Electrónica para Telecomunicações
|
|
|
- Sabina Back Macedo
- 8 Há anos
- Visualizações:
Transcrição
1 Dept. de Engenharia Electrotécnica e Computadores Fac. de Ciências e Tecnologia da Universidade de Coimbra Electrónica para Telecomunicações Trabalho Prático Nº3 Amplificador Sintonisado 1. INTRODUÇÃO Na figura representa-se um andar de um amplificador sintonizado. Trata-se de um amplificador cascódico, construído com os transístores Q1 e Q2, que têm como carga um circuito tanque, isto é um circuito RLC paralelo. O amplificador foi projectado para trabalhar na frequência intermédia de 455 khz. A resistência interna da fonte de sinal (ou resistência de saída do andar amplificador anterior) é 50 ohms e a resistência de carga (ou resistência de entrada do andar seguinte) é de 100 ohms. O objectivo deste trabalho é estudar várias configurações do circuito de carga RLC.
2 2. PREPARAÇÃO 2.1 Deve começar por estudar o ponto de funcionamento em repouso do circuito. Depois de determinada a corrente I C dos transístores deve estimar a transcondutância g m e ver num datasheet o valor de h FE que lhe permitirá estimar o valor de r π. Desprezando o parâmetro r X pode determinar a parcela da tensão do gerador de sinal que aparece entre a base e o emissor de Q1. Supondo a operação na frequência de ressonância (a carga no colector de Q2 é apenas a resistência R L adaptada pelo transformador) estime o valor do ganho em tensão (despreze o valor de r 0 face a essa resistência). Desenhe o circuito equivalente para pequenos sinais que utilizou para o cálculo do ganho em tensão. 2.2 Usando o circuito equivalente da saída, desenhado ao lado, determine a frequência de ressonância, a largura de banda do amplificador e o factor de qualidade Q do circuito RLC. Se em vez de considerar L 1 (o transformador) ideal, soubesse que o factor de qualidade de L 1 (do transformador) era Q=120, qual seria a nova largura de banda? 2.3 Simule o circuito no Multisim (não se esqueça de introduzir os valores iniciais das tensões dos condensadores C 2 C 3 C 4 e C E ). Com o osciloscópio determine o ganho em tensão à frequência de ressonância e compare com o valor estimado em 2.1. Utilize o Bode plotter e determine a frequência de corte superior e inferior e, desse modo, a largura de banda do amplificador. 2.4 Um circuito muito usado em receptores de rádio utiliza um transformador com tomada média no primário por onde se liga a alimentação como se mostra na figura. O enrolamento extra do primário é usado para ligar um condensador de neutralização (efeito de Miller) que reduz a influência de Cµ de Q2 o que seria muito importante caso Q2 funcionasse em emissor-comum. Explique como se consegue a neutralização do efeito de Miller com este circuito. 2.5 Vamos agora analisar configurações alternativas ao circuito de sintonia com transformador. Vamos sempre considerar, tal como até aqui, que a resistência de carga é de 100 Ω e que a imagem dessa resistência vista no colector de Q2 é 1 kω. Ou seja vamos proceder a uma adaptação de impedâncias de 100 Ω para 1 KΩ. Não estamos a maximizar a transferência de potência que obrigaria a transformar a carga de 100 Ω numa resistência igual a r 0. De facto r 0 vale tipicamente 80 kω e, se a adaptação fosse feita, a resistência que g m v BE veria seria 40 kω e o ganho 40 vezes superior. Vários problemas surgiriam. Em primeiro lugar, para se ter a mesma largura de banda deveríamos usar L 1 40 vezes maior (880 µh é um valor muito pouco prático!). As correntes multiplicadas em L 1 e C 1 seriam muitíssimo elevadas. A grande excursão da tensão de saída poderia trazer
3 distorção. E, talvez o pior de tudo caso se usasse o emissor comum em vez do amplificador cascódico, o efeito de Miller seria elevadíssimo e o circuito poderia mesmo tornar-se instável. Se quisermos ter a frequência central e a largura de banda que foram calculadas no ponto 2.2 os valores de L e C serão de 5,6 nf e 22 µh quer estejam na configuração série ou paralela. Em ambos os casos a tensão v 0 terá uma amplitude de g m x v BE x 1kΩ. Vamos pois considerar vários tipos de circuitos adaptadores que transformam a impedância R L =100 Ω em R in =1 kω. O circuito adaptador de impedância deve ser pois do tipo adaptador para cima. Isso põe de parte os circuitos adaptadores para baixo. Os circuitos adaptadores Lmatch que aumentam a impedância são indicados na figura. O circuito da direita seria atractivo pois seria facilmente integrado no circuito com L servindo para polarizar Q2 e C bloqueando a corrente DC da carga R L. Contudo, o circuito não oferece a flexibilidade necessária para substituir o transformador inicial. Vejamos isso. A série C R L converte-se no paralelo C P R P. O valor de Q necessário para converter R L em R P é Q=3 como resulta da 2 2 equação: R P=1000=R L(1 + Q ) = 100(1 + 3 ). Este valor de Q fixa o valor de C pois Q = X C /RL = 1/ ω0cr L ou 3 seja C = 1/Qω R = 1 /3 2π = 1,17nF. 0 L Este condensador de valor C transforma-se em C + 2 = + 2 P=C/(1 Q ) C /(1 3 ) = 0,9C = 1,05nF e, finalmente, para que L ressone com C P à frequência de 455kHz é L = 116,6µ H. Em face destes valores podemos calcular o Q do circuito tanque final. Teremos: RP RP 1000 Q = = = = 3 3 X X 2π L L C como não podia deixar de ser. Por causa do valor baixo de Q, a largura de banda do amplificador sintonizado será demasiado grande ou seja BW = f 0 / Q 151kHz. Para termos um factor de qualidade idêntico ao do circuito original ( Q 16 ) teremos que usar um adaptador que ofereça mais um grau de liberdade no projecto. Entre várias possibilidades poderiamos usar adaptadores em T-
4 match ou π-match. Vamos, porém, usar o circuito divisor capacitivo ( tapped capacitive ) como se mostra na figura. Como temos que dimensionar C1 e C2 vamos supor que eles podem por um lado fixar a frequência de ressonância e por outro conseguir a adaptação de impedância. Ou seja vamos fixar L à partida para que a largura de banda e o factor de qualidade tenham os valores desejados. O valor de L será, portanto, de 22µH. Para analisarmos a adaptação de impedância podemos considerar que existem 2 adaptações/conversões. Em primeiro lugar podemos considerar a conversão entre os pares (R L C 2 ) e (R S C 2S ). Depois podemos considerar um condensador, C EQ equivalente à série C 1 C 2S e considerar a conversão entre os pares (R P C P ) e (R S C EQ ). O factor de qualidade do circuito R S C EQ é igual ao factor de qualidade do circuito R P C P e igual ao factor de qualidade do circuito total RLC, o qual designamos por Q. Pretende-se que este Q seja aproximadamente igual a 16. Na conversão de R S para R L ou de R L para R S (podemos pensar de qualquer destas maneiras) o factor de qualidade é Q2. Teremos: R = R /(1 + Q 2 ) que conduz a R S =3,89 Ω. Como S in também se têm R = + 2 S R L /(1 Q 2), resulta Q 2 =4,97. Quer dizer que podemos interpretar a transformação de impedâncias como uma operação em 2 passos. Primeiro R L é baixado para R S usando Q 2. Depois este R S (virtual) é aumentado para R P =R in usando um Q igual ao Q pretendido (Q=16). C2 obtem-se de Q2 através de Q2 = RLω0C 2 e logo podemos obter 2 C = C (1 + 1 / Q ). C 1 obtem-se tomando em conta que C = 1 /L ω 2 e que 2S C = C (1 + 1/Q ) e C = C C /(C C ). EQ P 1 2 EQ 2 EQ P 0 Simule no Multisim o funcionamento do circuito com o adpatador por divisor capacitativo e confirme que o seu projecto funciona como pretendido, isto é verifique se a largura de banda é igual à que obtem com o transformador. 3. PLANO DE TRABALHO 3.1 O transformador deveria ter a possibilidade de ser ajustado de modo a conseguir-se uma perfeita sintonia na frequência f0=455khz. Estes transformadores são como se ilustra na figura e normalmente já têm o condensador ressonante montado por baixo da caixa. No laboratório terá que construir um transformador usando fio de cobre esmaltado. Poderá usar uma forma de plástico (tubo VD usado nas cablagens eléctricas) sendo o núcleo de ar. Dependendo do diametro e comprimento do enrolamento (ver
5 fórmula nos slides) conseguirá a indutância aproximada de 22µH com algumas dezenas de voltas. Isole com fita plástica e enrole por cima o secundário. Remova o esmalte nas terminações e estanhe as mesmas antes de usar o transformador no deck de montagem. Pode também usar um toroide de ferrite. Existem no laboratório toroides com um factor de indutância de 1000 (nh / espira ao quadrado). Serão precisas muito poucas espiras para conseguir os 22µH e a dispersão será minima. Contudo será dificil acertar na relação entre as espiras do primário e secundário. Ligue o circuito sem sinal aplicado e meça as tensões nas bases de Q1 e Q2 bem com as tensões no emissor de Q1, emissor de Q2 e colector de Q2 (esta tensão deve ser igual a V CC ). Se estes valores estiverem dentro das suas previsões, avance para a determinação da largura de banda. 3.2 Mantendo fixa a amplitude do sinal aplicado na entrada, varie a frequência deste e observe no osciloscópio a tensão na carga de 100Ω. Deverá obter um pico quando para f=455khz. Se a frequência de ressonância estiver muito longe deste valor retire ou acrescente um ou mais pequenos condensadores em paralelo com C1. Não se preocupe se não conseguir a sintonia exacta admita que o enunciado lhe propunha o valor que conseguiu obter! Meça o ganho máximo em dbs e a largura de banda (o que é equivalente a medir o factor de qualidade do circuito tanque). 3.3 Use agora a configuração de adaptação de impedância com o divisor capacitativo. Pode usar uma indutância de 22µH ou o primário do transformador anterior (com o secundário em aberto). Meça o valor do ganho em tensão e a largura de banda e compare com os valores encontrados na montagem anterior. Projecto facultativo - como complemento a este trabalho poderá programar uma folha de cálculo para obter os valores de LL e CC que devem ser usados nos adaptadores de impedância de banda estreita. Como dados de entrada deverá ter R L R IN, Q (largura de banda) e ω 0. Considere pelo menos 2 circuitos concretos à sua escolha: um circuito elevador e outro diminuidor. Como exemplo pode ver a folha de cá culo para o adaptador usado neste trabalho prático (que pode descarregar na WOC da disciplina). Entregar até 4 de Novembro.
6 Trabalho Prático Nº3 Amplificador Sintonisado 2. PREPARAÇÃO DO TRABALHO 2.1 IC1= IC2= g m = h FE = r X = G V = 2.2 f O = f H -f L = Q= Q = 2.3 G V = f O = f H = f L = 2.4 A neutralização do efeito de Miller consegue-se 2.5 C1= C2= G V = f 0 = f H -f L = 3. REALIZAÇÃO DO TRABALHO 3.1 V B1 = V B2 = V E2 = V C2 = 3.2 G V = f O = f H = f L = 3.3 G V = f O = f H = f L =
GUIA DE EXPERIMENTOS
ESCOLA POLITÉCNICA DA UNIVESIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3 - LABOATÓIO DE CICUITOS ELÉTICOS GUIA DE EXPEIMENTOS EXPEIÊNCIA 06 - SIMULAÇÃO DE CICUITOS ELÉTICOS
Aula Prática 01. O Amplificador Diferencial e Aplicações
Aula Prática 01 I - Objetivos O objetivo desta aula prática é estudar o amplificador diferencial, suas propriedades e aplicações. A técnica adotada é reforçar a noção de associação de amplificadores em
Universidade Federal de Juiz de Fora - Laboratório de Eletrônica 22
Universidade Federal de Juiz de Fora - Laboratório de Eletrônica 22 1 Título Prática 1 - Fonte de Alimentação Regulável 2 Objetivos Desenvolvimento de uma fonte de alimentação regulável. 3 Fundamentos
Escola Superior de Tecnologia
Escola Superior de Tecnologia Departamento de Engenharia Electrotécnica Electrónica I 1º Trabalho de Laboratório Características V-I do díodo de silício, do díodo Zener e do díodo emissor de luz - LED
Electromagnetismo e Física Moderna. Conhecer um método para a determinação da capacidade eléctrica
Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física 1 Compreender o que é um condensador eléctrico Electromagnetismo e Física Moderna Capacidade e condensadores Conhecer
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 5 1 Título Prática 4 Circuitos retificadores 2 Objetivos Estudo e montagem de diferentes circuitos retificadores. 3 Fundamentos
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #8 (1) FONTE DE CORRENTE a) Determine Io. b) Calcule
Pontas de prova para instrumentos
Pontas de prova para instrumentos São denominados pontas de prova o conjunto de cabos, conectores e terminações que fazem a conexão entre os instrumentos e os circuitos a serem analisados. 1 Pontas de
Aula de Laboratório: DIODO
Aula de Laboratório: DIODO I.1 - Teste do estado de funcionamento de um diodo Utilizando a função apropriada do multímetro, meça a condutividade dos diodos fornecidos em ambos os sentidos de polarização.
Prof. Fábio de Oliveira Borges
Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)
Resposta em Frequência. Guilherme Penello Temporão Junho 2016
Resposta em Frequência Guilherme Penello Temporão Junho 2016 1. Preparatório parte 1: teoria Experiência 9 Resposta em Frequência Considere inicialmente os circuitos RC e RL da figura abaixo. Suponha que
Ensaios em Transformadores
O ensaio de curto-circuito é usado para obter a impedância equivalente em série R eq + j X eq. O curto-circuito é aplicado ao secundário do transformador e a tensão reduzida, ao primário. Joaquim Eloir
Amplificadores de Potência Classe A
Universidade do Estado de Santa Catarina CCT Centro de Ciências Tecnológicas Amplificadores de Potência Classe A Professor: Disciplina: Celso José Faria de Araújo Eletrônica Analógica I Joinville SC Introdução
Electrónica para Telecomunicações
Dept. de Engenharia Electrotécnica e Computadores Fac. de Ciências e Tecnologia da Universidade de Coimbra Electrónica para Telecomunicações Trabalho Prático Nº2 Amplificador Cascódico 1. INTRODUÇÃO Neste
Electrónica Fundamental 11º ano
Planificação Anual 2016/2017 Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Electrónica Fundamental 11º ano 1 MÓDULO 5: Transístores Bipolares em Regime Estático 21 aulas de 45 =
Fundamentos de Eletrônica
6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise
Electrónica II Amplificadores de Potência
Introdução Os amplificadores são normalmente compostos por vários andares em cascata: entrada e intermédios operam com pequenos sinais. ao andar de saída é solicitada uma potência suficientemente elevada
Sistemas de Accionamento Electromecânico
Sistemas de Accionamento Electromecânico Exercícios Teórico-práticos (Transformadores de potência) 3.º Ano, 1.º Semestre 2007-2008 1. Desenhe o diagrama vectorial de um transformador monofásico em carga,
ET720 Sistemas de Energia Elétrica I. Capítulo 4: Transformadores de potência. Exercícios
ET720 Sistemas de Energia Elétrica I Capítulo 4: Transformadores de potência Exercícios 4.1 Um transformador monofásico de dois enrolamentos apresenta os seguintes valores nominais: 20 kva, 480/120 V,
PROTOCOLOS DAS AULAS PRÁTICAS. LABORATÓRIOS 2 - Campos e ondas
PROTOCOLOS DAS AULAS PRÁTICAS DE LABORATÓRIOS 2 - Campos e ondas Conteúdo P1 - Amplificador operacional...3 P2 - RTEC....5 P3 - RTET e RTEC....7 P4 - Realimentação positiva...9 P5 - Intensidade luminosa....11
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE ENGENHARIA ELETRICA E CIÊNCIA DA COMPUTAÇÃO MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Cálculos de Interrupção de alta freqüência Ron Roscoe O esquema acima representa
CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS
CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS Neste capítulo, o objetivo é o estudo das aplicações com os Amplificadores Operacionais realizando funções matemáticas. Como integração, diferenciação,
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET
CAPÍTULO IV AMPLIFICADORES OPERACIONAIS 4.1. TENSÕES E CORRENTES DE COMPENSAÇÃO OU OFFSET Definição : O offset é definido como uma tensão residual que aparece na saída do Amplificador Operacional quando
CET ENERGIAS RENOVÁVEIS ELECTROTECNIA
CET ENERGIAS RENOVÁVEIS ELECTROTECNIA CADERNO DE EXERCÍCIOS 1. Duas cargas pontuais q1 = 30µ C e q2 = 100µ C encontram-se localizadas em P1 (2, 0) m e P2 (0, 2) m. Calcule a força eléctrica que age sobre
Universidade Presbiteriana Mackenzie. Escola de Engenharia - Engenharia Elétrica. Ondas Eletromagnéticas I 1º sem/2004. Profª. Luciana Chaves Barbosa
Universidade Presbiteriana Mackenzie Escola de Engenharia - Engenharia Elétrica Ondas Eletromagnéticas I 1º sem/2004 Profª. Luciana Chaves Barbosa Profª. Yara Maria Botti Mendes de Oliveira 1. De que fator
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF
ASSOCIAÇÃO DE RESISTORES E LEIS DE KIRCHHOFF Introdução Associação de Resistores Em muitas aplicações na engenharia elétrica e eletrônica é muito comum fazer associações de resistores com o objetivo de
Abra o arquivo ExpCA05. Identifique o circuito da Fig12a. Ative-o. Anote o valor da corrente no circuito.
Curso CA Parte3 a) Primeiramente deveremos calcular a reatância X C = 1 / (..60.0,1.10-6 ) =6.55 Agora poderemos calcular a impedância. Z = 40 6,5 = 48K b) = U / Z = 10V / 48K =,5 ma c) V C = X C. = 6,5K.,5mA
XConverter. Conversor DC-DC elevador de tensão
Este conversor eleva uma tensão de 12Vdc de uma fonte linear ou chaveada com capacidade de pelo menos 1A para uma alta tensão programável de 40Vdc a 190Vdc trocando apenas um resistor e fornecendo até
Introdução teórica aula 12: Pisca- Pisca Controlado por Luz
Introdução teórica aula 12: Pisca- Pisca Controlado por Luz IC555 O IC555 é um circuito integrado (chip) utilizado em uma variedade de aplicações como temporizador ou multivibrador. O CI foi projetado
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA. Auto Transformador Monofásico
Auto Transformador Monofásico Determinação do rendimento para a carga nominal Determinação do esquema equivalente reduzido ao primário Curva característica do rendimento η = f (S 2 ), para vários factores
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL037
Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL037 1 Título Prática 1 Fonte de Alimentação Regulável 2 Objetivos Estudo de algumas topologias e desenvolvimento de uma fonte de alimentação
IFRN - Campus Parnamirim Curso de eletricidade turma de redes de Computadores 2011.2. Figura 35 Relé eletromecânico
Figura 35 Relé eletromecânico Figura 36 Aplicação para o relé eletromecânico INFORMAÇÕES IMPORTANTES SOBRE OS INDUTORES Três conclusões muito importantes podem ser tiradas em relação ao comportamento do
Tutorial de Eletrônica Circuito para Uso de Relé v
Tutorial de Eletrônica Circuito para Uso de Relé v2010.05 Linha de Equipamentos MEC Desenvolvidos por: Maxwell Bohr Instrumentação Eletrônica Ltda. Rua Porto Alegre, 212 Londrina PR Brasil http://www.maxwellbohr.com.br
EXERCÍCIOS DE PREPARAÇÃO DE EL - III B2
EXERCÍCIOS DE PREPARAÇÃO DE EL - III B2 Exercício Resolvido : Determinar a resposta em freqüência do amplificador de pequeno sinal a JFET e a impedância de entrada e de saída, sabendo-se que : V DD 5V,
Conversores Estáticos
Conversores Estáticos Circuitos Retificadores Monofásicos 08/03/2009 www.corradi.junior.nom.br Sinal Senoidal Os circuitos eletrônicos podem trabalhar com tensões e correntes continuas e alternadas. Um
U M A C A R G A A R T I F I C I A L R E S S O N A N T E
U M A C A R G A A R T I F I C I A L R E S S O N A N T E Introdução O nosso problema específico é o de se construir uma carga artificial para a faixa de 470 a 510kHz para a qual está sendo montado um transmissor
TRANSFORMADOR CONCEITOS TEORICOS ESSENCIAIS
EXPERIÊNCIA TRANSFORMADOR OBJETIVOS: - Verificar experimentalmente, o funcionamento de um transformador; - Conhecer as vantagens e desvantagens dos transformadores. CONCEITOS TEORICOS ESSENCIAIS O transformador
1. Conceito de capacidade 2. Tipos de condensadores. 3. Associação de condensadores. 4. Energia de um condensador. 5. Condensador plano paralelo com
1. Conceito de capacidade 2. Tipos de condensadores. 3. Associação de condensadores. 4. Energia de um condensador. 5. Condensador plano paralelo com dieléctrico. Utilidade: Armazenamento de carga e energia
Prof. Rogério Eletrônica Geral 1
Prof. Rogério Eletrônica Geral 1 Apostila 3 Continuação de Diodos III - CIRCUITOS COM DIODOS 1 - Sinal senoídal Um dos sinais elétricos alternados mais comuns é o senoídal. O sinal senoídal pode ser representado
TRANSMISSÃO DE ENERGIA ELÉTRICA
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Elétrica TRANSMISSÃO DE ENERGIA ELÉTRICA PROF. FLÁVIO VANDERSON GOMES E-mail: [email protected] Aula Número: 06 2 - 3 4 5 6 7 8 9 10
Analisador de Espectro
Centro de Pesquisas de Energia Elétrica Analisador de Espectro Apresentador: André Tomaz de Carvalho Área: DLE Analisador de Espectro 1 Analisador de Espectro É basicamente um voltímetro com seletor de
ENGC25 - ANÁLISE DE CIRCUITOS II
ENGC25 - ANÁLISE DE CIRCUITOS II Módulo V CIRCUITOS ACOPLADOS MAGNETICAMENTE INTRODUÇÃO AOS TRANSFORMADORES UFBA Curso de Engenharia Elétrica Prof. Eugênio Correia Teixeira Campo Magnético Linhas de fluxo
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #8 (1) FONTE DE CORRENTE COM CARGA ATERRADA (A) Encontre
Versão Mutirão, Rev. 0
Página 1 de 1 Manual Montagem PA Ararinha 4b Versão Mutirão, Rev. 0 Foto PA protótipo Página 2 de 2 Siga corretamente as instruções e encontrando alguma coisa diferente do informado no manual, não prossiga
Parte 3 Fontes Chaveadas Circuitos auxiliares (snubber, partida, fonte, etc)
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Projeto de Fontes Chaveadas Parte 3 Fontes Chaveadas Circuitos auxiliares (snubber, partida, fonte,
Departamento de Matemática e Engenharias. Licenciatura em Engenharia de Sistemas e Computadores (LESC) Laboratórios III (Microprocessadores)
UNIVERSIDADE DA MADEIRA Departamento de Matemática e Engenharias Licenciatura em Engenharia de Sistemas e Computadores (LESC) Laboratórios III (Microprocessadores) 2º Trabalho prático Controlo de um motor
Colectânea de Problemas
Teoria dos Circuitos e Fundamentos de Electrónica Mestrado em Engenharia Física Tecnológica (MEFT) Mestrado em Engenharia Biomédica (MEBiom) Colectânea de Problemas 1 Teoria dos Circuitos 2 Circuitos com
Eletromagnetismo: Bobinas, Eletroímanes e Motores Elétricos.
Eletromagnetismo: Bobinas, Eletroímanes e Motores Elétricos www.fator-f.com [email protected] Campo Magnético criado por uma corrente elétrica Campo Magnético criado por um fio, percorrido por uma corrente
ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 009/010 ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE 1. O campo magnético no interior dum solenóide
Lista de Exercícios 1 (L1)
1 ELETRÔNICA DE POTÊNICA II Professor: Marcio Luiz Magri Kimpara Lista de Exercícios 1 (L1) 1) Determine o valor da indutância e capacitância do conversor Boost operando no modo de condução contínuo a
Circuitos Série e a Associação Série de Resistores
1 Painel para análise de circuitos resistivos CC (Revisão 00) Circuitos Série e a Associação Série de Resistores 1 2 Circuitos Série e a Associação Série de Resistores Utilizando as chaves disponíveis
Máquina Assíncrona COMANDO
SECÇÃO DE MÁQUNAS ELÉCTRCAS E ELECTRÓNCA DE POTÊNCA MÁQUNAS ELÉCTRCAS LEM/LEA Máquina Assíncrona COMANDO 2005/2006 - OBJECTVO DO TRABALHO Determinação do comportamento de uma máquina assíncrona quando
ELETRÔNICA ANALÓGICA CEL099. Prof. Pedro S. Almeida
ELETRÔNICA ANALÓGICA CEL099 Prof. Pedro S. Almeida [email protected] Circuitos de Aplicação de Diodos 2 Conteúdo Circuitos Retificadores Retificador de Meia-Onda Retificador de Onda-Completa a
Identificação do Valor Nominal do Resistor
Conteúdo complementar 1: Identificação do Valor Nominal do Resistor Os resistores são identificados por um código de cores ou por um carimbo de identificação impresso no seu corpo. O código de cores consiste
CEIFADORES E GRAMPEADORES
CEIFADORES E GRAMPEADORES Ceifadores e grampeadores são circuitos compostos por diodos para a obtenção de formas de ondas especiais, cada um deles, desempenhando uma função específica como sugere o nome.
Resistores e CA. sen =. logo
Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de
Prof. Antônio Carlos Santos. Aula 3: Circuitos Ceifadores (limitadores de tensão)
IF-UFRJ Laboratório de Física Moderna Eletrônica Prof. Antônio Carlos Santos FIW362 Curso de Licenciatura em Física Aula 3: Circuitos Ceifadores (limitadores de tensão) Este material foi baseado em livros
O USO DO SIMULADOR PhET PARA O ENSINO DE ASSOCIAÇÃO DE RESISTORES. Leonardo Dantas Vieira
Universidade Federal de Goiás - Regional Catalão Instituto de Física e Química Programa de Pós-Graduação em Ensino de Física Mestrado Nacional Profissional em Ensino de Física O USO DO SIMULADOR PhET PARA
1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas.
Ciências Experimentais P9: Carga e descarga do condensador 1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas. 2. Introdução O condensador
Circuitos retificadores com diodos
Circuitos retificadores com diodos Introdução Dentre as principais aplicações do diodo, esta a retificação, ou seja, converter um sinal alternado em continuo, isto se faz necessário porque as maiorias
UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA
UNIVERSIDADE PAULISTA UNIP FUNDAMENTOS DE CIRCUITOS ELÉTRICOS INTRODUÇÃO CIRCUITOS SÉRIE DE CORRENTE CONTÍNUA Um circuito série é aquele que permite somente um percurso para a passagem da corrente. Nos
COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOEAR 2002 05 No circuito mostrado na figura abaixo, determine a resistência
ELETRÔNICA I 2312A PROF. ALCEU FERREIRA ALVES 3ª LISTA DE EXERCÍCIOS CIRCUITOS COM DIODOS 15/09/2008
ELETRÔNIA I 2312A PROF. ALEU FERREIRA ALVES 3ª LISTA DE EXERÍIOS IRUITOS OM DIODOS 15/09/2008 * Para resolução da lista, considerar diodos ideais e tensão de rede 115V, exceto quando especificado contrário.
Quantidades por-unidade (p.u.)
Quantidades por-unidade (p.u.) Prof. José R. Camacho (PhD) UFU- Faculdade de Engenharia Elétrica As quantidades por-unidade são quantidades que foram normalizadas para uma quantidade ase. Por exemplo,
Função de Transferência do Amplificador re- alimentado
p. 1/2 Resumo Efeito da Realimentação nos Pólos do Amplificador Amplificador só com um Pólo Amplificador com dois Pólos Amplificador com três ou mais Pólos Estabilidade usando Diagramas de Bode Compensação
1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação
Lista de exercícios 9 - Indução e Indutância 1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação φ B = 6,0t2 + 7,0t, onde φb está em miliwebers e t em segundos. (a) Qual
Laboratório de Circuitos Elétricos
Laboratório de Circuitos Elétricos 3ª série Mesa Laboratório de Física Prof. Reinaldo / Monaliza Data / / Objetivos Observar o funcionamento dos circuitos elétricos em série e em paralelo, fazendo medidas
Retificadores com tiristores
Retificadores com tiristores 5 O retificador controlado trifásico de meia onda Os retificadores trifásicos são alimentados pela rede de energia trifásica cujas tensões podem ser descritas pelas expressões
Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição)
Universidade Federal de Minas Gerais Escola de Engenharia Curso de Graduação em Engenharia Elétrica Disciplina: Conversão da Energia Lista de Exercícios 2 (Fonte: Fitzgerald, 6ª. Edição) 5.3) Cálculos
Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. Polarização de um JFET
1 Polarização de um JFET Polarizar um transistor FET, significa estabelecer valores de tensões e correntes satisfatórios para o funcionamento do transistor. Lembrando que qual seja o modo de ligação, sempre
A.L.2.2 CONDENSADOR PLANO
A.L.2.2 CONDENSADOR PLANO FÍSICA 12.ºANO BREVE INTRODUÇÃO Os condensadores têm inúmeras aplicações. Há condensadores de várias formas e tamanhos e são estas características geométricas que determinam a
ELETRONICA ANALÓGICA By W. L. Miranda. Fontes de alimentação CA/CC.
ELETRONICA ANALÓGICA By W. L. Miranda Fontes de alimentação CA/CC. 1 - Considerações de projeto: a) 1º Caso: Isolamento entre rede domiciliar CA e a carga. Neste caso, a fase, o neutro ou o aterramento
ELT EXPERIÊNCIA N 1: AMPLIFICADOR NÃO INVERSOR
ELT 703 - EXPEIÊNCI N : MPLIFICDO NÃO INVESO. OBJETIVOS: Comprovação da relação de ganho: NINV 2 + Levantamento da resposta em freqüência e comprovação da relação: f c B * GBP Medição da resistência e
Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B
SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental B 24/Maio/2014 Olimpíadas de Física 2014 Seleção para as provas internacionais Prova Experimental
5/8wave antenas VHF vertical RE-A144V58 / 1
5/8wave antenas VHF vertical RE-A144V58 / 1 Schematic fig1 Por Guy, de ON6MU http://translate.googleusercontent.com/translate_c?hl=pt-...late.google.com.br&usg=alkjrhiqafajxsfynud1ewfzhuod-iyajg (1 de
MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo
AMPLIFICADORES DE POTÊNCIA
INSTITUTO FDRAL D DUCAÇÃO, CIÊNCIA TCNOLOGIA D SANTA CATARINA - CAMPUS FLORIANÓPOLIS DPARTAMNTO ACADÊMICO D LTRÔNICA AMPLIFICADORS D POTÊNCIA 1. Introdução Uma das principais aplicações dos amplificadores
Olimpíadas de Física Prova experimental A. Sociedade Portuguesa de Física
Olimpíadas de Física 2003 Prova experimental A Sociedade Portuguesa de Física 30/Maio/2003 Olimpíadas Internacionais de Física 2003 Prova Experimental A Campo magnético terrestre Duração da prova: 2h 1
Modulação e Codificação
INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA Departamento de Ciências e Tecnologias de Informação Engenharia de Telecomunicações e Informática Modulação e Codificação Ano Lectivo 2001/2002 2º
PORTAS NOR INTRODUÇÃO TEÓRICA
PORTAS NOR OBJETIVOS: a) Verificar experimentalmente o funcionamento de uma porta NOR; b) Usar uma porta NOR como um inversor lógico; c) Demonstrar porque uma porta NOR é uma porta lógica universal; d)
DIODO ZENER Conceitos de Regulação de Tensão, Análise da Curva do Diodo Zener
DIODO ZENER Conceitos de Regulação de Tensão, Análise da Curva do Diodo Zener OBJETIVOS: Analisar o funcionamento de um diodo zener; entender o conceito de regulação de tensão. INTRODUÇÃO TEÓRICA O diodo
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Eletrônica Básica e Projetos Eletrônicos
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA Eletrônica Básica e Projetos Eletrônicos AULA LAB 04 DIODOS ZENER, LEDS E TRANSISTORES BIPOLARES 1 INTRODUÇÃO Os componentes
Preparação do 1º Trabalho de Laboratório
Turno: 2ª 3ª 4ª 5ª LPT LE2 9h 16h 17h Nome Nº Grupo Nº Preparação do 1º Trabalho de Laboratório Preparação experimental tipo: A B C Monte o circuito que lhe foi atribuído de acordo com a figura correspondente
Objetivo: Determinar a eficiência de um transformador didático. 1. Procedimento Experimental e Materiais Utilizados
Eficiência de Transformadores Universidade Tecnológica Federal do Paraná - Curitiba Departamento Acadêmico de Física Física Experimental Eletricidade Prof. Ricardo Canute Kamikawachi Objetivo: Determinar
Bobina de Tesla: Dos Circuitos Ressonantes LC aos Princípios das Telecomunicações
Projeto de Instrumentação para o Ensino - F809 Relatório Final Bobina de Tesla: Dos Circuitos Ressonantes LC aos Princípios das Telecomunicações Aluno: Gustavo Pires Marques - RA 981298 Orientador: David
Eletrônica e Circuitos Digitais. Circuitos Retificadores
Eletrônica e Circuitos Digitais Circuitos Retificadores 1 ) Objetivo 2 ) Introdução Teórica 3 ) Lista de Materiais 4 ) Procedimento Material e Resultados 5 ) Discussão/Conclusão 1 ) Objetivo A experiência
INDUÇÃO MAGNÉTICA. 1 Resumo. 2 Fundamento Teórico
Protocolos das Aulas Práticas 6/7 INDUÇÃO MAGNÉTICA 1 Resumo Um campo magnético de intensidade e frequência variáveis é produzido num solenóide longo. Dentro deste último são introduzidos enrolamentos
1 Teorema de Thévenin
1 Teorema de Thévenin O teorema de Thévenin afirma que, do ponto de vista de um qualquer par de terminais, um circuito linear pode sempre ser substituído por uma fonte de tensão com resistência interna.
Amplificadores Diferenciais. Aula 8 Prof. Nobuo Oki
Amplificadores Diferenciais Aula 8 Prof. Nobuo Oki Vantagens dos Amplificadores Diferenciais (1) O amplificadores diferenciais possuem as seguintes vantagens: 1. Circuitos diferenciais possuem maior imunidade
Medidor LCR de bancada Modelo 891
Especificações Técnicas Medidor LCR de bancada O modelo 891 da B&K Precision, é um medidor LCR compacto, preciso e versátil, capaz de medir indutores, capacitores e resistores em CC ou nas frequências
Teorema da superposição
Teorema da superposição Esse teorema é mais uma ferramenta para encontrar solução de problemas que envolvam mais de uma fonte que não estejam em paralelo ou em série. A maior vantagem desse método é a
Experiência : RETIFICADORES MONOFÁSICOS COM FILTRO CAPACITIVO E ESTABILIZAÇÃO
( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno
Pontifícia Universidade Católica do RS Faculdade de Engenharia
Pontifícia Universidade Católica do S Faculdade de Engenharia LABOATÓIO DE ELETÔNICA DE POTÊNCIA Experiência 8: Ponte etificadora Monofásica a Tiristor (Totalmente Controlada). Objetivos: Verificar qualitativa
Curto-Circuito. cap. 5
Curto-Circuito cap. 5 1 Curto-Circuito Fundamental no dimensionamento da proteção; Baseada no conhecimento do valor das impedâncias; Provocadas por perdas na isolação; Atinge valores de 10 a 100 vezes
Teoria Geral de Osciladores
Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Osciladores e Multivibradores Teoria Geral de Osciladores Florianópolis, março de 2012. Prof.
R(Res. Intr. Da Bob.) 2.7mF
Introdução: O conversor DC para DC ou chopper, como costuma ser denominado, é usado para obter uma tensão DC variável a partir de uma fonte de tensão DC constante. Com este trabalho experimental procurámos
Eletrônica Aula 07 CIN-UPPE
Eletrônica Aula 07 CIN-UPPE Amplificador básico Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar um sinal de
Diodo P-I-N Aplicação em Sistema de Chaveamento
Diodo P-I-N Aplicação em Sistema de Chaveamento Utilizando dois diodos PIN é possível conseguir chaves de RF com duas posições. Quando D1 for polarizado reversamente e D2 polarizado diretamente, há transferência
