Experiência 3. LGR - Controlador PI
|
|
|
- Manuella Gabeira Peixoto
- 7 Há anos
- Visualizações:
Transcrição
1 Laboratório de Controle Dinâmico 1º/ Universidade de Brasília Prof. Adolfo Bauchspiess Prof. Lélio Ribeiro Soares Júnior Experiência 3 LGR Controlador PI Introdução O Lugar Geométrico das Raízes é a ferramenta de projeto mais indicada quando se tem um modelo paramétrico (polos, zeros, ganho e atraso) do processo a ser controlado. Um modelo paramétrico pode ser obtido através da modelagem (utilizandose as leis físicas pertinentes) ou através de um procedimento experimental conhecido com identificação de sistemas dinâmicos, em que sinais de excitação adequados são aplicados ao processo para se calcular os parâmetros do processo. Como contrapartida, um modelo não paramétrico, como o diagrama de Bode, permite projetar o controlador sem o conhecimento explícito de polos ou zeros, objeto do LabCDin4. O controlador PI, por sua simplicidade e eficácia, é um dos mais utilizados. O projeto do controlador busca uma resposta transitória rápida com baixo sobrepasso, além de reduzido erro em regime permanente. O canal P, proporcional ao erro, age imediatamente, sempre que houver alteração da referência ou da perturbação, enquanto o canal integral, acumula o erro (passado), buscando produzir o sinal do atuador elimina o erro em regime permanente. O tipo do sistema é incrementado. O controlador PI permite que o kit impressora siga rampas de referência sem erro e rejeite completamente perturbações em degrau. 1 Objetivo Projetar e verificar, experimentalmente, um controlador PI para o kit impressora de forma a atender às seguintes especificações: Sobrepasso percentual ao degrau de referência, Mp 25%. Tempo de acomodação ao degrau de referência, ts(2%) 0,8 s. Tempo de pico do degrau de referência, tp 0,2 s. Erro nulo, em regime permanente, a degraus de perturbação. Degraus de referência, 2 Vpp, devem respeitar a saturação do kit (cf. LabCDin2). 2 Projeto de Controladores no LGR O LGR de um sistema, partindo dos polos e zeros de malha aberta, permite verificar se, para algum valor do ganho K, a operação em malha fechada atende às especificações de projeto. As especificações de projeto de um sistema dinâmico, são formuladas, normalmente, no domínio do tempo, e.g., tempo de subida, tempo de acomodação, sobrepasso, erro em regime permanente. É necessário, mapear as especificações de projeto no plano s. O projeto é feito, mesmo para sistemas de ordem mais elevada, através da dinâmica dos polos dominantes aqueles mais próximos à origem, cuja resposta no tempo decai mais lentamente.
2 Experiência Laboratório de Controle Dinâmico 1º/2018 ENE/FT/UnB Especificações da Resposta dinâmica no plano s. Para um sistema de 2 a ordem sem zeros vale: Tempo de acomodação: ts (2%) = 4/σ; tr ts Mp tp Tempo de subida: tr = 1,8/ωn; Sobrepasso Percentual: Mp =100 x e Fator de Amortecimento: ζ = Tempo de pico: tp = p/ωd; %&' ()%' * :;< (D * EFG * ωd = ωn H1 ζ K Os valores de tr, ts, Mp e tp são alguns dos parâmetros de projeto que podem ser utilizados no domínio do tempo. As restrições correspondentes no plano s são ilustradas na figura 2. A partir das especificações de projeto encontrase o ponto s0, dos polos dominantes, de uma aproximação de 2 a ordem. s0 é um ponto no plano s que atende a todas as restrições. Além disso, considerandose a saturação do atuador, escolhese, entre as intersecções de restrições, o ponto mais próximo à origem (saturação menor u). Mp(%) Sobrepasso Percentual b) a) z Fator de Amortecimento Figura 1 Mapeamento das especificações de projeto no domínio do tempo no plano s. a) Valores ilustrativos, Mp=25%, ts= 1,25 tr=0,25 tp=0,3; b) Mp x ζ. s0 φ VW 2.2 Projeto de Controladores PI no LGR. Um controlador PI é dado por: D(s) = K P K R s K(s z) =, s onde: Kp ganho proporcional; Ki ganho integral ou K ganho; z zero Figura 2 Controle PI de processo G(s). Considerando um processo G(s) com realimentação unitária. A partir da posição do polo dominante, s0, é possível que vários controladores atendam às especificações de projeto. Quando é necessário aumentar o tipo do sistema (especificação de ess) é mais prático já incluir o polo do integrador no cálculo da fase necessária. Normalmente é necessário acrescentar fase (φ VW ) para atender às especificações transitórias (Condição de fase). 180 G(s)/s _` = φ VW
3 Experiência Laboratório de Controle Dinâmico 1º/2018 ENE/FT/UnB 3 Para o projeto de um controlador PI, resta fixar a posição do zero e calcular o ganho K. Através de uma simples relação trigonométrica, obtémse a posição do zero z, ver Figura 2. O ganho K é obtido da condição de módulo do LGR: G(s)K(s z)/s _` = Considerações práticas. Todo sistema físico real está sujeito a restrições que não são consideradas no projeto teórico. No caso do kit impressora, além das especificações dinâmicas lineares, devem ser consideradas no projeto, via simulação, os seguintes aspectos: 1 Offset Perturb. r Ref. Saturação do atuador. Excursão do carro. Tempo de acomodação da resposta à perturbação. Somador de perturbações com ganho Ks = 10 ajuste fino do projeto, 0 Kp 1. O ganho de malha, a ser considerado no projeto, engloba: Kp, D(s), Somador e Motor. Kp Potenc. 0<Kp<1 R/R1(s1/(R*C)) s Controlador PI Ks Somador Ganho Sat.1 Km Tm.s 2s Motor CC2 ys r y Scope4 Kp Pot. S PS SPS S VSrc S VSrc1 Potenciometro x R W L R1 R PI C R5 R4 R3 Somador & Ganho R2 v VSens. Sat. Solver Cfg Km Tm.s 2s Motor CC f(x) = 0 Figura 3. Simulação do kit impressora com controle PI e simulação da implementação eletrônica do controlador. 3 Prérelatório 3.1 Considerando o modelo do kit impressora obtido no LabCDin 1, projete um controlador PI que atenda às especificações de projeto. 3.2 Simulando o projeto, verificar se as especificações dinâmicas estão sendo atendidas. 3.3 Verifique ainda, se nível de saturaçãoo de u, amplitude e transitório da resposta à perturbação são adequados ao kit impressora. 3.4 Se algum aspecto nos itens 4.2 e 4.3 não forem adequados, refine o projeto, volte para Calcule e providencie valores comercias dos componentes eletrônicos necessários. 3.6 Monte o circuito eletrônico (controlador PI e somador com ganho) em protoboard do grupo para favorecer a realização do experimento no tempo previsto de uma aula.
4 Experiência Laboratório de Controle Dinâmico 1º/2018 ENE/FT/UnB 4 4 Procedimento Experimental 4.1 Verifique inicialmente, se o funcionamento do kit. Aplique, para tanto, r(t)=sen(2π0,5t)). 4.2 Conecte o circuito D(s) projetado, montado em protoboard, ao kit. 4.3 Ajuste o ganho, Kp, até obter 25% de sobrepasso para r(t), quadrada, 2 Vpp, 0,5 Hz. 4.4 Caso a resposta não atenda às especificações: Ajuste a τ = RC ou Ks. 4.5 Acrescente a perturbação, (t), quadrada, 0,5 Vpp, 0,2 Hz, offset 0,25 V. 4.6 Registre r, e y, para um ciclo completo de. Ver figura Altere a r para onda triangular, e registre r, e y. Considere também um ciclo completo de. offset y r triang. offset y r square t/[s] Figura 4 Resultados experimentais típicos. (Controle PI do sistema com polo adicional). 5 Relatório Lembrese de incluir: Gráficos dos sinais adquiridos pelo osciloscópio, plotados a partir do formato.csv. Projeto e valores calculados no prérelatório. Preencha a tabela 1, com os dados extraídos do experimento. Tabela 1 Comparação dos controladores projetado e obtido experimentalmente Mp 25%. Controlador r to y (r quadrada) (du) to y (r quad.) r triangular Proj. K z Mp tp ts2% umax ess_ ts2% y max sem, ess com, ess PI prj PI exp Compare criticamente os valores medidos e calculados, cf. a tabela 1. Questões: Ø O projeto no LGR é feito, geralmente, via dinâmica dominante (2 a ordem sem zeros). Pesquise sobre equações para tr, ts, Mp e tp para sistemas de 3 a ordem. Comente sobre a praticidade destas equações para o projeto do LabCDin3. Ø De que maneira os resíduos da expansão em frações parciais (>> residue()) poderiam auxiliar na validação do projeto via dinâmica dominante?
5 Experiência Laboratório de Controle Dinâmico 1º/2018 ENE/FT/UnB 5 Anexo Compromissos práticos de projeto. Visando ilustrar os compromissos de projeto que devem ser considerados, apresentase um estudo comparativo de controladores para o kit impressora (aqui, Tm=0.04, Km=16, Ks=10). Figura 5. Comparação de projetos de controladores P, PI e PID, Mp = 25%, para o kit impressora. Ver Tabela 2.
6 Experiência Laboratório de Controle Dinâmico 1º/2018 ENE/FT/UnB 6 Tabela 2 Parâmetros extraídos da resposta simulada de alguns projetos de controladores P, PI e PID Mp 25%. a) r to y to y r to u Proj. K z1 z2 tp ts2% ts2% y max umax P 0,235 0,111 0,271 0,272 0,530 2,35 PIa 0,235 0,1 0,111 0,272 36,9 1,060 2,34 PIb 0, ,131 0,848 3,70 0,768 1,90 PIc 0, ,162 0,776 1,84 0,614 1,39 PId 0,0887 2,75 0,223 0,823 1,28 0,529 0,90 PIDa 0, ,487 1,510 1,94 1,490 2,73 PIDb 0, ,178 0,397 0,61 0,615 4,10 PIDc 7, ,0947 0,243 0,334 0,319 7,88 Na tabela percebese que vários objetivos conflitantes devem ser considerados no projeto prático do controlador. Em vermelho destacamse aspectos muito negativos de um projeto. Em verde aspectos muito positivos e em laranja, condições intermediárias. Recomendações de projeto, considerandose a tabela 2: a) O controlador P não atende às especificações, pois não rejeita a perturbação, ess = 0,42. b) Controladores PID não são adequados, pois demandam picos de u muito altos. Além disso, a tabela 2 assume degraus unitários, enquanto o experimento pede 2 Vpp. Respostas transitórias teóricas muito rápidas são limitadas, na prática, pela saturação. c) Os controladores PID, para serem funções de transferência próprias (realizáveis), necessitam de um polo adicional, aqui adotado em s = 100. D def (s) = g(_eh@)(_ehk). _(_/@AAE@) d) Zeros muito próximos à origem, e.g., z=0,1, devem ser evitados, pois demandam capacitor e resistor de valor muito elevado. Além disso, o tempo de acomodação ts da resposta à perturbação é excessivo. Comparação do projeto simulado com a resposta predita pela dinâmica dominante: A tabela 2 foi construída com o uso da simulação do sistema completo, que permite prever o comportamento do sistema com grande acurácia. É interessante comparar, aqui, e.g., a resposta do PIc com a resposta do sistema de referência, utilizando a dinâmica dominante de um sistema de 2 a ordem sem zeros. Ver figura 6. Notase que, neste caso, o polo e o zero sobre o eixo real não podem ser desprezados, explicando a grande diferença entre ysim e ydom r us ysim yideal t/[s] Figura 6. Resposta simulada e a obtida pela dinâmica dominante. LGR completo; LGR dinâmica dominante.
Experiência 2. Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das Raízes
Experiência 2 Controle de Motor de Corrente Contínua com Tacômetro usando Lugar Geométrico das aízes Professores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é realizar o controle
Experiência 3. Identificação de motor de corrente contínua com tacômetro. 1-Introdução. 2-Modelo do processo
Experiência 3 Identificação de motor de corrente contínua com tacômetro Autores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é levantar o modelo dinâmico do conjunto atuador e motor
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes
CAPÍTULO 7 Projeto usando o Lugar Geométrico das Raízes 7.1 Introdução Os objetivos do projeto de sistemas de controle foram discutidos no Capítulo 5. No Capítulo 6 foram apresentados métodos rápidos de
Questões para Revisão Controle
Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os
PMR3404 Controle I Aula 3
PMR3404 Controle I Aula 3 Resposta estática Ações de controle PID Newton Maruyama 23 de março de 2017 PMR-EPUSP Classificação de sistemas de acordo com o seu desempenho em regime estático Seja o seguinte
PID e Lugar das Raízes
PID e Lugar das Raízes 1. Controlador PID 2. Minorsky (1922), Directional stability of automatically steered bodies, Journal of the American Society of Naval Engineers, Vol. 34, pp. 284 Pilotagem de navios
Introdução ao controle de conversores
Unidade VI Introdução ao controle de conversores 1. Controle por Histerese 2. Controle Linear 3. Utilização da ferramenta SmartCtrl (PSIM) Eletrônica de Potência 1 Introdução Conversores estáticos devem
Experiência: CIRCUITOS INTEGRADORES E DERIVADORES COM AMPOP
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
1. Objetivos. 2. Preparação
1. Objetivos Este experimento tem como objetivo o levantamento experimental das principais características estáticas e dinâmicas de amplificadores operacionais através de medida e ajuste de off-set e medida
CAPÍTULO Compensação via Compensador de Avanço de Fase
CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,
Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes
Projeto de Compensadores/Controladores pelo Diagrama de Lugar das Raízes Carlos Eduardo de Brito Novaes [email protected] http://professorcarlosnovaes.wordpress.com 2 de novembro de 202 Introdução
2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características
Experiência 05: TRANSITÓRIO DE SISTEMAS RC
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
Experiência 5. Projeto e Simulação do Controle no Espaço de Estados de um Pêndulo Invertido sobre Carro
Experiência 5 Projeto e Simulação do Controle no Espaço de Estados de um Pêndulo Invertido sobre Carro Professores: Adolfo Bauchspiess e Geovany A. Borges O objetivo deste experimento é projetar e simular
Desempenho de Sistemas de Controle Realimentados. 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem
Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste 2. Desempenho de sistemas de segunda ordem 3. Efeitos de um terceiro pólo e um zero na resposta de um sistema de segunda ordem 4. Estimação
Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14
Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
O Papel dos Pólos e Zeros
Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),
Objetivo Geral Entender o funcionamento e as principais características do amplificador operacional ou ampop como comparador de sinais.
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)
EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com
Projeto de Compensadores no Domínio da Frequência
Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado
Resposta dos Exercícios da Apostila
Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes [email protected] 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )
Controle de Processos Aula: Sistema em malha fechada
107484 Controle de Processos Aula: Sistema em malha fechada Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle
Laboratório de Projeto por Intermédio do Root Locus
Laboratório de Projeto por Intermédio do Root Locus Revisão Revisão Entrada Expressão do erro estacionário Degrau, Rampa, Parábola, Dado o sistema: Método do Lugar das Raízes Exercício 1 - Controlador
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II DEPARTAMENTO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Guia de Laboratório - Eletrônica
5 a LISTA DE EXERCÍCIOS
5 a LITA DE EXERCÍCIO ) A ação de controle proporcionalderivativo só apresenta influência durante o regime permanente não tendo nenhum efeito durante os transitórios do sistema. Responda se a afirmação
ELT703 - EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE
ELT03 EXPERIÊNCIA N 3: ERROS DC (OFFSET) E SLEW RATE 1. OBJETIVOS: Levantamento da V IO, I B, I B e seus efeitos na relação de saída; Ajuste de Offset externo e interno; Medição do Slew Rate (Taxa de Subida)..
CAPÍTULO 6 Métodos expeditos de projeto
0 CAPÍTULO 6 Métodos expeditos de projeto 6. Introdução Neste capítulo serão introduzidos métodos diretos que permitem o projeto de controladores sem a necessidade de métodos mais sofisticados, a serem
EXERCÍCIOS RESOLVIDOS
ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVESIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3 - LABOATÓIO DE CICUITOS ELÉTICOS GUIA DE EXPEIMENTOS EXPEIÊNCIA 06 - SIMULAÇÃO DE CICUITOS ELÉTICOS
Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais
Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Especificações de Desempenho de Sistemas de Controle Discreto Introdução
CADERNO DE EXPERIÊNCIAS
CADERNO DE EXPERIÊNCIAS Disciplina: ELETRÔNICA III Curso: ENGENHARIA ELÉTRICA Fase: 8ª Conteúdo: Carga horária: 75 horas Semestre: 01/2011 Professor: PEDRO BERTEMES FILHO / RAIMUNDO NONATO G. ROBERT 1.
Teoria de Controle. Helio Voltolini
Teoria de Controle Helio Voltolini Conteúdo programático Introdução aos sistemas de controle; Modelagem matemática de sistemas dinâmicos; Resposta transitória de sistemas de controle; Estabilidade dos
Melhoramos a resposta temporal associando um compensador de avanço de fase que contribui com
Compensador por Avanço / Atraso de fase A compensação de avanço / atraso de fase, é a composição das duas técnicas vistas anteriormente em um único compensador. Melhoramos a resposta temporal associando
VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE VI. MÉTODO DO LUGAR GEOMÉTRICO DAS RAÍZES Prof. Davi Antônio dos Santos ([email protected]) Departamento
SC1 Sistemas de Controle 1. Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor
SC1 Sistemas de Controle 1 Cap. 5 Método do Lugar das Raízes Abordagem de Projetos Prof. Tiago S Vítor Sumário 1. Introdução 2. Definições 3. Alguns detalhes construtivos sobre LR 4. Condições para um
1 a AULA PRÁTICA - ESTUDO DE BJT (NPN)
a AULA PÁTICA - ESTUDO DE BJT (NPN) ) Objetio: * Obter características de CC de um transistor bipolar de junção NPN. * Fazer um projeto de polarização. ) Trabalho Preparatório: A) Descrea sucintamente
CCL: CONTROLE CLÁSSICO. Profa. Mariana Cavalca
CCL: CONTROLE CLÁSSICO Profa. Mariana Cavalca Currículo Resumido Curso Técnico em Eletro-Eletrônica ETEP (São José dos Campos - SP) Iniciação científica (estatística) Estágio Empresa ITA júnior: microcontroladores.
Capítulo 2 Dinâmica de Sistemas Lineares
Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57
PSI LABORATÓRIO DE CIRCUITOS ELÉTRICOS
ESCOLA POLITÉCNICA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS GUIA DE EXPERIMENTOS Experiência 3 COMPORTAMENTO DE COMPONENTES
Sintonia de Controladores PID. TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica
Sintonia de Controladores PID TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica Sintonia de Controladores Características Desejáveis do Controlador
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 1.1 Sistemas de Controle em Malha Aberta e em Malha Fechada................ 5 1.2 Componentes de um sistema de controle............................ 5 1.3 Comparação
Estabilidade de Sistemas Lineares Realimentados
Estabilidade de Sistemas Lineares Realimentados 1. Conceito de estabilidade 2. Critério de estabilidade de Routh-Hurwitz p.1 Engenharia de Controle Aula 6 Estabilidade de Sistemas Lineares Realimentados
1. Introdução. O experimento de Retificadores, tem como principais objetivos:
Exp. 1 Retificadores B 1 1. Introdução O experimento de Retificadores, tem como principais objetivos: desenvolvimento de técnicas de projeto de circuitos retificadores, e comparando as aproximações feitas,
ELETRÔNICA DE POTÊNCIA I
ELETRÔNICA DE POTÊNCIA I Conversor Buck Módulo de Potência APARATO UTILIZADO: Você recebeu uma placa com de circuito com o circuito cujo esquema é mostrado na figura 1. O circuito é composto por um retificador
ERRO EM REGIME PERMANENTE
MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA ERRO EM REGIME PERMANENTE Inicialmente veja o sistema realimentado mostrado na figura
Sintonia do compensador PID
Sintonia do compensador PID 0.1 Introdução DAELN - UTFPR - Controle I Paulo Roberto Brero de Campos Neste capítulo será estudado um problema muito comum na indústria que consiste em fazer o ajuste dos
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES
EN 2603 ELETRÔNICA APLICADA LABORATÓRIO Nomes dos Integrantes do Grupo AMPLIFICADORES OPERACIONAIS APLICAÇÕES LINEARES 1. OBJETIVOS a. Verificar o funcionamento dos amplificadores operacionais em suas
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID)
CONTROLADOR PROPORCIONAL, INTEGRAL E DERIVATIVO (PID) AÇÕES DE CONTROLE O controlador PID é um controlador composto por três ações de controle Ação proporcional: u t = k e t Ação integral: u t = k 0 t
ELETRÔNICA I. Apostila de Laboratório. Prof. Francisco Rubens M. Ribeiro
ELETRÔNICA I Apostila de Laboratório Prof. Francisco Rubens M. Ribeiro L E E UERJ 1996 Prática 01 - Diodo de Silício 1 - Objetivo: Levantamento da característica estática VxI do diodo de Si, com o auxílio
SISTEMAS DE CONTROLE II
SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações
Introdução teórica Aula 10: Amplificador Operacional
Introdução Introdução teórica Aula 10: Amplificador Operacional O amplificador operacional é um componente ativo usado na realização de operações aritméticas envolvendo sinais analógicos. Algumas das operações
Conteúdo. Definições básicas;
Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições
Experimento #2 AMPLIFICADOR OPERACIONAL
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE ELETRÔNICA Experimento #2 AMPLIFICADOR OPERACIONAL Aplicações com amplificadores
PARTE 1. Transistores como Chave de Potência Introdução Projeto (transistor como chave de potência)
Exp. 3 Dispositivos de Potência B 1 PARTE 1. Transistores como Chave de Potência 1.1. Introdução Esta parte da experiência tem como objetivo estudar o comportamento de transistores operando como chaves.
Circuitos resistivos alimentados com onda senoidal. Indutância mútua.
Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução
Pontifícia Universidade Católica de Goiás. Prof: Marcos Lajovic Carneiro Aluno (a): Sistemas de Controle I
Pontifícia Universidade Católica de Goiás Projeto de Escola de Engenharia ENG 3502 Controle de Processos Controle I Prof: Marcos Lajovic Carneiro Aluno (a): Sistemas de Controle I Estudo de Caso Antena
Resposta em Frequência. Guilherme Penello Temporão Junho 2016
Resposta em Frequência Guilherme Penello Temporão Junho 2016 1. Preparatório parte 1: teoria Experiência 9 Resposta em Frequência Considere inicialmente os circuitos RC e RL da figura abaixo. Suponha que
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 11 Sistemas de Controle em Malha Aberta e em Malha Fechada 5 12 Componentes de um sistema de controle 5 13 Comparação de Sistemas de Controle em Malha Aberta
Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores)
Guias de Laboratório da Unidade Curricular Eletrónica 2 (Licenciatura em Engenharia Eletrotécnica e de Computadores) Jorge Manuel Martins ESTSetúbal, julho de 2017 Índice Lab. 1 - Estudo de um Amplificador
SISTEMAS REALIMENTADOS
SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Projeto de Sistemas de Controle pelo LDR Consiste em inserir pólos e zeros, na forma de um compensador,
Aula 9: Sintonia de controladores PID
Aula 9: Sintonia de controladores PID prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 19 de setembro de 2017. prof. Dr. Eduardo Bento Pereira (UFSJ) Controle
Teoria do Controlo. Síntese de controladores. Controladores PID MIEEC
Teoria do Controlo Síntese de controladores Controladores PID MIEEC! Esquema de controlo r - G c (s) G p (s) y TCON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Controlador com pura ação proporcional
4.1 Pólos, Zeros e Resposta do Sistema
ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta
Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1
Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006
Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo digital de velocidade e de posição de um motor D.C. Elaborado por E. Morgado 1 e F. M.
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência. Exemplo de projeto: sistema de controle de uma máquina de inscultura 2. MATLAB 3. Exemplo de Projeto Seqüencial: sistema de leitura de um drive 4. Diagramas de Bode de
Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID)
Sistemas Realimentados Regulação e Tipo de sistema: Entrada de referência Entrada de distúrbio Controladores: Proporcional (P) Proporcional e Integral (PI) Proporcional, Integral e Derivativo (PID) Fernando
Circuitos resistivos alimentados com onda senoidal
Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos
Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1
Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3
Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode
Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,
UNIVERSIDADE DE MOGI DAS CRUZES - ENGENHARIA ELÉTRICA Prof. José Roberto Marques CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA
CURSO DE ENGENHARIA ELÉTRICA ELETRÔNICA DE POTÊNCIA Exp. 1 (Simulação) LABORATÓRIO DE SIMULAÇÂO DE FONTES CHAVEADAS O objetivo deste laboratório é simular fontes chaveadas Buck (abaixadora de potencial)
Roteiro, Registro e Relatório para Desenvolvimento da Atividade Complementar Delberis Araujo Lima PUC-Rio Dezembro de 2016
Roteiro, Registro e Relatório para Desenvolvimento da Atividade Complementar 2016.2 Delberis Araujo Lima PUC-Rio Dezembro de 2016 Roteiro, Registro e Relatório para Desenvolvimento da Atividade Complementar
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
Controlador digital para sistemas de 1 a ordem
Controlador digital para sistemas de 1 a ordem Um sistema de 1 a ordem, possui uma resposta temporal ao degrau do tipo exponencial decrescente, dada pela seguinte equação: PV (t)=k (CV CV 0 )(1 e ( t τ
LISTA /1. a) Quanto maior o tempo morto, maior deverá ser a ação b) Quanto maior o ganho do processo menor deverá ser o ganho do controlador.
LISTA 006/ ) (005/, PARTE A) Um sistema dinâmico é modelado por função de transferência de primeira ordem com tempo morto. Comente sobre as seguintes afirmativas: a) Quanto maior o tempo morto, maior deverá
Experimento 8 Circuitos RC e filtros de freqüência
Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos
ENCONTRO 4 AMPLIFICADOR DE INSTRUMENTAÇÃO
CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: ELETRÔNICA II PROFESSOR: VLADEMIR DE J. S. OLIVEIRA ENCONTRO 4 AMPLIFICADOR DE INSTRUMENTAÇÃO 1. COMPONENTES DA EQUIPE Alunos Nota: Data: 2. OBJETIVOS - Implementação
Projeto de um Controlador PID
ALUNOS 1 - NOTA 2- DATA Projeto de um Controlador PID 1.1 Objetivo Este experimento tem como objetivo a implementação de um controlador PID para um dos processos da MPS-PA Estação Compacta. Supõe-se que
Projeto a Tempo Discreto
Projeto a Tempo Discreto 1. Lugar das Raízes no domínio-z 2. Exemplo de projeto Fly-by-Wire pag.1 Controle de Sistemas Lineares Aula 23 Projeto via Lugar das Raízes O projeto é realizado diretamente no
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
Controle Antecipatório (Alimentação ou Feedforward)
Controle Antecipatório (Alimentação ou Feedforward) TCA: Controle de Processos 2S / 2012 Prof. Eduardo Stockler Universidade de Brasília Depto. Engenharia Elétrica Recapitulando o conceito O controle antecipatório
Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara
FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Prof. Marcio Kimpara 2 Sistemas de primeira ordem Existem casos
OUTROS. Vz C2. 4- O circuito da fig. 2 realiza um multivibrador astável:
PP / 0 OS O circuito da fig. realiza um multivibrador astável: (,0) Calcule para que o circuito oscile em 0kHz. Considere C=nF e Vz=V. Vcc=5V IC 555 5 Vz C C=0,0nF fig AMPLIFICADO OPEACIONAL PP / 00 (,5)
Projeto de um Controlador PID
ALUNOS 1 - NOTA 2- DATA Projeto de um Controlador PID 1.1 Objetivo Este experimento tem como objetivo a implementação de um controlador PID para um dos processos da Estação Compacta MPS-PA usando LabView.
6.1 Controladores Digitais baseados em Controladores Analógicos
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE SISTEMAS DE CONTROLE II 6 CONTROLADORES DIGITAIS 6.1 Controladores Digitais baseados
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 2 Prof. Dr. Marcos Lajovic Carneiro Planejamento da disciplina
Laboratório de Circuitos Elétricos I
Laboratório de Circuitos Elétricos I 14 a Aula Prática: Circuitos Lineares de 1ª Ordem 1- Objetivos: Verificar experimentalmente o comportamento dos circuitos de 1ª ordem. 2 Material utilizado: 01 Fonte
8 Compensação. 8.1 Introdução. 8.2 Pré-Compensadores. 8.3 Compensador por Avanço de Fase. V(s) G p (s) + G c (s) G (s) D(s) + 8 Compensação 109
8 Compensação 09 8 Compensação 8. Introdução O objetivo deste capítulo é apresentar e discutir algumas técnicas de projeto de S.L.I.T.'s. Entende-se por compensação a definição e o ajuste de dispositivos
Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos
Curso de Instrumentista de Sistemas Fundamentos de Controle Prof. Msc. Jean Carlos Fundamentos de Controle Aula_05 Na última aula... Método da tentativa sistemática ganho do controlador no valor mínimo
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1
Capítulo 10 Estabilidade e Compensação. em Freqüência. que possui a seguinte função de transferência. Considerações Gerais
Capítulo 10 Estabilidade e Compensação Considerações Gerais em Freqüência A realimentação que é largamente utilizada por trazer diversas vantagens como as mostradas no capítulo 8, no entanto causa problemas
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
