebida. Profundidade do fading (db p=p n p=p 1 p=p 2 P( p p = P( fading p n 1 p1 fracção do tempo em que a potência recebida é inferior ou igual a p 1 fracção do tempo em que o desvanecimento uniforme é superior a p n /p 1 se p 2 p 1 p n p 2 p n p P( p p2 P( p p1 1 p P ( p p = 0 0 k p n Sistemas de Telecomunicações 53

54 Desvanecimento uniforme: exemplos Exemplo 1: Para garantir, em condições reais de propagação, que p p obj em 99,9% do tempo pobj P( p pobj = = = k p ou p n = k p obj n : potência a garantir, em condições ideais de propagação Exemplo 2: Para garantir, em condições reais de propagação, que p p obj em 99,99% do tempo pobj P( p pobj = = = k p ou p n = k p obj : potência a garantir, em condições ideais de propagação n Sistemas de Telecomunicações 54

55 Desvanecimento uniforme modelo teórico Admite-se número elevado de percursos, em que um é preponderante (em termos de amplitude do sinal recebido em relação aos demais. p mr : mediana da potência recebida p a : potência correspondente à componente dominante p m : mediana da potência correspondente às componentes aleatórias p P ( p p = 0 0 k p mr Sistemas de Telecomunicações 55

56 Desvanecimento uniforme modelo empírico A ITU-R consagrou o seguinte modelo empírico para a caracterização do desvanecimento uniforme: Probabilidade da potência recebida, p, ser igual ou inferior a p 0, no mês mais desfavorável (Europa Ocidental: P p p0 = f d [ d] = km;[ f ] = GHz p 0 ( p n (também fracção do tempo em que a potência recebida é inferior ou igual a p 0 ou, doutro modo, fracção do tempo em que o desvanecimento é superior a p n /p 0 O desvanecimento não excedido em mais de P 100 % é dado por: p n / 0 p0 = f d / P( p p [ d] = km;[ f ] = GHz Sistemas de Telecomunicações 56

57 Desvanecimento multi-percurso Raio refractado 2 Raio refractado 1 Raio directo E R Se Raio directo: amplitude unitária e atraso nulo Raio refractado 1: amplitude a 1 e atraso τ 1 Raio refractado 2: amplitude a 2 e atraso τ 2, τ 2 >> τ 1 H(w=1+a 1 exp[-jwτ 1 ]+ a 2 exp[-jwτ 2 ] (função de transferência do canal Se τ 2 >> τ 1 então: H(w a { 1+b exp[-jwτ] }, τ= τ 2 e ab=a2 e a=1+a 1 independente de f (desvanecimento uniforme dependente de f (desvanecimento selectivo Sistemas de Telecomunicações 57

58 Desvanecimento selectivo Variação, com f, do módulo da função de transferência do canal H(w 1+b exp[-jwτ] As características distorcivas do canal (atenuação e atraso de grupo variáveis com f, vão originar interferência intersimbólica (i.i.s. nas ligações digitais. Sendo τ da ordem de 6 ns (1/τ = 167 MHz, os efeitos do desvanecimento selectivo são desprezáveis nos sistemas a 2 Mbit/s (1 a hierarquia PDH - Plesiochronous Digital Hierarchy, têm pouca importância nos sistemas a 8 Mbit/s (2 a hierarquia PDH, são já importantes nos sistemas a 34 Mbit/s (3 a hierarquia PDH e são decisivos nos sistemas de maior capacidade. Sistemas de Telecomunicações 58

59 Alguns conceitos relacionados com ruído Largura de banda equivalente de ruído Factor de ruído Cálculo de (C/N 0 em FH C/N vs. E b /N 0 Sistemas de Telecomunicações 59

60 Largura de Banda Equivalente de Ruído Seja H(f o módulo da função de transferência de um filtro ideal (em banda de base, com largura de banda B e ganho unitário: 1 H(f -B 0 B f Considere-se uma fonte de ruído térmico (ruído branco à entrada do filtro, com densidade espectral de potência N(f=kT/2 W/Hz (Nota: k= JK -1 constante de Boltzman; T é a temperatura da fonte de ruído (em K N(f H(f n A potência média de ruído disponível à saída do filtro n é dada por: + n = ( ( 2 N f H f kt = 2B = ktb ( W 2 df = Sistemas de Telecomunicações 60

61 Largura de Banda Equivalente de Ruído (cont. Se no exemplo anterior se substituir H(f por um filtro com função de transferência G(f (não ideal ter-se-á à saída uma potência média de ruído n dada por: + n = N ( f G( f kt + = G( f Designando o integral B W = G( f df por largura de banda equivalente de ruído do filtro G(f, pode-se escrever: df df = ( W n = ktb W (W A largura de banda equivalente de ruído de um filtro genérico, é igual à largura de banda de um filtro ideal que produza à saída a mesma potência média de ruído que o filtro genérico, para a mesma fonte de ruído branco à entrada. Sistemas de Telecomunicações 61

62 Factor de Ruído Considere-se o quadripolo: s in n in g, B w s out n out s in potência de sinal à entrada n in potência (disponível de ruído à entrada s out potência de sinal à saída = g s in n out potência de ruído à saída =g n in + ruído gerado internamente pelo quadripolo Define-se como factor de ruído do quadripolo: F = s s i n out / n / n in out Sistemas de Telecomunicações 62

63 Factor de Ruído (cont. Tem-se: sin nout F == = s n out in g n n out in e n = g F n = out in gfktb W A potência de ruído à saída, referido aos terminais de entrada do quadripolo é (divide-se por g: n = F n = FkTB out in W ou, em unidades logarítmicas N out ( db W, db m = N in ( db W, db m + F( db para T = 290 K N in ( db W = log( B W Sistemas de Telecomunicações 63

64 Feixes Hertzianos - Cálculo de (C/N 0 Seja C 0 P R0, a potência recebida em condições ideais de propagação (sem desvanecimento, sem chuva A potência disponível de ruído à entrada do receptor, é: n in = ktb W onde k= J/K é a constante de Boltzman, T é a temperatura em Kelvin e B W é a largura de banda equivalente de ruído, em Hz. Para a maioria dos sistemas de feixes, a antena receptora vê a Terra como uma fonte de ruído à temperatura ambiente ( 290 K, vindo N in = log BW ( dbw O ruído à saída do receptor (mas referido à sua entrada, obtém-se adicionando o factor de ruído do receptor, F, vindo N = N + F ( dbw (C/N C N in e 0 = 0 Sistemas de Telecomunicações 64

65 Cálculo de C 0 em Feixes Hertzianos 0 0 C = P = PE + GE + GR L R fs A adicional ( dbm,dbw A + A + adicional = Aguia _ E + Aguia _ R atmosfera A obstáculo Sistemas de Telecomunicações 65

66 Relação entre e b /n 0 e c/n em sistemas com modulações digitais Como atrás se demonstrou, para ruído de origem térmica tem-se: com n 0 =kt (W/Hz. n n out = n0bw F ( W Tem-se também: onde e b e b = ct b : energia (médiade bit c s : potência média da portadora T b : período de bit Deste modo: e b = n c n B f ou, em unidades logarítmicas (db 0 w b E N b = C N B + 10log( f 0 b w Sistemas de Telecomunicações 66

67 Desvanecimento Profundidade do fading (db p=p n Se p n potência recebida em condições ideais de propagação (sem fading p 0 potência recebida em condições reais de propagação (com fading, no instante t a probabilidade, P, de a potência recebida, p, ser igual ou inferior a p 0, pode ser estimada por uma expressão do tipo: p0 P ( p p = k 0 Sistemas de Telecomunicações 67 p n

68 Margem para desvanecimento Viu-se atrás que a probabilidade, P, de a potência recebida, p, ser igual ou inferior a p 0, pode ser estimada por uma expressão do tipo: p0 P ( p p = k 0 p n Designando por m=p n /p 0, a margem da ligação, a expressão anterior virá: P ( p p 0 = k m Identificando p 0 como a potência na recepção correspondente a uma dada taxa de erros binários, a probabilidade de a potência recebida ser inferior a p 0 é equivalente à probabilidade daquela taxa de erros ser excedida, P c. Sistemas de Telecomunicações 68

69 Margem para desvanecimento (cont. Segundo a ITU-R, a probabilidade da taxa de erros ser excedida pode ser decomposta em duas parcelas, P c = P u +P s, em que: P u : causada pelo desvanecimento uniforme (i.e., devida à atenuação P s : causada pelo desvanecimento selectivo (i.e., devida à i.i.s. correspondendo-lhe uma decomposição equivalente da margem com = + m m u m s m u : margem para desvanecimento uniforme m s : margem para desvanecimento selectivo (característico do equipamento receptor m: margem da ligação (ou margem real De notar que, para os feixes de baixa capacidade (caso em que se pode desprezar o efeito do desvanecimento selectivo, tem-se: m=m u ; normalmente tem-se m<m u. Sistemas de Telecomunicações 69

70 Exemplo de cálculo Considere-se uma ligação em feixes digitais a 140 Mbit/s (E3, com 50 km de comprimento, à frequência de 4 GHz. A modulação utilizada é 16-QAM. A relação (C/N 0 à entrada do receptor, em condições ideais de propagação (sem desvanecimento é de 65 db. A margem para desvanecimento selectivo é de 30 db. Verificar se, em condições reais de propagação (i.e., com desvanecimento multi-percurso, é possível garantir, em 99.9 % do tempo, uma taxa de erros binários (BER não superior a Para 16-QAM e um BER de 10-5, deve-se ter E b /N 0 = 13.5 db ou, atendendo a que C/N= =E b /N 0 +10log(f b /B w e B w = f b /log 2 M = 35 MHz (supondo filtros de Nyquist, C/N=19.5 db A margem uniforme da ligação é: M u =(C/N 0 - C/N = = 45.5 db A margem real da ligação é: m=(1/m u +1/m s -1 = ( > 30 db A margem objectivo, i.e., a margem real necessária para se atingir a qualidade pretendida é: k m obj = = f d / P( p 3 50 p = 3.5 /( = > db A margem de segurança da ligação é: M seg =10 log(m/m obj = M M obj = db 0 Como M seg < 0 db, não é possível garantir a qualidade desejada! 2 Sistemas de Telecomunicações 70

71 Redução dos efeitos do desvanecimento Para diminuir os efeitos do desvanecimento, nem sempre é económico, possível ou eficaz aumentar o valor da potência recebida, por aumento da potência emitida e/ou dos ganhos das antenas. Para reduzir os efeitos do desvanecimento selectivo, particularmente graves para os sistemas de maior capacidade, têm sido aplicadas as seguintes técnicas: igualação adaptativa no domínio da frequência e/ou no domínio do tempo diversidade de espaço diversidade de frequência associação da diversidade com igualadores adaptativos Nota: a igualação deverá ser adaptativa já que o canal de transmissão (atmosfera varia ao longo do tempo A diversidade (espaço ou frequência é igualmente eficaz no combate ao desvanecimento uniforme. Sistemas de Telecomunicações 71

72 Igualação adaptativa Factor de aumento da margem para desvanecimento selectivo, para diferentes tipos de igualadores, num sistema a 140 Mbit/s com modulação 16-QAM: Dispositivos Igualador adaptativo no domínio da frequência Igualador adaptativo no domínio do tempo Associação de igualadores no domínio da frequência e do tempo Factor de aumento da margem selectiva Fase mínima (b<1 Fase não mínima (b>1 i mp i nmp i s = ( ( + + para d imp inmp ( para d imp inmp k1 k2 1 i + i para 40 km > d k mp 1 nmp 40 d = ; k km 20 km > 20 km 40 d = Margem selectiva com igualação: m s =m s i s i.i.s. provocada por raios que chegam em avanço relativamente ao raio directo i.i.s. provocada por raios que chegam atrasados relativamente ao raio directo Sistemas de Telecomunicações 72

73 Diversidade Mostra a experiência que o desvanecimento rápido por multi-percurso é pouco correlacionado em receptores cujas antenas estejam suficientemente afastadas (algumas dezenas de metros; em receptores que utilizem frequências diferentes (separadas de alguns MHz. Escolhendo o melhor dos sinais ou combinando-se adequadamente os sinais recebidos, consegue-se um sinal onde o desvanecimento é muito menos intenso. Quando num percurso o sinal recebido é obtido a partir da combinação de N sinais distintos, diz-se que se utiliza diversidade de ordem N. Sistemas de Telecomunicações 73

74 Diversidade dupla de espaço R E d c Combinador R Factor de melhoria (combinação por escolha do sinal mais intenso onde 3 2 gs m ie = dc f (. g d d c : distância entre os centros das antenas g g p, s : ganhos das antenas principal e secundária m: margem real ou selectiva, sem diversidade p Condições de validade: 1 g s / g p f (GHz 2 65 d (km d c (m 5 Margem selectiva, com diversidade: m s =m s i f Margem real, com diversidade: m r =m r i f 10-3 m i e 10 Sistemas de Telecomunicações 74

75 Diversidade dupla de frequência E (f 1 E (f 2 R (f 1 R (f 2 Combinador Factor de melhoria (combinação por escolha do sinal mais intenso onde 80.5 f = f d f gs gp f: separação entre frequências (GHz g g p, s : ganhos das antenas principal e secundária m: margem real ou selectiva, sem diversidade Margem selectiva, com diversidade: m s =m s i f Margem real, com diversidade: m r =m r i f i f. m Condições de validade: 1 g s / g p f (GHz 2 f /f d c (m m 10-5 i f 5 Sistemas de Telecomunicações 75

76 Estrutura de empacotamento do PDH no SDH ATM E3: Mb/s DS3: Mb/s DS2: Mb/s C-3 C-2 VC-3 VC-2 TU-3 TU VC-3 AU-3 3 AUG 1 STM-1= Mb/s STM-1 STM-N N STM-N=N Mb/s E1: Mb/s DS1: Mb/s C-12 C-11 VC-12 VC-11 TU-12 TU-11 TUG TUG-3 3 VC-4 AU-4 E4: Mb/s ATM C-4 C - Contentor VC - Contentor Virtual TU - Unidade Tributária TUG - Grupo de Unidade Tributária AU - Unidade Administrativa AUG - Grupo de Unidade Administrativa Alinhamento Mapeamento Multiplexagem Tipo de bloco Nº de bits por bloco Ritmo binário (kbit/s Blocos/s VC VC VC VC VC STM Em existe processamento de ponteiros Sistemas de Telecomunicações 76

77 Eventos e parâmetros de desempenho nas redes SDH Bloco errado (EB, Errored Block: Bloco em que um ou mais bits estão errados. Eventos Segundo com erros (ES, Errored Second: Período de tempo de um segundo com um ou mais blocos errados. Segundo gravemente errado (SES, Severely Errored Second: Período de tempo de um segundo com 30% de blocos errados. Erro de bloco de fundo (BBE, Background Block Error: Um bloco errado que não faz parte de um SES. fading normal fading intenso Parâmetros Todos os parâmetros só consideram o tempo de disponibilidade. Razão de segundos errados (ESR, Errored Second Ratio: Razão entre os ES e o número total de segundos correspondentes a um determinado intervalo de medida. Razão de segundos gravemente errado (SESR, SES Ratio: Razão entre os SES e o número total de segundos correspondentes a um determinado intervalo de medida. Razão de erro de bloco de fundo (BBER, BBE Ratio: Razão entre os BBE e o número total de blocos num intervalo de medida, excluindo os blocos durante SES. Sistemas de Telecomunicações 77

78 Normas de Qualidade para FH Digitais (ITU-R Os objectivos de qualidade estabelecidos pela ITU-R, considerando não só o desvanecimento mas também todas as outras causas de degradação de qualidade, são: Rec. ITU-R F Tipicamente utiliza-se X =0.08 f b [Mbit/s] SESR BBER ESR X X 0.04 X X X 0.05 X X X X X X 0.16 X Rec. ITU-R P Conversão de SESR em ber f b [Mbit/s] ber SESR n (blocos/s n b (bits/bloco Sistemas de Telecomunicações 78

79 Verificação da cláusula SESR Para a modulação utilizada e para o valor de ber SESR da Rec. ITU-R P obtém-se, a partir de gráfico ou expressão analítica SESR C N min SESR Calcula-se SESR C C M e u = N N 0 min m sesr r = 1 m SESR u m s Admitindo para o desvanecimento a expressão (pp. 57: P ( p p 0 = k m calcula-se o sesr da ligação sesr = k sesr m r A cláusula SESR é verificada se sesr da ligação sesr SESR sesr objectivo = X Sistemas de Telecomunicações 79

80 Verificação da Cláusula BBER Obtém-se rber (residual ber; é um dado do fabricante e toma valores entre e (na falta de dados usa-se tipicamente Para a modulação utilizada e para o valor de rber obtém-se, a partir de gráfico ou expressão analítica rber C N min rber Obtém-se C C M e u = N N 0 rber min m rber r = 1 m rber u m s k Calcula-se sucessivamente 1 sesr = 2 sesr m r P ( rber = k rber m r ( ( log10 rber bersesr 3 m = 4 log P( rber sesr 10 bber = sesr α1 nb rber + 2.8α ( m 1 α 2 3 Sistemas de Telecomunicações 80

81 Verificação da Cláusula BBER (cont. Nas expressões anteriores: rber é o valor de BER na ausência de fading; P(rber é a fracção de tempo em que se tem rber; m é o valor absoluto da inclinação da distribuição de ber numa escala log-log para ber ses >ber>rber; ber ses Os valores de α 1, α 2 e α 3 podem variar em função da estatística dos erros para a ligação em causa (dependem da modulação, do código corrector de erros usado, etc.. O pior caso corresponde a α 1 =30, α 2 =1 e α 3 =1; n b é o número de bits por bloco; SESR, BBER (c/ letras maiúsculas: valores objectivo (retiram-se da tabela Rec. ITU-R F ; sesr, bber ( c/ letras minúsculas: o que se tem de facto na ligação. A cláusula BBER é verificada se bber BBER Sistemas de Telecomunicações 81

82 Verificação da Cláusula ESR A partir dos valores calculados anteriormente, determina-se esr = sesr n m + n n b α 3 rber onde n é o número de blocos por segundo. A cláusula é verificada se esr ESR onde ESR é o valor objectivo (retira-se da tabela da Rec. ITU-R F Sistemas de Telecomunicações 82

83 Verificação da cláusula SESR (método alternativo Para a modulação utilizada e para o valor de ber SESR da Rec. ITU-R P obtém-se, a partir de gráfico ou expressão analítica SESR C N min Admitindo para o desvanecimento a expressão (pp. 57 P ( p p 0 = k m calcula-se a margem real objectivo, relativa ao SESR m SESR r = k SESR Calcula-se SESR 1 m e u = SESR 1 m 1 m r s C N ( sesr= SESR = C N SESR min + M sesr u (em condições ideais de propagação - c.i.p. Sistemas de Telecomunicações 83

84 Sistemas de Telecomunicações 84 Margens da ligação As margens da ligação relativamente às cláusulas SESR, BBER e ESR são calculadas por: A margem crítica é dada por A frequência óptima é aquela para a qual se tem a maior margem crítica (que deve ser de 3 que deve ser de 3 db db. ( com, BBER bber obj obj BBER N C N C N C N C M = = = ( com, SESR sesr obj obj SESR N C N C N C N C M = = = { } = 3 1,2,, max 0 i N C N C M i obj critica ( com, ESR esr obj obj ESR N C N C N C N C M = = = o que se tem em cip o que se devia ter em cip Nota: cip = condições ideais de propagação

85 Exemplo 1 Sistemas de Telecomunicações 85

86 Exemplo 2 Sistemas de Telecomunicações 86

87 Normas de fiabilidade para feixes digitais (ITU-R A ITU-R considera um sistema de feixes digitais indisponível quando se verifica uma ou ambas das seguintes condições durante pelo menos 10 segundos consecutivos: sinal digital interrompido, com perda de sincronismo ou de alinhamento taxa de erros binários superior a 10-3 A indisponibilidade das ligações em feixes hertzianos é, principalmente, devida a: equipamento sobretudo avarias ou degradação fenómenos atmosféricos sobretudo chuva interferências instalações e torres das antenas e.g., desabamentos, sabotagens,etc. actividade humana erros de exploração ou manutenção Sistemas de Telecomunicações 87

88 Normas de fiabilidade para feixes digitais (ITU-R Segundo a ITU-R, a indisponibilidade máxima numa ligação deverá ser /2500 % do tempo. Compete ao projectista da ligação distribuir a indisponibilidade total pelas diferentes causas relevantes; na ausência de outros critérios, é usual considerar para orçamento da indisponibilidade: propagação (chuva 10 a 20% equipamento 30 a 40% restantes causas 50% A indisponibilidade devida ao equipamento depende da sua fiabilidade, da configuração adoptada (série/paralelo, existência de sistemas de reserva e do desempenho das equipas de manutenção, já que: I e =MTTR/MTBF onde MTTR (mean time to repair é o tempo necessário para detectar e reparar uma avaria e MTBF (mean time between failures é o tempo médio entre avarias. Sistemas de Telecomunicações 88

89 Indisponibilidade devida à chuva exemplo de cálculo Determinar a margem para a chuva (ou margem para a indisponibilidade na ligação descrita no exemplo da pág. 74. Admita que se reservou, para indisponibilidade devida à chuva, 10 % da indisponibilidade total. De acordo com as normas da ITU-R, a indisponibilidade máxima para uma ligação com 50 km de comprimento é /2500 % A indisponibilidade máxima devida à chuva é 10 % de No exemplo de cálculo da atenuação devida à chuva (pág. 47 obteve-se, para o valor de atenuação não excedido em mais de % do tempo: A r =0.88 db Em condições ideais de propagação, tem-se (C/N 0 = 65 db. Na presença de chuva tem-se, em ( % do tempo:(c/n r [(C/N 0 A r ] = db Para um BER de 10-3 (ligação indisponível, é necessário um (C/N mín de 25 db A margem de segurança para a chuva é (C/N r - (C/N mín = = db [ Nota: (C/N 0 mín =(C/N mín + A r ] condições ideais condições reais Sistemas de Telecomunicações 89

90 Exemplo Sistemas de Telecomunicações 90

91 Estações repetidoras A solução para ligações entre terminais sem linha de vista passa pela introdução de estações repetidoras que podem ser de dois tipos: Estações repetidoras activas A ligação inicial é partida em mais do que 1 salto em linha de vista, existindo nas estações repetidoras introduzidas equipamento de recepção e emissão (e normalmente amplificação e/ou regeneração; Para efeito da verificação das normas de qualidade, cada salto é considerado individualmente. Estações repetidoras passivas A ligação inicial é partida em mais do que 1 salto em linha de vista, introduzindo-se um repetidor, dito passivo, (raramente mais do que 1 por salto por se limitar a reflectir o sinal já que não possui qualquer equipamento de recepção, emissão ou amplificação. Sistemas de Telecomunicações 91

92 Repetidores passivos Existem 3 tipos de repetidores passivos: a Espelho plano com ganho 4π G esp = 2 10log a cosφ 10log 2 esp + 10 λ 10 η (db onde a esp é a área física do espelho, φ é o ângulo de incidência no espelho e η éo rendimento ( 1 b Periscópio conjunto de 2 espelhos planos com ganho correspondente ao menor ganho dos dois espelhos c Costas-com-costas - 2 antenas parabólicas ligadas através de um pequeno troço de guia ou cabo coaxial com ganho igual à soma dos ganhos das antenas a b Sistemas de Telecomunicações 92

93 Repetidores passivos (cont. Seja um percurso obstruído por um obstáculo. Pretende-se comparar as duas soluções: 1. Consideração da atenuação de obstáculo 2. Instalação de um repetidor passivo Com atenuação do obstáculo: P obs R = P em que : L fs E + G E + G R L A obs = log( d km + 20log( f MHz fs Com um repetidor passivo: P pas R em que : d = d L L fs1 fs2 = P 1 E + d + G 2 E + G rep = log( d = log( d 1km + G 2km R L fs1 + 20log( f L + 20log( f MHz fs2 MHz Sistemas de Telecomunicações 93

94 Repetidores passivos (cont. O repetidor passivo é preferível se: P G pas R ou rep > P obs R > log 10 d d ( 1 d log 10 ( f MHz A obs Se o repetidor passivo fôr constituído por antenas parabólicas de diâmetro D (m, com rendimento de abertura de 0.5: d d 40log ( D > log ( log10( f MHz A obs d O repetidor passivo é tanto mais atraente quanto: mais elevada fôr f; mais próximo de um dos terminais estiver o obstáculo; mais elevada fôr a atenuação do obstáculo. Sistemas de Telecomunicações 94

95 Custo de uma ligação Projecto da ligação Terrenos para emissor/receptores e repetidores Acessos e infra-estruturas (e.g., energia e comunicações Torres de emissão/recepção Antenas Emissores Receptores Guias, cabos coaxiais e fibra óptica Acessórios vários e sobressalentes Torres para repetidores Antenas/reflectores para repetidores Energia Manutenção e reparação Sistemas de Telecomunicações 95

96 Bibliografia Feixes Hertzianos, Carlos Salema, IST Press, 2ª. Edição, 2002 Microwave Radio Links, Carlos Salema, John Wiley & Sons, 2003 Digital Transmission Systems, David R. Smith, Van Nostrand Reinhold, 1992 Sistemas de Telecomunicações 96

SISTEMAS DE TELECOMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira

SISTEMAS DE TELECOMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira SISTEMAS DE TELECOMUNICAÇÕES Feixes Hertzianos Paula Queluz Fernando Pereira Feixes Hertzianos: características Portadoras com frequência elevada ( 1 a 20 GHz), possibilitando a utilização de antenas bastante

Leia mais

SISTEMAS DE COMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira

SISTEMAS DE COMUNICAÇÕES. Feixes Hertzianos. Paula Queluz Fernando Pereira SISTEMAS DE COMUNICAÇÕES Feixes Hertzianos Paula Queluz Fernando Pereira Livro Recomendado Feixes Hertzianos Carlos Salema FORMATO: 235 X 169 mm 556 Págs. ISBN: 972-8469-21-7 ANO: 2002 2ª Edição PVP: 26,50

Leia mais

SISTEMAS DE COMUNICAÇÕES. Feixes Hertzianos

SISTEMAS DE COMUNICAÇÕES. Feixes Hertzianos SISTEMAS DE COMUNICAÇÕES Feixes Hertzianos Paula Queluz Fernando Pereira Livro Recomendado Feixes Hertzianos Carlos Salema FORMATO: 235 X 169 mm 556 Págs. ISBN: 972-8469-21-7 ANO: 2002 2ª Edição PVP: 26,50

Leia mais

Projecto de uma Ligação por Feixes Hertzianos

Projecto de uma Ligação por Feixes Hertzianos INSTITUTO SUPERIOR TÉCNICO MESTRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES GUIA DO 2º TRABALHO DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES Projecto de uma Ligação por Feixes Hertzianos Ano Lectivo

Leia mais

Projecto de uma Ligação por Feixes Hertzianos GUIA DO 1º TRABALHO DE LABORATÓRIO SISTEMAS DE TELECOMUNICAÇÕES INSTITUTO SUPERIOR TÉCNICO

Projecto de uma Ligação por Feixes Hertzianos GUIA DO 1º TRABALHO DE LABORATÓRIO SISTEMAS DE TELECOMUNICAÇÕES INSTITUTO SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA DE REDES DE COMUNICAÇÃO E INFORMAÇÃO GUIA DO 1º TRABALHO DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES Projecto de uma Ligação por Feixes Hertzianos

Leia mais

SISTEMAS DE COMUNICAÇÕES Ano lectivo de 2014/ o Semestre 2º Teste 8 de Junho de 2015

SISTEMAS DE COMUNICAÇÕES Ano lectivo de 2014/ o Semestre 2º Teste 8 de Junho de 2015 SISTEMAS DE COMUNICAÇÕES Ano lectivo de 2014/2015-2 o Semestre 2º Teste 8 de Junho de 2015 Nome:... Número:... Grupo I ( 2 + 1.5 + 1.5 val.) Considere uma ligação bidireccional em feixes hertzianos digitais,

Leia mais

ÍNDICE. ix xi xiii xxi

ÍNDICE. ix xi xiii xxi 1 1.1 1.2 1.3 1.4 2 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.6 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.8 2.9 2.9.1 2.9.2 2.9.3 2.10 2.11 PREFÁCIO AGRADECIMENTOS LISTA DE FIGURAS LISTA DE TABELAS INTRODUÇÃO

Leia mais

2 Projeto de Enlaces Rádio

2 Projeto de Enlaces Rádio Redes de Acesso em Banda Larga Projeto de Enlaces Rádio Projeto de enlaces rádio O projeto de enlaces rádio requer o conhecimento das características do equipamento disponível, do sistema rádio a ser utilizado,

Leia mais

Estudo de desvanecimentos

Estudo de desvanecimentos Estudo de desvanecimentos Ligação por satélite 19-12-2003 Carlos Rocha e Rui Botelho 1 Desvanecimentos:variações de amplitude do sinal em torno do seu valor médio Tipos de desvanecimentos: quase constantes(ex:.absorção

Leia mais

3 Propagação de Ondas Milimétricas

3 Propagação de Ondas Milimétricas 3 Propagação de Ondas Milimétricas O desempenho de sistemas de comunicação sem fio depende da perda de propagação entre o transmissor e o receptor. Ao contrário de sistemas cabeados que são estacionários

Leia mais

ÍNDICE. LISTA DE FIGURAS xiii. LISTA DE TABELAS xxiii. PREFÁCIO DA 1A EDIÇÃO xxvii. PREFÁCIO DA 2A EDIÇÃO xxix. AGRADECIMENTOS xxxi

ÍNDICE. LISTA DE FIGURAS xiii. LISTA DE TABELAS xxiii. PREFÁCIO DA 1A EDIÇÃO xxvii. PREFÁCIO DA 2A EDIÇÃO xxix. AGRADECIMENTOS xxxi ÍNDICE LISTA DE FIGURAS xiii LISTA DE TABELAS xxiii PREFÁCIO DA 1A EDIÇÃO xxvii PREFÁCIO DA 2A EDIÇÃO xxix AGRADECIMENTOS xxxi 1 INTRODUÇÃO 1 1.1 Ligações por Feixes Hertzianos 3 1.2 Resenha Histórica

Leia mais

CET em Telecomunicações e Redes Telecomunicações. Lab 13 Antenas

CET em Telecomunicações e Redes Telecomunicações. Lab 13 Antenas CET em e Redes Objectivos Familiarização com o conceito de atenuação em espaço livre entre o transmissor e o receptor; variação do campo radiado com a distância; razão entre a directividade e ganho de

Leia mais

2 Descrição do Problema

2 Descrição do Problema 2 Descrição do Problema Os requisitos de desempenho para enlaces de comunicação digital estabelecidos por recomendações da ITU impõem restrições a parâmetros de desempenho de erro e disponibilidade. A

Leia mais

ANTENAS E PROPAGAÇÃO MEAero 2010/2011

ANTENAS E PROPAGAÇÃO MEAero 2010/2011 ANTENAS E PROPAGAÇÃO MEAero 2010/2011 1º Teste, 07-Abr-2011 (com resolução) Duração: 1H30 DEEC Resp: Prof. Carlos Fernandes Problema 1 Considere um satélite de órbita baixa (450 km) usado para prospecção

Leia mais

6 APLICAÇÃO DOS MODELOS DESENVOLVIDOS

6 APLICAÇÃO DOS MODELOS DESENVOLVIDOS 6 APLICAÇÃO DOS MODELOS DESENVOLVIDOS Os modelos desenvolvidos neste trabalho têm aplicação importante no planejamento e dimensionamento de sistemas sem fio que operam em freqüências superiores a 10 GHz

Leia mais

Exercícios de Sistemas de Telecontrolo

Exercícios de Sistemas de Telecontrolo Exercícios de Sistemas de Telecontrolo Exercícios sobre Sistemas de Aquisição de Dados 1. Considere um sistema de aquisição de dados centralizado com comutação de baixo nível. Utiliza-se um multiplexador

Leia mais

Concepção e Planeamento de Redes sem Fios IEEE Vitor Carvalho IT / DEM, Universidade da Beira Interior Covilhã, Portugal

Concepção e Planeamento de Redes sem Fios IEEE Vitor Carvalho IT / DEM, Universidade da Beira Interior Covilhã, Portugal Concepção e Planeamento de Redes sem Fios IEEE 802.16 Vitor Carvalho IT / DEM, Universidade da Beira Interior Covilhã, Portugal Covilhã, 7 de Novembro de 2005 1 Resumo Objectivos Wimax Planeamento celular

Leia mais

1ª Série de Problemas

1ª Série de Problemas INSTITUTO SUPERIOR TÉCNICO MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES 1ª Série de Problemas de Sistemas e Redes de Telecomunicações Ano Lectivo de 2007/2008 Abril 2008 1 Na resolução

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Fenômenos de Propagação Efeitos da Reflexão na Propagação Reflexão Ocorre quando uma onda EM incide em uma superfície refletora. Parte da energia

Leia mais

Sistemas de Telecomunicações

Sistemas de Telecomunicações Informações gerais A disciplina Sistemas de Telecomunicações faz parte do curriculum do Mestrado Integrado em Eng. Electrotécnica e de Computadores - sendo o seu corpo docente formado por: Prof a. Maria

Leia mais

Planeamento de uma Rede sem Fios IEEE e no Concelho da Covilhã

Planeamento de uma Rede sem Fios IEEE e no Concelho da Covilhã Universidade da Beira Interior Planeamento de uma Rede sem Fios IEEE 802.16e no Concelho da Covilhã Rui Marcos Dany Santos Covilhã, 7 de Novembro de 2005 Resumo Objectivo Planeamento Celular Análise de

Leia mais

Fibra Óptica Cap a a p c a id i a d d a e d e d e d e t r t an a s n mi m t i i t r i i n i f n o f r o ma m ç a ão ã

Fibra Óptica Cap a a p c a id i a d d a e d e d e d e t r t an a s n mi m t i i t r i i n i f n o f r o ma m ç a ão ã Fibra Óptica Capacidade de transmitir informação Capacidade de transmitir informação Capacidade taxa máxima de transmissão fiável C = B log 2 (1 + S/N) [Lei de Shannon] B largura de banda do canal B T

Leia mais

Redes de Computadores. Meios de comunicação sem fios

Redes de Computadores. Meios de comunicação sem fios Meios de comunicação sem fios Características da ligação! Largura de banda de um meio de transmissão, W, é a diferença entre a maior e a menor frequência comportadas, ou seja, é a amplitude da sua gama

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Introdução ao link budget Propagação no espaço livre Equação de Friis Introdução ao link budget O desempenho de um link de comunicações depende

Leia mais

ANTENAS E PROPAGAÇÃO MEAero 2011/2012

ANTENAS E PROPAGAÇÃO MEAero 2011/2012 ANTENAS E PROPAGAÇÃO MEAero 011/01 1º Exame e Repescagem do 1º e º teste, 31-Mai-01 NOTA REFERENTE A TODAS AS PERGUNTAS: Duração teste: 1H30 Duração exame: H30 Resp: Prof. Carlos Fernandes Para ter a cotação

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

Transmissão e comunicação de dados. Renato Machado

Transmissão e comunicação de dados. Renato Machado Renato Machado UFSM - Universidade Federal de Santa Maria DELC - Departamento de Eletrônica e Computação renatomachado@ieee.org renatomachado@ufsm.br 23 de Abril de 2012 Sumário 1 2 3 4 Térmico de Intermodulação

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Fenômenos de Propagação Efeitos da Refração na Propagação Fenômenos de Propagação Quando uma onda se propaga e encontra certo meio, como um obstáculo

Leia mais

Sistemas de Comunicação Óptica

Sistemas de Comunicação Óptica Sistemas de Comunicação Óptica Problemas sobre Aspectos de Engenharia de Transmissão Óptica 1) Um fotodíodo PIN gera em média um par electrão-lacuna por cada três fotões incidentes. Assume-se que todos

Leia mais

Tutorial. Metodologia de Cálculo de Enlace por Satélite

Tutorial. Metodologia de Cálculo de Enlace por Satélite Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT Programa de Educação Tutorial PET Grupo PET-Tele Tutorial Metodologia de Cálculo de Enlace por Satélite

Leia mais

4 CÁLCULO DA INTERFERÊNCIA DEVIDA AO ESPALHAMENTO PELA CHUVA

4 CÁLCULO DA INTERFERÊNCIA DEVIDA AO ESPALHAMENTO PELA CHUVA 4 CÁLCULO DA INTERFERÊNCIA DEVIDA AO ESPALHAMENTO PELA CHUVA A interferência vem sendo reconhecida como um potencial problema para os sistemas de rádio comunicações por micro-ondas. A interferência é usualmente

Leia mais

Redes de Computadores. Topologias

Redes de Computadores. Topologias Redes de Computadores Topologias Sumário! Topologia Tipo de topologias 2 Topologia Configuração dos cabos, computadores e outros equipamentos 3 Topologia de cablagem! Topologia física Localização real

Leia mais

Faculdade de Ciências e Tecnologia Departamento de Engenharia Electrotécnica. Comunicação sem fios 2007/2008

Faculdade de Ciências e Tecnologia Departamento de Engenharia Electrotécnica. Comunicação sem fios 2007/2008 Faculdade de Ciências e Tecnologia Departamento de Engenharia Electrotécnica Comunicação sem fios 2007/2008 1º Trabalho: Modelos de cobertura em redes WIFI 1 Índice Introdução...3 Objectivos...4 Relatório...7

Leia mais

Modelos de cobertura em redes WIFI

Modelos de cobertura em redes WIFI Departamento de Engenharia Electrotécnica Secção de Telecomunicações Licenciatura em Engenharia Electrotécnica e de Computadores Comunicação sem fios 2012/2013 Grupo: nº e Modelos de cobertura em redes

Leia mais

Instruções de preenchimento Serviço fixo - SF (Ligação estúdio-emissor - STL) Pedido de Licenciamento / Alteração / Revogação

Instruções de preenchimento Serviço fixo - SF (Ligação estúdio-emissor - STL) Pedido de Licenciamento / Alteração / Revogação Requerimento Identificação do requerente Instruções de preenchimento Serviço fixo - SF (Ligação estúdio-emissor - STL) Pedido de Licenciamento / Alteração / Revogação Nota: Os documentos podem ser copiados

Leia mais

Sistemas de Comunicação Óptica Amplificadores Ópticos

Sistemas de Comunicação Óptica Amplificadores Ópticos Sistemas de Comunicação Óptica Amplificadores Ópticos João Pires Sistemas de Comunicação Óptica 85 Aplicações gerais (I) Amplificador de linha Usado para compensar a atenuação da fibra óptica em sistemas

Leia mais

Computação Móvel: Teoria da Informação e Modulação

Computação Móvel: Teoria da Informação e Modulação Computação Móvel: Teoria da Informação e Modulação Mauro Nacif Rocha DPI/UFV 1 Teoria da Informação Conceitos Básicos Transmissão: Informação + Sinais + Meios Físicos 2 1 Sinais Analógico Digital Variação

Leia mais

Propagação e Antenas Teste 16 de Janeiro de Duração: 2 horas 16 de Janeiro de 2016

Propagação e Antenas Teste 16 de Janeiro de Duração: 2 horas 16 de Janeiro de 2016 Propagação e Antenas Teste 6 de Janeiro de 6 Docente Responsável: Prof Carlos R Paiva Duração: horas 6 de Janeiro de 6 Ano ectivo: 5 / 6 SEGUNDO TESTE Pretende-se adaptar uma carga Z 5 a uma linha de impedância

Leia mais

NP ISO :2011 Acústica Descrição, medição e avaliação do ruído ambiente Parte 2: Determinação dos níveis de pressão sonora do ruído ambiente

NP ISO :2011 Acústica Descrição, medição e avaliação do ruído ambiente Parte 2: Determinação dos níveis de pressão sonora do ruído ambiente NP ISO 1996 2:2011 Acústica Descrição, medição e avaliação do ruído ambiente Parte 2: Determinação dos níveis de pressão sonora do ruído ambiente 2011 03 03 1 NP ISO 1996 2:2011 7 Condições meteorológicas

Leia mais

1 O canal de comunicação radiomóvel

1 O canal de comunicação radiomóvel 1 O canal de comunicação radiomóvel O projeto de sistemas de comunicações sem fio confiáveis e de alta taxa de transmissão continua sendo um grande desafio em função das próprias características do canal

Leia mais

Redes de Telecomunicações

Redes de Telecomunicações Redes de Telecomunicações Problemas e questões sobre Redes de Transporte SDH (cap.) ) Quais são as diferenças mais importantes entre o PDH e SDH relativamente a: - tipo de multiplexagem usada? - alinhamento

Leia mais

E E ). Tem-se, portanto, E r t E0

E E ). Tem-se, portanto, E r t E0 Propagação e Antenas Exame 6 de Janeiro de 6 Docente Responsável: Prof Carlos R Paiva Duração: 3 horas 6 de Janeiro de 6 Ano ectivo: 5 / 6 PRIMEIRO EXAME Nota Inicial As soluções dos Problemas 3 6 podem

Leia mais

1 T. Ondas acústicas ONDAS. Formalismo válido para diversos fenómenos: o som e a luz, por exemplo, relacionados com dois importantes sentidos.

1 T. Ondas acústicas ONDAS. Formalismo válido para diversos fenómenos: o som e a luz, por exemplo, relacionados com dois importantes sentidos. Ondas acústicas ONDAS Formalismo válido para diversos fenómenos: o som e a luz, por exemplo, relacionados com dois importantes sentidos. Descrição válida para fenómenos periódicos ALGUNS CONCEITOS RELACIONADOS

Leia mais

4 Cálculo de Cobertura

4 Cálculo de Cobertura 4 Cálculo de Cobertura Este capítulo descreve a metodologia utilizada para o cálculo de cobertura e da relação sinal interferência (/I). 4.1 Potência Transmitida e Controle Automático de Potência A intensidade

Leia mais

Meios de transmissão. Comunicações (23 Abril 2009) ISEL - DEETC - Comunicações 1

Meios de transmissão. Comunicações (23 Abril 2009) ISEL - DEETC - Comunicações 1 Meios de transmissão (23 Abril 2009) 1 Sumário 1. Transmissão não ideal 1. Atenuação, Distorção, Ruído e Interferência 2. Meios de transmissão 1. Pares Entrelaçados 1. UTP Unshielded Twisted Pair 2. STP

Leia mais

Duração do Teste: 2h.

Duração do Teste: 2h. Telecomunicações e Redes de Computadores Licenciatura em Engenharia e Gestão Industrial Prof. João Pires 1º Teste, 2007/2008 30 de Abril de 2007 Nome: Número: Duração do Teste: 2h. A prova é composta por

Leia mais

Cobertura por satélite Aeronautical Mobile Satellite Services (AMSS) Maritime Mobile Satellite Services (MMSS) Land Mobile Satellite Services (LMSS)

Cobertura por satélite Aeronautical Mobile Satellite Services (AMSS) Maritime Mobile Satellite Services (MMSS) Land Mobile Satellite Services (LMSS) Licenciatura em Eng Electrotécnica e Computadores Carlos A. Cardoso Fernandes 1 1.1 Comunicações Móveis 2 1.2 Serviços de rádio-móvel Cobertura por satélite Aeronautical Mobile Satellite Services (AMSS)

Leia mais

Sistemas de Comunicação Óptica Redes Ópticas da Primeira Geração

Sistemas de Comunicação Óptica Redes Ópticas da Primeira Geração Sistemas de Comunicação Óptica Redes Ópticas da Primeira Geração João Pires Sistemas de Comunicação Óptica 106 Estrutura estratificada das redes de telecomunicações Camada de serviços PDH, SDH, WDM Camada

Leia mais

1. Introdução. ANTENAS IST A. Moreira 1

1. Introdução. ANTENAS IST A. Moreira 1 1. Introdução Conceito de antena Aplicações Tipos e classes de antenas Breve história das antenas e métodos de análise Antenas em sistema de comunicações ANTENAS IST A. Moreira 1 Antena - definição Dispositivo,

Leia mais

Tópicos avançados em sistemas de telecomunicações. Renato Machado

Tópicos avançados em sistemas de telecomunicações. Renato Machado Renato Machado UFSM - Universidade Federal de Santa Maria DELC - Departamento de Eletrônica e Computação renatomachado@ieee.org renatomachado@ufsm.br Santa Maria, 14 de Março de 2012 Sumário 1 2 3 4 5

Leia mais

EEC4164 Telecomunicações 2

EEC4164 Telecomunicações 2 Licenciatura em Engenharia Electrotécnica e de Computadores EEC4164 Telecomunicações (00/003) 1ª Parte Duração: 1 hora (sem consulta) 1ª chamada 4 de Janeiro de 003 1. a) Uma alternativa a PCM é a modulação

Leia mais

Sistemas de Comunicações Móveis e Pessoais. Dimensionamento Celular

Sistemas de Comunicações Móveis e Pessoais. Dimensionamento Celular Dimensionamento Celular BaPo(1/12) A avaliação da atenuação máxima de propagação admitida numa célula é essencial para o dimensionamento da cobertura de uma célula, e consequentemente para o planeamento

Leia mais

Ondas - 2EE 2003 / 04

Ondas - 2EE 2003 / 04 Ondas - EE 003 / 04 Utilização de Basicamente trata-se de transmitir informação ao longo de uma guia de onda em vidro através de um feixe luminoso. O que é uma Fibra Óptica? Trata-se de uma guia de onda

Leia mais

Sistemas de Comunicação Sem Fio

Sistemas de Comunicação Sem Fio Sistemas de Comunicação Sem Fio Aspectos de Propagação de Sistemas Móveis Celulares Prof. Cláudio Henrique A. Rodrigues, M. Sc. Revisão Sinal Contínuo no Tempo x Sinal Discreto no Tempo Um sinal é um sinal

Leia mais

Propagação e Antenas Teste 9 de Novembro de Duração: 2 horas 9 de Novembro de 2015

Propagação e Antenas Teste 9 de Novembro de Duração: 2 horas 9 de Novembro de 2015 Propagação e Antenas Teste 9 de Novembro de 5 Docente Responsável: Prof Carlos R Paiva Duração: horas 9 de Novembro de 5 Ano Lectivo: 5 / 6 PRIMEIRO TESTE Uma nave espacial deixa a Terra com uma velocidade

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Fenômenos de Propagação Efeitos da Difração na Propagação Difração Difração é a propriedade que toda onda eletromagnética tem de circundar o ápice

Leia mais

4 π d. L fs. TE155-Redes de Acesso sem Fios Rádio-Propagação. TE155-Redes de Acesso sem Fios Rádio-Propagação

4 π d. L fs. TE155-Redes de Acesso sem Fios Rádio-Propagação. TE155-Redes de Acesso sem Fios Rádio-Propagação Rádio-Propagação Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@eletrica.ufpr.br Rádio-Propagação Perda no Espaço Livre Refração na atmosfera e Fator

Leia mais

Propagação em Pequena Escala. CMS Bruno William Wisintainer

Propagação em Pequena Escala. CMS Bruno William Wisintainer Propagação em Pequena Escala CMS 60808 2016-1 Bruno William Wisintainer bruno.wisintainer@ifsc.edu.br Definição Modelos que caracterizam as variações rápidas da potência do sinal quando o móvel é deslocado

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo III Distância em visada direta Zona de Fresnel Zona de interferência e Zona de difração Distância em visada direta Devido à curvatura da Terra, existe

Leia mais

Evolução dos sistemas de comunicação óptica

Evolução dos sistemas de comunicação óptica Evolução dos sistemas de comunicação óptica 960 - Realização do primeiro laser; 966 - Proposta para usar as fibras ópticas em telecomunicações (Kao); 970 - Fabrico da primeira fibra óptica de sílica dopada

Leia mais

Sistemas de comunicação óptica

Sistemas de comunicação óptica Sistemas de comunicação óptica Introdução 1880 Alexander Graham Bell: Fotofone Patente do fotofone: Introdução Sistema de Fibra Óptica Ligação ponto-a-ponto Sistema de Fibra Óptica Sistemas de longa distância

Leia mais

II-2 Meios de transmissão

II-2 Meios de transmissão II-2 Meios de transmissão Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Transmissão não ideal Atenuação, Distorção, Ruído e Interferência Causas de erros na comunicação digital 2. Meios de transmissão

Leia mais

Análise de desempenho de um sistema de comunicação óptica

Análise de desempenho de um sistema de comunicação óptica INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES GUIA DO º TRABALHO DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES I Análise de desempenho de um sistema de comunicação

Leia mais

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.

Leia mais

Ondas e propagação Comunicações I - Elisa Bandeira 2 1

Ondas e propagação Comunicações I - Elisa Bandeira 2 1 Ondas e propagação 2 1 Comprimento de onda é a distância entre valores repetidos num padrão de onda. É normalmente representado pela letra grega lambda (λ). Frequência é a velocidade de repetição de qualquer

Leia mais

Problema 1 [5.0 valores] I. Uma linha de transmissão com

Problema 1 [5.0 valores] I. Uma linha de transmissão com Propagação e Radiação de Ondas Electromagnéticas Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2016/2017, 2º Semestre Exame, 23 de Junho de 2017 Notas 1) O teste tem a duração de

Leia mais

Meios de transmissão guiados

Meios de transmissão guiados Meios de transmissão uiados Pares simétricos - dois fios metálicos (cobre) isolados e entrelaçados usados na rede telefónica local, em LANs; larura de banda MHz (sem pupinização, i.e. cara); sujeitos a

Leia mais

Rádio-Propagação. Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica

Rádio-Propagação. Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica Rádio-Propagação Ewaldo Luiz de Mattos Mehl Universidade Federal do Paraná Departamento de Engenharia Elétrica mehl@ufpr.br Rádio-Propagação Agenda Perda no Espaço Livre Refração na atmosfera e Fator K

Leia mais

4 Resultados Numéricos

4 Resultados Numéricos 4 esultados Numéricos Neste capítulo, são apresentadas as estimativas dos valores dos parâmetros de desempenho de erro em dois cenários. No primeiro cenário, o enlace sofre apenas degradação devida a chuvas,

Leia mais

Fontes Ópticas - Tipos e principais características -

Fontes Ópticas - Tipos e principais características - Fontes Ópticas - Tipos e principais características - As principais fontes ópticas utilizadas em comunicações ópticas são o LED (light emitting diode) e o LD (Laser diode que funciona segun o princípio

Leia mais

Comunicações Móveis (2016/01) Prof. André Noll Barreto. Prova 1 (25/04/2016)

Comunicações Móveis (2016/01) Prof. André Noll Barreto. Prova 1 (25/04/2016) Prova 1 (25/04/2016) Aluno: Matrícula: Questão 1 (4 pontos) Um engenheiro deve projetar uma rede para uma estrada, utilizando torres com 25m de altura e antenas omnidirecionais com ganho de 3dB e modems

Leia mais

Duração do Teste: 2h.

Duração do Teste: 2h. Telecomunicações e Redes de Computadores Mestrado em Engenharia e Gestão Industrial Prof. João Pires º Teste, 007/008 8 de Junho de 008 Nome: Número: Duração do Teste: h. A prova é composta por três partes:

Leia mais

EEC4262 Radiação e Propagação. Lista de Problemas

EEC4262 Radiação e Propagação. Lista de Problemas Lista de Problemas Parâmetros fundamentais das antenas 1) Uma antena isotrópica no espaço livre produz um campo eléctrico distante, a 100 m da antena, de 5 V/m. a) Calcule a densidade de potência radiada

Leia mais

Introdução aos Sistemas de Comunicações

Introdução aos Sistemas de Comunicações aos Sistemas de Comunicações Edmar José do Nascimento () http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Colegiado de Engenharia Elétrica Roteiro 1 Sistemas de

Leia mais

Comunicações Móveis: Mitos e Realidades

Comunicações Móveis: Mitos e Realidades Comunicações Móveis: Mitos e Realidades Área de Telecomunicações Departamento de Engenharia Electrotécnica Escola Superior de Tecnologia e Gestão Instituto Politécnico de Leiria Orador: Doutor Rafael F.

Leia mais

ECOGRAFIAS. Ecografias. Imagens estruturais, baseadas na reflexão dos ultra-sons nas paredes dos tecidos.

ECOGRAFIAS. Ecografias. Imagens estruturais, baseadas na reflexão dos ultra-sons nas paredes dos tecidos. ECOGRAFIAS Ecografias Imagens estruturais, baseadas na reflexão dos ultra-sons nas paredes dos tecidos. Imagens dinâmicas baseadas no efeito de Doppler aplicado ao movimento sanguíneo. ULTRA-SONS, ECOS

Leia mais

Ondas Mecânicas. Exemplos de interferência construtiva, genérica e destrutiva.

Ondas Mecânicas. Exemplos de interferência construtiva, genérica e destrutiva. Ondas Mecânicas A soma de ondas é vectorial. Por isso, quando duas ou mais ondas se propagam no mesmo meio observam se fenómenos de interferência. resultantes Exemplos de interferência construtiva, genérica

Leia mais

MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN

MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN MICRO-ONDAS NOMES: ADRIEL GOULART IAGO BIANQUINI OSMAR HOFMAN MICRO-ONDAS: CONCEITOS INICIAIS As micro-ondas funcionam acima de 100 MHz, as ondas viajam em linhas retas e podem ser estreitamente focadas

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações 03 e 04 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 1 1.3 Enlace de comunicação

Leia mais

PARTE 3: COMUNICAÇÃO POR SATÉLITE AULA 18: ANTENAS. Sistemas de Telecomunicações II Prof. Flávio Ávila

PARTE 3: COMUNICAÇÃO POR SATÉLITE AULA 18: ANTENAS. Sistemas de Telecomunicações II Prof. Flávio Ávila PARTE 3: COMUNICAÇÃO POR SATÉLITE AULA 18: ANTENAS Sistemas de Telecomunicações II Prof. Flávio Ávila Antenas nas estações terrenas 2 Três classes principais Antenas cornetas (Horn Antenna) Rede de antenas

Leia mais

1 Fibra óptica e Sistemas de transmissão ópticos

1 Fibra óptica e Sistemas de transmissão ópticos 1 Fibra óptica e Sistemas de transmissão ópticos 1.1 Introdução Consiste de um guia de onda cilíndrico, conforme Figura 1, formado por núcleo de material dielétrico ( em geral vidro de alta pureza), e

Leia mais

Teoria das Comunicações

Teoria das Comunicações 1 - Introdução Enlace de um Sistema de Comunicação fonte mensagem transdutor Transmissor Modulador canal ruído receptor transdutor destino mensagem (estimada) sinal de entrada sinal com distorção sinal

Leia mais

Fontes Ópticas - Tipos e principais características -

Fontes Ópticas - Tipos e principais características - Fontes Ópticas - Tipos e principais características - As principais fontes ópticas utilizadas em comunicações ópticas são o LED (light emitting diode) e o LD (Laser diode que funciona segun o princípio

Leia mais

MODELOS DE PROPAGAÇÃO

MODELOS DE PROPAGAÇÃO MODELOS DE PROPAGAÇÃO Enunciados 1. Deduza, a partir das expressões em unidades lineares, as expressões abaixo indicadas: a P R [dbw] = -32.44 + P E [dbw] + G E [dbi] + G R [dbi] - 20 log(d [km] - 20 log(f

Leia mais

DISPERSÃO. Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra;

DISPERSÃO. Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra; DISPERSÃO Quando a luz se propaga em meios dispersivos a sua velocidade de propagação muda com o comprimento de onda. Além disso a luz se propaga de diferentes modos (por diferentes caminhos) gerando distintos

Leia mais

Exame de Sistemas e Redes de Telecomunicações

Exame de Sistemas e Redes de Telecomunicações Exame de Sistemas e Redes de Telecomunicações Licenciatura em Engenharia Electrotécnica e de Computadores º Exame (Exame A) 3 de Julho de 007 Duração: 3 h Responda sucinta, mas completamente às uestões

Leia mais

Telecomunicações e Redes de Computadores Mestrado em Engenharia e Gestão Industrial. Prof. João Pires. 2º exame, 2007/ de Julho de 2008

Telecomunicações e Redes de Computadores Mestrado em Engenharia e Gestão Industrial. Prof. João Pires. 2º exame, 2007/ de Julho de 2008 Telecomunicações e Redes de Computadores Mestrado em Engenharia e Gestão Industrial Prof. João Pires º exame, 007/008 8 de Julho de 008 Nome: Número: Duração do Exame: h 30m. A prova é composta por três

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 03 e 04 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 1 1 Elementos

Leia mais

Amplificadores Ópticos - Aspectos gerais -

Amplificadores Ópticos - Aspectos gerais - Amplificadores Ópticos - Aspectos gerais - Os amplificadores ópticos (AO) operam somente no domínio óptico sem quaisquer conversões para o domínio eléctrico; Os AO são transparentes ao ritmo de transmissão

Leia mais

Telecomunicações. Prof. MSc André Y. Kusumoto

Telecomunicações. Prof. MSc André Y. Kusumoto Telecomunicações Prof. MSc André Y. Kusumoto andrekusumoto.unip@gmail.com Ondas Eletromagnéticas A antena de uma estação transmissora de rádio irradia sinais na forma de ondas eletromagnéticas. Como é

Leia mais

4 Análise dos dados de atenuação por chuva

4 Análise dos dados de atenuação por chuva 4 Análise dos dados de atenuação por chuva A atenuação por chuva tem características estacionárias e dinâmicas que podem ser analisadas através de suas estatísticas. 4.1. Estatísticas estacionárias da

Leia mais

Princípios de telecomunicações. Uma abordagem sobre os meios de transmissão. Prof. Dr.David David B.

Princípios de telecomunicações. Uma abordagem sobre os meios de transmissão. Prof. Dr.David David B. Princípios de telecomunicações Uma abordagem sobre os meios de transmissão. Prof. Dr.David David B. 1 Princípios de Telecomunicações FONTE RUÍDO DESTINO Sinal da mensagem transmissor Sinal transmitido

Leia mais

Rede Telefónica Pública Comutada - Principais elementos -

Rede Telefónica Pública Comutada - Principais elementos - - Principais elementos - Equipamento terminal: o telefone na rede convencional Equipamento de transmissão: meio de transmissão, e.g. cabos de pares simétricos, cabo coaxial, fibra óptica, feixes hertzianos,

Leia mais

Transmissão de impulsos em banda-base

Transmissão de impulsos em banda-base ransmissão de impulsos em banda-base ransmissão de impulsos através de um canal com ruído aditivo.3 O filtro adaptado e o correlacionador ransmissão de sinais em canais banda-base Introdução Consideremos

Leia mais

Meios de transmissão guiados

Meios de transmissão guiados Meios de transmissão uiados Pares simétricos - dois fios metálicos (cobre) isolados e entrelaçados: usados na rede telefónica local, em LANs; larura de banda MHz (sem pupinização, i.e. cara); sujeitos

Leia mais

Exercícios de Revisão Global 3º Bimestre

Exercícios de Revisão Global 3º Bimestre Exercícios de Revisão Global 3º Bimestre 1. Um aluno está olhando de frente para uma superfície metálica totalmente polida. Explique como o aluno se enxerga e qual o nome deste fenômeno? A explicação está

Leia mais

4 Simulações LTE e SBTVD na faixa de frequência de 700 MHz

4 Simulações LTE e SBTVD na faixa de frequência de 700 MHz 4 Simulações LTE e SBTVD na faixa de frequência de 700 MHz 4.1. Introdução Neste capítulo é descrito o cenário de coexistência entre o Sistema Brasileiro de Televisão Digital (SBTVD) e o Sistema Móvel

Leia mais

Análise de desempenho de um sistema de comunicação óptica

Análise de desempenho de um sistema de comunicação óptica INSTITUTO SUPERIOR TÉCNICO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES GUIA DO º TRABALHO DE LABORATÓRIO DE SISTEMAS DE TELECOMUNICAÇÕES I Análise de desempenho de um sistema de comunicação

Leia mais