Hidrostática Arquimedes Empuxo

Tamanho: px
Começar a partir da página:

Download "Hidrostática Arquimedes Empuxo"

Transcrição

1 Hidrostática Arquimedes Empuxo 1. (Uem 01) Analise as alternativas abaixo e assinale o que for correto. 01) No Sistema Internacional de Unidades, a unidade de densidade volumétrica é o kg/m. 0) A pressão é uma grandeza escalar. 04) A diferença de pressão entre dois pontos no interior de um líquido homogêneo em repouso é proporcional à diferença da altura entre esses dois pontos. 08) A pressão que uma força exerce sobre um objeto é diretamente proporcional à área sobre a qual a força é aplicada. 16) Quando um corpo é imerso em um líquido, uma força, na direção vertical, é exercida sobre o corpo, e o módulo dessa força é diretamente proporcional ao volume do líquido deslocado.. (Ita 01) Um recipiente contém dois líquidos homogêneos e imiscíveis, A e B, com densidades respectivas ρ A e ρ B. Uma esfera sólida, maciça e homogênea, de massa m 5 kg, permanece em equilíbrio sob ação de uma mola de constante elástica k 800 N m, com metade de seu volume imerso em cada um dos líquidos, respectivamente, conforme a figura. Sendo ρa 4ρ e ρb 6, ρ em que ρ é a densidade da esfera, pode-se afirmar que a deformação da mola é de a) 0 m. b) 9/16 m. c) /8 m. d) 1/4 m. e) 1/8 m.. (Unifesp 01) Um objeto maciço cilíndrico, de diâmetro igual a,0cm, é composto de duas partes cilíndricas distintas, unidas por uma cola de massa desprezível. A primeira parte, com 5,0cm de altura, é composta por uma cortiça com densidade volumétrica 0,0 g/cm. A segunda parte, de 0,5cm de altura, é composta por uma liga metálica de densidade volumétrica 8,0 g/cm. Conforme indica a figura, o objeto encontra-se em repouso, parcialmente submerso na água, cuja densidade volumétrica é 1,0 g/cm. Nas condições descritas relativas ao equilíbrio mecânico do objeto e considerando π aproximadamente igual a, determine: a) a massa total, em gramas, do objeto cilíndrico. b) a altura, em centímetros, da parte do cilindro submersa na água. Página 1 de 18

2 4. (G1 - cftmg 01) Um corpo de massa M = 0,50 kg está em repouso, preso por um fio, submetido a uma tensão T, submerso na água de um reservatório, conforme ilustração. No instante em que o fio é cortado, a aceleração do corpo, em m/s, será a),0. b) 4,0. c) 6,0. d) 8,0. 5. (Ufrgs 01) Uma esfera maciça de aço está suspensa em um dinamômetro, por meio de um fio de massa desprezível, e todo este aparato está imerso no ar. A esfera, ainda suspensa ao dinamômetro, é então mergulhada completamente num líquido de densidade desconhecida. Nesta situação, a leitura do dinamômetro sofre uma diminuição de 0% em relação à situação inicial. Considerando a densidade do aço igual a 8 g/cm, a densidade do líquido, em g/cm, é aproximadamente a) 1,0. b) 1,1. c),4. d),0. e) 5,6. 6. (Uff 01) Submarinos possuem tanques de lastro, que podem estar cheios de água ou vazios. Quando os tanques estão vazios, o submarino flutua na superfície da água, com parte do seu volume acima da superfície. Quando os tanques estão cheios de água, o submarino flutua em equilíbrio abaixo da superfície. Comparando os valores da pressão (p) no fundo do submarino e do empuxo (E) sobre o submarino quando os tanques estão cheios (p c,e c) com os valores das mesmas grandezas quando os tanques estão vazios (p v,e v) é correto afirmar que a) pc p v, Ec E v. b) pc p v, Ec E v. c) pc p v, Ec E v. d) pc p v, Ec E v. e) pc p v, Ec E v. Página de 18

3 7. (Uerj 01) Um cilindro sólido e homogêneo encontra-se, inicialmente, apoiado sobre sua base no interior de um recipiente. Após a entrada de água nesse recipiente até um nível máximo de altura H, que faz o cilindro ficar totalmente submerso, verifica-se que a base do cilindro está presa a um fio inextensível de comprimento L. Esse fio está fixado no fundo do recipiente e totalmente esticado. Observe a figura: Em função da altura do nível da água, o gráfico que melhor representa a intensidade da força F que o fio exerce sobre o cilindro é: a) b) c) d) 8. (Enem 01) Um consumidor desconfia que a balança do supermercado não está aferindo corretamente a massa dos produtos. Ao chegar a casa resolve conferir se a balança estava descalibrada. Para isso, utiliza um recipiente provido de escala volumétrica, contendo 1,0 litro d água. Ele coloca uma porção dos legumes que comprou dentro do recipiente e observa que a água atinge a marca de 1,5 litro e também que a porção não ficara totalmente submersa, com 1 de seu volume fora d água. Para concluir o teste, o consumidor, com ajuda da internet, verifica que a densidade dos legumes, em questão, é a metade da densidade da água, onde, g ρágua 1. No supermercado a balança registrou a massa da porção de legumes igual a cm 0,500 kg (meio quilograma). Considerando que o método adotado tenha boa precisão, o consumidor concluiu que a balança estava descalibrada e deveria ter registrado a massa da porção de legumes igual a a) 0,07 kg. b) 0,167 kg. c) 0,50 kg. d) 0,75 kg. e) 0,750 kg. Página de 18

4 9. (Uel 01) A areia monazítica, abundante no litoral do Espírito Santo até o final do século XIX, é rica em tório e foi contrabandeada para outros países durante muitos anos sob a falsa alegação de lastrear navios. O lastro tem por objetivo afundá-los na água, até certo nível, conferindo estabilidade para a navegação. Se uma embarcação tem massa de kg, qual deverá ser a massa de lastro de areia monazítica, em toneladas, para que esse navio lastreado desloque um volume total de 1000 m de água do mar? Considere a densidade da água do mar igual a 1 g/cm. a) 180 b) 500 c) 60 d) 80 e) (Ufpr 01) Um reservatório contém um líquido de densidade L 0,8 g/cm. Flutuando em equilíbrio hidrostático nesse líquido, há um cilindro com área da base de 400 cm e altura de 1 cm. Observa-se que as bases desse cilindro estão paralelas à superfície do líquido e que somente 1/4 da altura desse cilindro encontra-se acima da superfície. Considerando g 10 m/s, assinale a alternativa que apresenta corretamente a densidade do material desse cilindro. a) 0,4 g/cm b) c) d) e) 0,80 g/cm 0,48 g/cm 0,60 g/cm 0,1 g/cm 11. (G1 - cftmg 01) Um balão esférico, menos denso que a água, de massa 10 g e volume 40 cm, está completamente submerso e preso no fundo de uma piscina por um fio inextensível, conforme ilustração seguinte. A tensão nesse fio, em newtons, vale a) 0,40. b) 0,0. c) 0,0. d) 0, (Uespi 01) Um navio possui massa de 500 mil toneladas e ainda assim consegue flutuar. Considere que o navio flutua em repouso, com a densidade da água igual a 1 kg/l. Qual é o volume submerso do navio, isto é, o volume do navio (incluindo as suas partes vazias) que se encontra abaixo da linha d água? a) L b) 10 7 L c) L d) 10 8 L e) L Página 4 de 18

5 1. (Unisinos 01) Segundo o Princípio de Arquimedes, um corpo parcialmente submerso, flutua na água se sua for que a da água. As lacunas são corretamente preenchidas, respectivamente, por a) densidade; menor. b) densidade; maior. c) pureza; maior. d) temperatura; menor. e) massa; menor. 14. (Pucrj 01) Uma esfera de massa 1,0 10 kg está em equilíbrio, completamente submersa a uma grande profundidade dentro do mar. Um mecanismo interno faz com que a esfera se expanda rapidamente e aumente seu volume em 5,0 %. Considerando que g = 10 m/s e que a densidade da água é d água = 1,0 10 kg/m, calcule: a) o empuxo de Arquimedes sobre a esfera, antes e depois da expansão da mesma; b) a aceleração da esfera logo após a expansão. 15. (Ufrgs 01) Uma pedra encontra-se completamente submersa e em repouso no fundo de um recipiente cheio de água; P e E são, respectivamente, os módulos do peso da pedra e do empuxo sobre ela. Com base nesses dados, é correto afirmar que o módulo da força aplicada pelo fundo do recipiente sobre a pedra é igual a a) E. b) P. c) P E. d) P + E. e) zero. Página 5 de 18

6 16. (Unesp 01) Duas esferas, A e B, maciças e de mesmo volume, são totalmente imersas num líquido e mantidas em repouso pelos fios mostrados na figura. Quando os fios são cortados, a esfera A desce até o fundo do recipiente e a esfera B sobe até a superfície, onde passa a flutuar, parcialmente imersa no líquido. Sendo P A e P B os módulos das forças Peso de A e B, e E A e E B os módulos das forças Empuxo que o líquido exerce sobre as esferas quando elas estão totalmente imersas, é correto afirmar que a) P A < P B e E A = E B. b) P A < P B e E A < E B. c) P A > P B e E A > E B. d) P A > P B e E A < E B. e) P A > P B e E A = E B. 17. (Ucs 01) No desenho animado Up Altas Aventuras, o personagem Carl Fredricksen, um vendedor de balões, tem a ideia de viajar levando consigo a própria casa. Para isso, ele enche uma quantidade grande de balões com um gás e amarra-os à casa, que é erguida no ar. Por um certo tempo, a casa sobe. Mas, de repente, sem que nenhum balão seja solto, a ascensão vertical é interrompida e a casa se desloca, graças ao vento, apenas na horizontal. Por que isso aconteceu? a) O empuxo do ar sobre os balões foi diminuindo à medida que diminuía a densidade do ar. b) A pressão atmosférica sobre o teto da casa foi aumentando com a altura. c) A temperatura baixa, que caracteriza a grande altitude, fez aumentar a pressão interna e o volume dos balões. d) Mesmo com os balões fechados, o número de moles do gás dentro deles diminuiu com a altura, reduzindo a pressão manométrica sobre a casa. e) Devido à altitude e ao atrito do ar, a temperatura da casa aumentou e, por isso, diminuíram a pressão e o volume do gás dentro dos balões. 18. (Pucrj 01) Um barco flutua de modo que metade do volume de seu casco está acima da linha da água. Quando um furo é feito no casco, entram no barco 500 kg de água até o barco afundar. Calcule a massa do barco. Dados: d água = 1000 kg/m e g = 10 m/s a) 1500 kg b) 50 kg c) 1000 kg d) 500 kg e) 750 kg 19. (Ifsul 011) Um corpo maciço, de densidade desconhecida e peso igual a 00 N, encontrase flutuando em um líquido de densidade desconhecida, com 70% de seu volume imerso. O valor do empuxo sofrido pelo corpo é a) 90 N. b) 150 N. c) 10 N. d) 00 N. Página 6 de 18

7 0. (G1 - cftmg 011) Uma esfera de raio = 0,500 m, com distribuição homogênea de massa flutua com de seu volume submerso em água, conforme ilustração seguinte. 4 A massa da esfera, em kg, e igual a a) 750π b) 500π c) 50π d) 15π 1. (Ifsp 011) Um aluno de engenharia pretende determinar a densidade de um corpo maciço e realiza uma experiência que consiste, inicialmente, em suspender o corpo, em uma das extremidades de uma balança de braços iguais, com uma massa de 100 gramas, conforme figura 1. A seguir ele coloca o corpo dentro de uma vasilha com água, cuja densidade é de 1,0 g/cm, e a equilibra com uma massa de 60 gramas (figura ). O valor encontrado da densidade do corpo, em g/cm, é igual a a) 8,75. b) 7,50. c) 6,75 d),50. e),50.. (Enem 011) Em um experimento realizado para determinar a densidade da água de um lago, foram utilizados alguns materiais conforme ilustrado: um dinamômetro D com graduação de 0 N a 50 N e um cubo maciço e homogêneo de 10 cm de aresta e kg de massa. Inicialmente, foi conferida a calibração do dinamômetro, constatando-se a leitura de 0 N quando o cubo era preso ao dinamômetro e suspenso no ar. Ao mergulhar o cubo na água do lago, até que metade do seu volume ficasse submersa, foi registrada a leitura de 4 N no dinamômetro. Considerando que a aceleração da gravidade local é de 10 m/s, a densidade da água do lago, em a) 0,6. b) 1,. c) 1,5. d),4. e) 4,8. g/cm, é Página 7 de 18

8 . (Cesgranrio 011) Um bloco cúbico com 6 cm de aresta é parcialmente submerso em água até 1/ de sua altura. Considerando-se que a aceleração da gravidade vale 10 m/s e sabendose que a massa específica da água vale 1000 kg/m, calcule a intensidade do empuxo sobre o bloco, em Newtons. a) 0,0 b) 0,6 c) 0,7 d) 1,00 e) 1,44 4. (Uerj 011) Um bloco maciço está inteiramente submerso em um tanque cheio de água, deslocando-se verticalmente para o fundo em movimento uniformente acelerado. A razão entre o peso do bloco e o empuxo sobre ele é igual a 1,5. A aceleração do bloco, em m/s, é aproximadamente de: a),5 b) 9, c) 10,0 d) 1,0 5. (Udesc 011) Um barco pesqueiro, cuja massa é 710 kg, navegando rio abaixo, chega ao mar, no local em que a densidade da água do mar é 5,0% maior do que a densidade da água do rio. O que ocorre com a parte submersa do barco quando este passa do rio para o mar? a) Aumenta, pois o barco desloca um maior volume de água. b) Diminui, pois o empuxo diminui. c) Diminui, pois o barco desloca um menor volume de água. d) Aumenta, pois o empuxo aumenta. e) Não se altera, pois o empuxo é o mesmo. Página 8 de 18

9 Gabarito: Resposta da questão 1: =. [01] Correta. A densidade volumétrica é a razão entre a massa e o volume (d = m/v). [0] Correta. [04] Correta. De acordo com o Teorema de Stevin: Δp dgh. [08] Incorreta. F Da definição de pressão: p normal. Essa expressão mostra que a pressão e A inversamente proporcional à área sobre a qual a força e aplicada. [16] Correta. É o próprio enunciado do Teorema de Arquimedes: o empuxo tem a mesma intensidade do peso de líquido deslocado. Resposta da questão : [D] m m Determinando o volume da esfera. ρ V. V ρ Ela está em equilíbrio com metade de seu volume imersa. Então, o volume imerso é: m V ρ m V im V im. ρ As forças que agem na esfera são mostradas na figura. Peso: P m g; Força elástica: F k x; m Empuxo do líquido A: EA ρavimg EA 4 ρ g EA m g; ρ m Empuxo do líquido B: EA ρbvimg EB 6 ρ g EB m g. ρ Do equilíbrio: 4 m g F P EA E B k x m g m g m g x k x m. 4 Página 9 de 18

10 Resposta da questão : Dados: ρ C = 0, g/cm ; h C = 5 cm; ρ L = 8 g/cm ; h L = 5 cm; ρ A = 1 g/cm ; D = cm R = 1 cm. a) A massa do objeto (M) é a soma das massas da cortiça (m C ) e da liga (m L ). M mc m L M ρc VC ρc V C M ρc π R hc ρc π R h L C C C L M π R ρ h ρ h 1 0, 5 8 0,5 5 M 15 g. b) Como o objeto está em equilíbrio, as forças nele atuantes, empuxo e peso, estão equilibradas. M 15 E P ρavsub g M g ρaπ R hsub M hsub π R ρa 1 hsub 5 cm. Resposta da questão 4: [B] Dados: M = 0,5 kg; T = N; g = 10 m/s. As figuras a seguir ilustram a situação. Na figura 1 o corpo está em equilíbrio: E T P E P T E P newtons. Na figura, o fio é cortado. Desprezando forças de viscosidade, temos: E P m a 0,5 a a 0,5 a 4 m /s. Página 10 de 18

11 Resposta da questão 5: [C] As figuras ilustram as situações. Se a tração sofre uma diminuição de 0%, então T = 70% de T 1. Nas duas situações a esfera está em equilíbrio. Fig 1: T1 P Fig : T E P 0,7 T1 E P 0,7 P E P E P 0,7 P E 0, P. Como a esfera está totalmente imersa, fazendo a razão entre o peso e o empuxo, temos: P dc V g P dc V g P 8 dl 0, 8 E dl V g E dl V g 0, P d L dl,4 g /cm. Resposta da questão 6: [A] De acordo com o enunciado, com os tanques vazios o submarino estará na superfície da água e apresentará valores de p v, para a pressão hidrostática em seu fundo, e E v, para a força de empuxo. Com os tanques cheios o submarino estará totalmente imerso na água e apresentará valores p c e E c, para a pressão hidrostática em seu fundo e a força de empuxo, respectivamente. Cálculo da pressão hidrostática no fundo do submarino A partir da lei de Stevin, temos: p p0 d.g.h onde: p: pressão hidrostática; p 0 : pressão na superfície da água; d: densidade do líquido (água); g: aceleração da gravidade; Página 11 de 18

12 h: profundidade do fundo do submarino, em relação à superfície da água. A única diferença entre p c e p v está na profundidade h: h' h p p c v Cálculo da força de empuxo que atua no submarino De acordo com o princípio de Arquimedes: E d.v.g onde: E: força de empuxo que atua no submarino; d: densidade do líquido (água); v: volume da parte imersa do submarino; g: aceleração da gravidade. A única diferença entre E c e E v está no volume da parte imersa do submarino v: V' V E E c v Página 1 de 18

13 Resposta da questão 7: [D] As figuras a seguir mostram as diferentes situações do cilindro. Nas situações das figuras 1, e o fio ainda não está esticado (F = 0). Na situação da figura 4, o fio começa a ser tracionado (H > L) e a intensidade da tração aumenta à medida em que o nível da água sobe, pois o empuxo aumenta e o corpo permanece em repouso. A partir da situação da figura 5, quando o cilindro já está totalmente coberto pela água, o empuxo deixa de aumentar, permanecendo constante à força de tração no fio (F = E P). Resposta da questão 8: [D] De acordo com o enunciado, ao afundar os legumes, 1/ do volume fica fora d água; logo, / do volume ficam imersos, o que corresponde a 0,5 litro (V i = 0,5 L), pois o recipiente graduado passou a indicação de 1 litro para 1,5 litro. 0,5 Sendo V o volume dos legumes: V V i V 0,5 v V 0,75 L. ρágua 1 Com o dado obtido na Internet: ρleg 0,5 g / cm ρleg 0,5 kg / L. Aplicando a definição de densidade: mleg ρleg V 0,5 0,75 mleg 0,75 kg. Comentário: fica uma sensação de que o examinador cometeu um deslize, pois se ele colocou a porção de legumes em água, no equilíbrio, o empuxo sobre a fração imersa do volume deveria ter equilibrado o peso. Mas: P mleg g 0,75 10 P,75 N. E ρágua Vi g 1 0,5 10 E 5 N. E P!!! Podemos contornar a situação, supondo que os legumes foram forçados a afundar mais que a metade do volume. Página 1 de 18

14 Resposta da questão 9: [E] Dados: M = kg = 0, kg; d água = 10 kg/m ; V imerso = m = 10 m. O peso da embarcação mais o peso da areia deve ser equilibrado pelo empuxo. P P E Mg mg d V g m d V M emb areia água imerso água imerso m ,05 10 m 10 0,05 10 m 0,95 10 kg m kg m 950 toneladas. Resposta da questão 10: [D] Como o cilindro está flutuando, então: Empuxo = Peso H μ L LVi μlah μ 4 μ μlíquidoviimersog μcilindrovg μc 0,6g / cm V AH H 4 Resposta da questão 11: [B] Líquido Dados: m = 10 g = 10 kg; d a = 1 g/cm = 10 kg/m ; V = 40 cm = m ; g = 10 m/s. A figura mostra as forças atuantes no balão: empuxo, peso e tração. Do equilíbrio: 5 T P E T E P T da V g m g T T ,4 0,1 T 0, N. Resposta da questão 1: [E] Dados: m = kg; ρ água = 1 kg/l. Se o navio está em equilíbrio, o seu peso e o empuxo exercido pela água estão equilibrados. 8 m 5 10 E P ρágua Vimerso g m g V imerso ρágua 1 imerso 8 V 5 10 L. Página 14 de 18

15 Resposta da questão 1: [A] De acordo com o Teorema de Arquimedes, se um corpo flutua em água, a intensidade do empuxo (E) aplicado pela água é igual à do peso (P). dágua Vcorpo E P dágua Vimerso g dcorpo Vcorpo g. dcorpo Vimerso Se o corpo flutua, o volume imerso é menor que o volume do corpo. Então, a densidade do corpo é menor que a densidade da água. Resposta da questão 14: a) Considerando que a esfera esteja em equilíbrio, sem tocar o fundo do mar, o empuxo sobre ela tem a mesma intensidade de seu peso. 4 E1 dágua V1 g m g E N. Como o volume aumenta em 5,0%, o empuxo também aumenta em 5,0%. Então: 4 4 E E1 5% E 1 E 1, E 1,05 10 N. b) Aplicando o Princípio Fundamental da Dinâmica: E P m a , , a a a 0,5 m /s. Resposta da questão 15: [C] A pedra está em repouso. Então, as forças que nela agem, como mostradas na figura, peso, empuxo e normal, estão equilibradas. N E P N P E. Resposta da questão 16: [E] Se, quando os fios são cortados: a esfera A desce ao fundo, então ela é mais densa que o líquido; a esfera B passa a flutuar, então ela é menos densa que o líquido. Conclui-se, então, que a densidade da esfera A ( ρ A ) é maior que a da esfera B ( ρb ). enunciado, as esferas têm mesmo volume. Assim, para os pesos: Pelo Página 15 de 18

16 VA VB ρa ρb PA ma g ρa VA g PB mb g ρb VB g PA P B. Sendo ρ L a densidade do líquido, para os empuxos: V A V B EA ρl VA g EB ρl VB g EA E B. Resposta da questão 17: [A] Sobre o balão subindo verticalmente, agem duas forças: o empuxo E, aplicado pelo ar, e seu próprio peso P. Enquanto o balão acelera verticalmente, a intensidade do empuxo é maior que a do peso. Quando o balão deixar de subir, essas duas forças verticais se equilibram. E P ρar Vbalões g m g ρar Vbalões m. Como a massa não varia e o volume dos balões pode até aumentar com a diminuição da pressão atmosférica, conclui-se que a densidade do ar diminui. Resposta da questão 18: [D] Analisado as duas situações: 1ª) Barco com metade do volume imerso o empuxo exercido pela água equilibra do peso do barco: V E P barco dágua g m g dágua V m. ª) Barco na iminência de afundar o novo empuxo exercido pela água equilibra do peso do barco + o peso da água que está dentro dele. E' Pbarco P água dágua V g m g mágua g m m 500 m 500 kg. Resposta da questão 19: [D] Nesse corpo agem duas forças: o peso e o empuxo. Se ele está em equilíbrio, a resultante dessas forças é nula, ou seja, elas têm mesma intensidade, igual a 00 N. Resposta da questão 0: [D] Como a esfera está em equilíbrio, o empuxo é igual ao peso. 4 P E mg μágua.v.g i m 1000x x..(0,5) 15 kg 4 π π. Página 16 de 18

17 Resposta da questão 1: [E] Dados: m 1 = 100 g; m = 60 g; d água = 1 g/cm. Como a balança tem braços iguais, na figura 1, o peso do corpo é igual ao peso da massa calibrada. Trabalhando em grama-força (gf): P = 100 gf. (I) Na figura, o peso da nova massa calibrada (60 gf) equilibra a diferença entre o peso do corpo v e o empuxo E : P E = 60 gf. (II) Substituindo (I) em (II): 100 E = 60 E = 40 gf. (II) Mas: P d V g P d 100 d E dágua V g E dágua 40 1 corpo corpo corpo d corpo =,5 g/cm. Resposta da questão : [B] Dados: m = kg =.000 g; P= 0 N; Calculando o volume do cubo: VI V ; a = 10 cm; T = 4 N; g 10 m/s. 6 V a 10 cm V m V 10 m. A figura mostra as forças que agem no cubo, quando mergulhado na água do lago. Do equilíbrio, temos: T E P E P T 0 4 E 6 N. Da expressão do empuxo: Página 17 de 18

18 10 1 água imerso água água E V g kg/m 10 água 1, g / cm. Resposta da questão : [C] 6x10 E μfluido.v imerso.g 1000x x10 0,7N. Resposta da questão 4: [B] Dado: P 1,5. E Do princípio fundamental da dinâmica, vem: P E = m a m g E = m a. Mas: P 1,5 E P mg E. 1,5 1,5 Substituindo na expressão anterior: mg m g m a. Considerando g = 10 m/s : 1, ,5 = a a = 10 0,8 a = 9, m/s. Resposta da questão 5: [C] O empuxo equilibra o peso do barco: P E.V.g liq imerso Ao passar para o mar a densidade da água aumenta. Como consequência, o volume imerso deve diminuir. Página 18 de 18

LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ

LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ LISTA de HIDROSTÁTICA PROFESSOR ANDRÉ 1. (Unesp 013) Seis reservatórios cilíndricos, superiormente abertos e idênticos (A, B, C, D, E e F) estão apoiados sobre uma superfície horizontal plana e ligados

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

HIDROSTÁTICA PRESSÃO DENSIDADE RELATIVA. MASSA ESPECÍFICA (densidade absoluta) TEOREMA FUNDAMENTAL DA HIDROSTÁTICA (Teorema de Stevin)

HIDROSTÁTICA PRESSÃO DENSIDADE RELATIVA. MASSA ESPECÍFICA (densidade absoluta) TEOREMA FUNDAMENTAL DA HIDROSTÁTICA (Teorema de Stevin) Física Aula 05 Prof. Oromar UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS DO

Leia mais

Prof. A.F.Guimarães Questões de hidrostática 2

Prof. A.F.Guimarães Questões de hidrostática 2 Questão rof AFGuimarães Questões de idrostática (FUVST) Uma bolina de isopor é mantida submersa, em um tanque, por um fio preso no fundo O tanque contém um líquido de densidade r iual à da áua A bolina,

Leia mais

Física Fascículo 06 Eliana S. de Souza Braga

Física Fascículo 06 Eliana S. de Souza Braga Física Fascículo 06 Eliana S. de Souza Braga Índice Estática e hidrostática Resumo Teórico...1 Exercícios...2 Gabarito...5 Estática e hidrostática Resumo Teórico Estática do ponto material: Equilíbrio

Leia mais

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: 1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: Nesse esquema, estão assinalados quatro pontos P, Q, R ou S da órbita do cometa. a) Indique em qual dos

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira 1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira www.proamfer.com.br [email protected] 1 Em uma experiência, a barra homogênea, de secção reta constante e peso 100

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

Mecânica dos Fluidos PROF. BENFICA [email protected] www.marcosbenfica.com

Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com Mecânica dos Fluidos PROF. BENFICA [email protected] www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO:

DATA: 17/12/2015 VALOR: 20,0 NOTA: NOME COMPLETO: DISCIPLINA: FÍSICA PROFESSORES: Erich/ André NOME COMPLETO: I N S T R U Ç Õ E S DATA: 17/12/2015 VALOR: 20,0 NOTA: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 1 a EM Circule a sua turma: Funcionários:

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

1ª Lista de exercícios de Física 2 ( Fluidos)

1ª Lista de exercícios de Física 2 ( Fluidos) Unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Sorocaba Engenharia Ambiental Profa. Maria Lúcia Antunes 1ª Lista de exercícios de Física 2 ( Fluidos) 1) Encontre o aumento de pressão de um fluido em uma

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

LISTA DE EXERCÍCIOS ESTUDO DOS GASES

LISTA DE EXERCÍCIOS ESTUDO DOS GASES GOVERNO DO ESTADO DE PERNAMBUCO GRÉ MATA NORTE UNIVERSIDADE DE PERNAMBUCO CAMPUS MATA NORTE ESCOLA DE APLICAÇÃO PROFESSOR CHAVES LISTA DE EXERCÍCIOS ALUNO(A): Nº NAZARÉ DA MATA, DE DE 2015 2º ANO ESTUDO

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO Fixação F 1) (CESGRANRIO) A figura a seguir mostra uma peça de madeira, no formato de uma forca, 2 utilizada para suspender

Leia mais

P R O V A DE FÍSICA II

P R O V A DE FÍSICA II 1 P R O V A DE FÍSICA II QUESTÃO 16 A figura mostra uma barra rígida articulada no ponto O. A barra é homogênea e seu peso P está em seu ponto médio. Sobre cada uma de suas extremidades são aplicadas forças

Leia mais

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador?

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador? Elevadores 1. (Uftm 01) No resgate dos mineiros do Chile, em 010, foi utilizada uma cápsula para o transporte vertical de cada um dos enclausurados na mina de 700 metros de profundidade. Considere um resgate

Leia mais

Lista 5 Hidrostática Professor Alvaro Siguiné Instituto Gaylussac 3ª série

Lista 5 Hidrostática Professor Alvaro Siguiné Instituto Gaylussac 3ª série 1. (Uerj 2018) Em uma experiência de hidrostática, uma bola de futebol foi presa com um fio ideal no fundo de um recipiente com água, conforme representado na figura. Sabe-se que a bola possui massa de

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

AULA 4: Força e Equilíbrio

AULA 4: Força e Equilíbrio COLÉGIO PEDRO II CAMPUS HUMAITÁ II PROJETO UERJ-ENEM/2014 Prof. Carlos Frederico (Fred) AULA 4: Força e Equilíbrio 1. (UERJ - 2005) Uma caixa está sendo puxada por um trabalhador, conforme mostra a figura

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013. Prof. Robson Alves de Oliveira [email protected] robson.oliveira@unir.

DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013. Prof. Robson Alves de Oliveira robson.aoliveira@gmail.com.br robson.oliveira@unir. DISCIPLINA AMB30093 TERMODINÂMICA - Aula 3 17/10/2013 Prof. Robson Alves de Oliveira [email protected] [email protected] Ji-Paraná - 2013 Porque a água atinge o seu ponto máximo em 3,98

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia MÓDULO 03 - PROPRIEDADES DO FLUIDOS Bibliografia 1) Estática dos Fluidos Professor Dr. Paulo Sergio Catálise Editora, São Paulo, 2011 CDD-620.106 2) Introdução à Mecânica dos Fluidos Robert W. Fox & Alan

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

1. (Espcex (Aman) 2012) Um elevador possui massa de 1500 kg. Considerando a

1. (Espcex (Aman) 2012) Um elevador possui massa de 1500 kg. Considerando a 1. (Espcex (Aman) 01) Um elevador possui massa de 1500 kg. Considerando a aceleração da gravidade igual a 10 m s, a tração no cabo do elevador, quando ele sobe vazio, com uma aceleração de 3 m s, é de:

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

FÍSICA - Grupos H e I - GABARITO

FÍSICA - Grupos H e I - GABARITO 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

Módulo 06 - VISCOSÍMETRO DE STOKES

Módulo 06 - VISCOSÍMETRO DE STOKES Módulo 06 - VISCOSÍMETRO DE STOKES Viscosímetros são instrumentos utilizados para medir a viscosidade de líquidos. Eles podem ser classificados em dois grupos: primário e secundário. No grupo primário

Leia mais

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Segunda Lei de Newton 1. (G1 - UTFPR 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). Coluna I Afirmação

Leia mais

Aula 9 Calor e Dilatação Questões Atuais Vestibulares de SP

Aula 9 Calor e Dilatação Questões Atuais Vestibulares de SP 1. (Fuvest 2012) Para ilustrar a dilatação dos corpos, um grupo de estudantes apresenta, em uma feira de ciências, o instrumento esquematizado na figura acima. Nessa montagem, uma barra de alumínio com

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Espcex (Aman) 2014) Um cubo maciço e homogêneo, com 40 cm de aresta, está em equilíbrio estático flutuando em uma piscina, com parte de seu volume submerso, conforme desenho abaixo. Sabendo-se que

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura:

Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: PROVA DE FÍSICA QUESTÃO 0 Tânia observa um lápis com o auxílio de uma lente, como representado nesta figura: Essa lente é mais fina nas bordas que no meio e a posição de cada um de seus focos está indicada

Leia mais

Programa de Retomada de Conteúdo 1º Bimestre

Programa de Retomada de Conteúdo 1º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo 1º

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Um momento, por favor

Um momento, por favor Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Considere uma transformação linear T(x,y) em que, 5 autovetores de T com relação aos auto valores -1 e 1, respectivamente. e,7 são os Determine

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças.

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças. Trabalho 1- Um corpo de massa igual 20Kg deslocava-se para a direita sobre um plano horizontal rugoso. Sobre o corpo é, então, aplicada uma força F, horizontal, constante de módulo igual a 100N. O módulo

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 009 e 1 o semestre letivo de 010 CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02 Quando necessário considere: g = 10 m/s 2, densidade da água = 1 g/cm 3, 1 atm = 10 5 N/m 2, c água = 1 cal/g. 0 C, R = 8,31 J/mol.K, velocidade do som no ar = 340 m/s e na água = 1500 m/s, calor específico

Leia mais

2. Experiências na água e no ar

2. Experiências na água e no ar 2. Experiências na água e no ar Suponhamos que Arquimedes está à beira de um lago e segura, preso por um fio, um saco de plástico cheio de água (com, digamos, 10 kg de água) mergulhado dentro do lago.

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Física PRÉ VESTIBULAR / / Aluno: Nº: Turma: PRÉ-VESTIBULAR VETORES. O puxão da corda efetuado pelo trabalhador pode ser descrito como uma força que

Física PRÉ VESTIBULAR / / Aluno: Nº: Turma: PRÉ-VESTIBULAR VETORES. O puxão da corda efetuado pelo trabalhador pode ser descrito como uma força que PRÉ VESTIBULAR Física / / PRÉ-VESTIBULAR Aluno: Nº: Turma: VETORES 01. (UEM) Um corpo está sendo arrastado em uma superfície lisa (atrito desprezível), tracionado por duas cordas, conforme o diagrama de

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos Energia 1-Uma pequena bola de borracha, de massa 50g, é abandonada de um ponto A situado a uma altura de 5,0m e, depois de chocar-se com o solo, eleva-se verticalmente até um ponto B, situado a 3,6m. Considere

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Buscando o equilíbrio

Buscando o equilíbrio Volume 1 Módulo 2 Física Unidade 10 Buscando o equilíbrio Para início de conversa... No dia a dia, é comum ouvirmos falar na importância de manter o equilíbrio. Esta é uma expressão que pode dar margem

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( ) Fundamental (x ) Médio SÉRIE: 1º TURMA: TURNO: DISCIPLINA: FÍSICA PROFESSOR: Equipe de Física Roteiro e Lista de Recuperação de

Leia mais

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos ESTÁTCA DE FLUDOS ntrodução e Revisão de conceitos básicos Em qualquer ponto da superfície de um corpo submerso, a força exercida pelo fluido estático é perpendicular à superfície do objecto. A pressão

Leia mais

Gravitação universal, estática e hidrostática

Gravitação universal, estática e hidrostática É melhor lançar-se à luta em busca do triunfo, mesmo expondo-se ao insucesso, do que ficar na fila dos pobres de espírito, que nem gozam muito nem sofrem muito, por viverem nessa penumbra cinzenta de não

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Lançamento Horizontal

Lançamento Horizontal Lançamento Horizontal 1. (Ufsm 2013) Um trem de passageiros passa em frente a uma estação, com velocidade constante em relação a um referencial fixo no solo. Nesse instante, um passageiro deixa cair sua

Leia mais

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor:

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor: Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 (Unirio 2000) Um aluno pegou um fina placa metálica e nela recortou um disco de raio r. Em seguida, fez um anel também de raio r com um fio

Leia mais

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor

1 a QUESTÃO: (1,5 ponto) Avaliador Revisor 1 a QUESTÃO: (1,5 ponto) Avaliador Revisor Um mol de um gás ideal é levado do estado A para o estado B, de acordo com o processo representado no diagrama pressão versus volume conforme figura abaixo: a)

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

GRAVITAÇÃO. 1. (Ufmg 2012) Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

GRAVITAÇÃO. 1. (Ufmg 2012) Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: GRAVIAÇÃO 1. (Ufmg 01) Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: Nesse esquema, estão assinalados quatro pontos P, Q, R ou S da órbita do cometa. a)

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo

Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo 1 a Questão: Valor : 1,0 Uma gota de chuva cai verticalmente com velocidade constante igual a v. Um tubo retilíneo está animado de translaç ã o horizontal com velocidade constante. Determine o â ngulo,

Leia mais

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com

Leia mais

Ondas Estacionárias Apostila 2

Ondas Estacionárias Apostila 2 Ondas Estacionárias Apostila 2 1. (Uece 2015) Uma corda de violão vibra de modo que, num dado instante, a onda estacionária tenha duas cristas e três nós. Considere que o comprimento da corda vibrante

Leia mais

AULA 2005 - - 7 QUESTÃO

AULA 2005 - - 7 QUESTÃO AULA 7 QUSTÃO 7 Para resolver o problema, faça Pa = Pb. Pa = pressão atmosférica = 2 atm = 2 x 76 cmhg = 152 cmhg Ou seja, Pa é a pressão exercida por uma coluna de Hg de 152 cm de altura. Pa = d.g.h =

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

Mostrar os Objetos 10 Contar a história seguindo os slides (anexo1) 40

Mostrar os Objetos 10 Contar a história seguindo os slides (anexo1) 40 Aula 1: A história do banheiro Tema Mostrar ao aluno como era a vida das pessoas que não possuíam os recursos sanitários conhecidos hoje, a história de como surgiu à necessidade dos mesmos, sua origem

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

Pressão Atmosférica Empuxo

Pressão Atmosférica Empuxo 1 Pressão Atmosférica Empuxo Pressão Atmosférica 1. O que se entende por pressão atmosférica? A pressão atmosférica aumenta ou diminui com a altitude? Por quê? 2. É freqüente, em restaurantes, encontrar

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1

GOIÂNIA, / / 2015. ALUNO(a): LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 GOIÂNIA, / / 2015 PROFESSOR: Fabrízio Gentil Bueno DISCIPLINA: FÍSICA SÉRIE: 2 o ALUNO(a): NOTA: No Anhanguera você é + Enem LISTA DE EXERCÍCIOS DE FÍSICA 4BI L1 01 - (UDESC) João e Maria estão a 3m de

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m. Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho

Leia mais