1. Termodinâmica do ar
|
|
|
- Silvana Lage Cunha
- 8 Há anos
- Visualizações:
Transcrição
1 1. Termodinâmica do ar Exercício 1-1 Calcule as constantes dos gases ideais para o ar seco (R ), para o vapor de Água (R ) e para o ar húmido com 2% de vapor de Água (em volume). Considere R = JK mol, e que o ar seco É constituído pelos componentes indicados em 2.a). Massas molares: M(N2) = 28 gmol 1, M(O2) = 32 gmol 1, M(Ar) = 40 gmol 1, M(H2O) =18 gmol 1 (Sol: Rd = 287Jkg 1 K 1 ; Rv = 462Jkg 1 K 1 ; Rm = 289Jkg 1 K 1 ) Exercício 1-2 O interior de um recipiente fechado encontra-se pressão de uma atmosfera e temperatura de 15. Calcule a densidade, no caso de esse gás ser constituído por (% volúmicas): a) Azoto (78.08%), Oxigénio (20.95%) e Árgon (0.93%); b) Ar seco (98%) e Vapor de Água (2%); (Sol: a) ρ 1.225kg/m 3 ; b) ρ = 1.216kg/m 3 ) Exercício 1-3 A atmosfera de Neptuno É constituída por Hidrogénio (85%), Hélio (12%) e Metano (2%). As massas molares são 2, 4 e 16 g/mol, respetivamente. Determine a constante dos gases ideais (mássica) para essa atmosfera. Tendo em consideração que a massa de Neptuno vale kg e que o seu raio é de m, calcule a sua velocidade de escape. É superior ou inferior à da Terra? (G = m 3 kg 1 s 2 ) (Sol: Rnep = Jkg 1 K 1 ; vesc = 23.5 km/s) Exercício 1-4 Se à temperatura de 0 a densidade do ar seco for de kg/m 3 e a do vapor de água de kg/m 3, qual a pressão exercida por uma mistura de ambos, à mesma temperatura? (Sol: ptot = hPa) Exercício 1-5 Considere ar húmido com 1% de vapor de Água e uma temperatura real de 288K. Qual a correção na temperatura virtual ( T v T )? (Sol: Tv = T +1.05) Exercício 1-6 Partindo da equação da hidrostática = ρg, a) Mostre que, para uma atmosfera isotérmica se tem p = p e ( ) ; b) Mostre que para uma atmosfera com um gradiente térmico vertical de Γ = 6.5 K km, se tem p = p ; 1
2 c) Calcule a pressão no topo do monte Evereste (8848m), assumindo uma pressão de 1013hPa e temperatura de 15 ao nível do mar: (i) Usando a expressão da alínea a); (ii) Usando a expressão da alínea b); (iii) Usando a expressão da alínea a), mas admitindo uma temperatura média na camada supondo que a temperatura no topo é de 40. Compare os resultados. (Sol: c1) 355hPa; c2) 314hPa; c3) 316hPa) Exercício 1-7 Calcule a densidade do ar no topo da Serra da Estrela (2000m de altitude), considerando uma temperatura de 0. Considere ar húmido com 2% de vapor de água (em massa, humidade específica), e que a pressão atmosférica ao nível do mar vale 1013 hpa. (Sol: ρ 1kg/m 3 ) Exercício 1-8 Um furacão com uma pressão no centro de 940hPa está embebido numa região com uma pressão (á superfície) de 1010hPa. A tempestade está localizada sobre o oceano. Aos 200hPa o furacão já não tem expressão (i.e. a superfície isobárica torna-se plana, sem cavamento). Estime a diferença de temperatura entre o centro do furacão e as zonas envolventes na camada entre a superfície e os 200hPa. Assuma que a temperatura média na região exterior ao furacão é de 3 e ignore a correção da temperatura virtual (i.e. T v = T). (Sol: T = 12K) Exercício 1-9 O sonho do Gervásio é viajar num balão de passageiros. Para tal, conseguiu alugar um balão com lugar para 1 passageiro, com um volume de 600 m e cujo invólucro tem uma massa de 40kg. O cesto tem 30kg e transporta 30kg em bilhas de gás que vão servir para aquecer o ar no interior do balão. No dia da viagem a pressão atmosférica era de 1013hPa e a temperatura de 15 à superfície. Considere que a atmosfera é isotérmica e que se despreza a resistência do ar. a) Considerando que o Gervásio pesa 70kg e o ar no invólucro foi aquecido até 120, a que altitude estava o balão ao fim de 10s? Admita que a temperatura do ar é constante durante esse período. b) Se porventura o Gervásio se encontrar a 800hPa com uma temperatura de 0 e o gás restante não permitisse aquecer o ar mais que 75, estaria o Gervásio condenado a cair? c) A que temperatura teria que estar o ar no invólucro caso o Gervásio quisesse manter o balão na mesma altitude? Considere as mesmas condições da alínea anterior. (Sol: a) z = 18.5m; b) sim; c) T = 105 ) 2
3 2. Termodinâmica do ar húmido Exercício 2-1 Utilize o diagrama de fases para calcular os seguintes parâmetros: tensão de vapor, tensão de saturação, humidade relativa (RH), temperatura do ponto de orvalho e temperatura do ponto de geada, assumindo uma pressão de 1000hPa, e as seguintes condições iniciais: a) T = 10, r = 5g/kg b) T = 20, r = 5 g/kg c) T = 12, r = 3g/kg d) T = 15, r = 10g/kg (SOL: a) RH = 66%, e = 804hPa, T = 4 ; b) RH = 35%, e = 804hPa, T = 4 ; c) RH = 34%, e = 482hPa, T = 3.5 ; d) RH = 95%, e = 1608hPa, T = 14 ) Exercício 2-2 O Gervásio está com frio em casa. A temperatura do ar, no seu quarto, é de 13 e a humidade relativa de 40%. O Gervásio ligou o aquecedor, mas esqueceu-se de o desligar antes de ir dormir. A temperatura durante a noite, no quarto, subiu até aos 28. Sabendo que com uma humidade relativa abaixo dos 15% o ser humano pode apresentar dificuldades respiratórias, há alguma probabilidade do Gervásio morrer durante o sono? Durante o processo de aquecimento, qual a energia que o aquecedor cedeu ao ar, por kg do mesmo? (Sol:RH = 15.9%; = 15.1 kj kg ) Exercício 2-3 Um sistema de condicionamento de ar importa ar exterior à pressão de 1010 hpa, temperatura de 10 e humidade relativa de 60%, e injecta a mesma quantidade de ar numa sala à temperatura de 22, com a mesma pressão e humidade relativa. O sistema dispõe de um depósito de água. Utilize a tabela smithsonianana. a) Calcule o consumo de água pelo sistema, por kg de ar injetado. b) Calcule o calor que tem que ser fornecido no processo de aquecimento/humidificação, por kg de ar. (Sol: a) r = 5.2g/kg b) Q/m = 25.1kJ/kg ) Exercício 2-4 A Hortelinda tem uma estação meteorológica. Às 20h observou-se uma temperatura de 8 e uma humidade relativa de 85%. Às 7h do dia seguinte a Hortelinda acordou com nevoeiro com concentração de 1 g kg de água liquida. A pressão atmosférica manteve-se constante nos 1000hPa. a) Represente o processo seguido pela massa de ar no diagrama de fases da água; b) Calcule a perda total de calor de cada kg de ar nesse processo, e a taxa de arrefecimento em g/kg. (Sol: b) 8 kj kg, 0.2 W kg ) 3
4 Exercício 2-5 Uma massa de ar à pressão de 1010hPa e com uma humidade relativa de 85% e uma temperatura de 11, sofre um processo de arrefecimento isobárico, que a leva aos 2, devido a uma perda radiativa à taxa de 1W/kg. a) Calcule o tempo decorrido até à formação de nevoeiro; b) Calcule o estado final da massa de ar e a razão de mistura da água líquida; c) Calcule o tempo total decorrido. (Sol: a) b) estado final, concentração de nevoeiro c) 4h14min ) Exercício 2-6 Na estação meteorológica da Hortelinda observou-se uma pressão de 1000hPa, uma temperatura de 15 e uma humidade relativa de 60%. Sabendo que a estação mede a humidade relativa através de um psicrómetro, estime a temperatura do termómetro molhado e a do ponto de orvalho. (Sol: T = 10.7 ) Exercício 2-7 O Gervásio convidou a Hortelinda a um passeio no litoral, numa zona de falésias abruptas. O ar sobre o oceano encontra-se saturado à temperatura de 18. Sobre o continente o ar apresenta uma temperatura de 6 e uma humidade relativa de 95%. A certa altura as massas de ar juntam-se no local do passeio. Assuma uma pressão atmosférica constante de 1010hPa. a) Poderão o Gervásio e a Hortelinda cair da falésia devido à reduzida visibilidade consequente da formação de nevoeiro? b) Calcule as propriedades do ar resultante, supondo que a mistura se faz em partes iguais. (Sol: a) b) ) Exercício 2-8 Fez-se a seguinte observação: P = 1012hPa, T = 12, T = 7.. a) Localize o estado da atmosfera no diagrama de fases e estime o valor da humidade relativa e da razão de mistura. b) Admita que esse ar sofre um arrefecimento isobárico com formação de um nevoeiro com uma concentração de água líquida de 0.8 g/kg. Localize esse estado no diagrama de fases. c) Represente o processo de arrefecimento no diagrama de fases. d) Calcule a quantidade de calor que tem de ser perdido pelo ar para atingir o estado da alínea b). (Sol: a) r=4.1g/kg; b) r = 3.3, e = 544Pa, T = 1.5 ; d) = 15.6kJ kg ) Exercício 2-9 Porque razão a temperatura do ponto de geada é superior à temperatura do ponto de orvalho? 4
5 3. Meteorologia: Série 3 Exercício 3-1 Considere que uma partícula de ar, não saturada, se encontra à superfície (1000 hpa) a uma temperatura de 30 C. a) Qual a temperatura potencial da partícula? b) Imagine ainda que a partícula se desloca adiabaticamente para os 600 hpa, onde a temperatura vale 11 C. Qual a temperatura potencial? (Sol: θ=30 C) Exercício 3-2 O estado de uma coluna da atmosfera é dado pela sondagem seguinte. Marque no tefigrama e calcule a humidade relativa em cada nível. Utilize também o diagrama de fases para verificar se se obtêm os mesmos resultados. Pressão (hpa) T( C) Td( C) Exercício 3-3 Fizeram-se as seguintes observações: 1- (p=1000 hpa, T=25 C, RH=50%); 2- (p=800 hpa, T=5 C, RH=80%). Marque-as no tefigrama, isto é, os pontos (T, P) e (T d, P). (Sol: 1) T =14 C; 2) T =2 C) Exercício 3-4 Admitindo que a temperatura de uma partícula de ar à superfície é de 9 C e que o nível de condensação se encontra aos 850 hpa com uma temperatura de -5 C, determine os valores de pressão, razão de mistura e temperatura do ponto de orvalho à superfície. (Sol: T = 3 C ; P=1020 hpa; r=3.1 g/kg) Exercício 3-5 O Gervásio convidou a Hortelinda a passar um fim-de-semana na Serra da Estrela (2000 m no topo) para fazer sku na neve. Nesse fim-de-semana, uma massa de ar marítimo, com uma temperatura de 12 C e uma humidade relativa de 80% desloca-se em direção à Serra da Estrela e é obrigada a subir. Tendo em conta que o Gervásio e a Hortelinda encontraram um bom local aos 1500 m para a prática da atividade, verifique se quando a massa de ar atinge essa altitude, há condições de visibilidade para a prática de sku ou se correm o risco de ir contra uma árvore. Considere pressão ao nível do mar de 1000 hpa. Dica: Em caso de formação de nuvem, estime a altitude da base da mesma. (Sol: Z=427 m ) 5
6 Exercício 3-6 Uma partícula de ar aos 1000 hpa, com uma temperatura de 20 C e razão de mistura de 8 g/kg, inicia uma ascensão adiabática. a) Estime a temperatura do ponto de orvalho a partir do diagrama de fases e marque o ponto no tefigrama. b) Estime a razão de mistura de saturação da partícula utilizando o diagrama de fases. Marque o ponto (T, p) no tefigrama e verifique se obteve a mesma razão de mistura de saturação. c) A partícula sobe até aos 400 hpa. Qual a temperatura e a razão de mistura da partícula nesse estado? d) Sabendo que a temperatura final após a partícula voltar aos 1000 hpa é de 30 C, qual a percentagem de água condensada que precipitou? Qual éa humidade relativa final da partícula? (Sol: a) T = 10.8 ; b) r = 14.5 g/kg; c) T 31.5, r 0.7 g/kg; d) RH 16%) Exercício 3-7 Uma massa de ar marítimo entra de NW no território continental português e chega à encosta da Serra da Estrela, numa zona a cerca de 500 m de altitude e pressão 950 hpa, com 7! e uma HR de 80%. Essa massa de ar é obrigada a subir adiabaticamente até ao topo (2000 m, pressão 780 hpa) e desce pela encosta SE da Serra até aos mesmos 500 m. a) Estime a temperatura no topo da Serra da Estrela. b) Supondo que 2/3 da água condensada precipitou durante o percurso, estime a temperatura e a humidade relativa da massa de ar quando acaba de descer a encosta SE da Serra. Verifica---se o efeito de Fohen? (Sol: a) T 5, b) T 10, RH 50%) Exercício 3-8 Uma camada da atmosfera entre os 1000 e os 700 hpa encontra---se num estado isotérmico, a 17!. A RH dessa camada é constante e igual a 75%. a) Marque o estado dessa camada no tefigrama aos 1000, 850 e 700 hpa e una por segmentos de recta. b) Considere o processo de mistura vertical dessa camada. Estime o estado final. No caso de existir formação de uma nuvem, indique a base da nuvem e a distribuição vertical de água líquida. 6
7 4. Meteorologia: Série4 Exercício 4-1 O Gervásio e a Hortelinda foram acampar e decidiram acender uma lanterna. A temperatura do meio é de 15 e a pressão de 1020 hpa, mas suponha uma partícula de ar acima da lanterna que aquece até aos 60. Calcule a flutuação por unidade de massa e conclua se estamos perante uma situação de instabilidade. Considere o ar seco em primeira aproximação. (Sol:F 1.56 N/kg) Exercício 4-2 Considere uma camada seca da atmosfera caracterizada por uma taxa decrescente de temperatura de 5 /km, com uma temperatura de 280K. a) Discuta o estado desta camada do ponto de vista da estabilidade estática. b) Se uma partícula de ar for perturbada na vertical, vai sofrer uma oscilação. Calcule o período da mesma. (Sol: a) Estaticamente estável; b) T=483s) Exercício 4-3 O estado de uma coluna na atmosfera é dado pela sondagem seguinte. Marque os pontos no tefigrama. Pressão (hpa) T( C) Td( C) a) Classifique as diferentes camadas quanto à estabilidade estática. b) Classifique as diferentes camadas quanto à estabilidade potencial. c) Estime a frequência de Brunt-Väisälä da camada hpa. (Sol: a) de baixo para cima: Abs. Instável, cond. Instável, abs. Estável, cond. Instável; b) Só a camada não é potencialmente instável; c) N = s Exercício 4-4 Considere a seguinte sondagem atmosférica e marque-a no tefigrama. Pressão (hpa) T( ) r (g/kg)
8 a) Classifique as várias camadas quanto à estabilidade estática e estabilidade potencial. b) Determine o nível de condensação por ascensão, o nível de convecção livre e o nível de flutuação nula. c) Classifique o perfil quanto à instabilidade latente, para uma ascensão a partir da superfície. (Sol: a) Estabilidade estática: Cond.instável até 500 hpa, abs.instável em e abs.estável acima dos 400 hpa; Estabilidade Potencial: Potencialmente instável até 400 hpa, potencialmente estável acima dessa camada. b)pc=890 hpa ; Pcl=700 hpa ; Pfn=270 hpa; c)há condições de instabilidade latente.) Exercício 4-5 Represente a seguinte sondagem no tefigrama: Pressão (hpa) T( C) Td( C) a) Classifique o perfil quanto à instabilidade latente, para uma ascensão a partir da superfície. b) Localize no tefigrama o nível de condensação, o nível de convecção livre e o nível de flutuação nula (se existir). c) Admita que uma partícula de ar ascendente atinge os 650 hpa com uma velocidade vertical de 0.5 m/s. Estime a sua velocidade aos 450 hpa. (Sol: a) Não há condições de instabilidade latente; b) Pc=890 hpa ; Pcl=730 hpa ; Pfn=430 hpa; c) w(450)=20.5 ms -1 ) Exercício 4-6 O Gervásio levou a Hortelinda à pesca. Se fosse feita uma sondagem no local da pescaria, a atmosfera teria o seguinte perfil: 8
9 Pressão (hpa) T( ) Td( ) a) Calcule CAPE e CIN. b) Sabendo que o Gervásio usa uma cana de pesca de carbono, conclua se há risco de o Gervásio morrer atingido por um relâmpago. (Sol: a) CAPE 1689 m s, CIN = 160 m s ) Exercício 4-7 O ar que ascende num cumulonimbus atinge os 850 hpa, aos 5, saturado, com uma velocidade vertical positiva de 0.5 m/s. Entre os 850 hpa e os 500 hpa a temperatura do meio segue a adiabática saturada dos 8 C. a) Estime a espessura da camada b) Estime a flutuação aos 850 hpa. c) Estime a velocidade vertical aos 500 hpa. (Sol: a) Δz 4012m; b) b 0.18 Nm, c) w 41 m/s) 9
1. Termodinâmica do ar
1. Termodinâmica do ar Exercício 1-1 Calcule as constantes dos gases ideais para o ar seco (R d ), para o vapor de Água (R v ) e para o ar húmido com 2% de vapor de Água (em volume). Considere R = 8.3145JK
Meteorologia. Exame 2, 3 de Fevereiro de 2012
Meteorologia Exame, 3 de Fevereiro de 01 PARTE 1 1. Um sala importa ar à taxa de 10 m 3 /min, com o fluxo medido no exterior onde se encontra à temperatura de 10 com uma humidade relativa de 80%, sendo
1. FATORES CLIMÁTICOS
Capítulo Elementos de Hidrometeorologia 3 1. FATORES CLIMÁTICOS A hidrologia de uma região depende principalmente de seu clima e secundariamente de sua topografia e geologia. A topografia influencia a
1. INTRODUÇÃO 2. UMIDADE
Elementos de Hidrometeorologia Capítulo 3 1. INTRODUÇÃO A hidrologia de uma região depende principalmente de seu clima e secundariamente de sua topografia e geologia. A topografia influencia a precipitação,
Física e Química da Atmosfera
Física e Química da Atmosfera Bloco de Química da Atmosfera Exame de 27 de Junho de 2005 1. alcule a temperatura efectiva da Terra. Explique, em pormenor, por que razão a temperatura média à superfície
Física e Química da Atmosfera
Física e Química da Atmosfera Bloco de Química da Atmosfera Exame de 11 de Julho de 2005 I (5 val.) a) Indique a composição química da atmosfera, incluindo os constituintes minoritários mais importantes
APÓSTILA: DIAGRAMA TERMODINÂMICO (SKEW-T) Estágio PAE Bolsista: Maria Cristina Lemos da Silva
APÓSTILA: DIAGRAMA TERMODINÂMICO (SKEW-T) Estágio PAE Bolsista: Maria Cristina Lemos da Silva Setembro/2009 1 1. Diagrama SKEW-T Figura 1 Sistema de Coordenadas do Diagrama SkewT-LogP Figura 2 Linhas das
Aula anterior: Esta Aula: Próxima aula:
Aula anterior: Composição da atmosfera: do que é composta; fontes e sumidouros; como alcançou o estado atual. Breve discussão sobre pressão, densidade, temperatura. Esta Aula: Temperatura, pressão e densidade
Fenômenos Térmicos : primeiro conjunto de problemas
Fenômenos Térmicos - 2014: primeiro conjunto de problemas Termômetros, temperatura e escalas de temperatura 1. Suponha que em uma escala linear de temperatura X, a água ferva a 81.5 o X e congele a-190
DEGGE, 2012 Pedro M A Miranda Termodinâmica Aplicada Exame 2
DEGGE, 2012 Pedro M A Miranda Termodinâmica Aplicada Exame 2 Justifique, sucintamente, todos os cálculos e aproximações. Parte 1 1. O comporta-se como um gás de van der Waals com. Considere um dispositivo
A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.
lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa
Departamento de Engenharia Civil. Capítulo 4 ELEMENTOS DE HIDROMETEOROLOGIA (parte 1)
Departamento de Engenharia Civil Capítulo 4 ELEMENTOS DE HIDROMETEOROLOGIA (parte 1) Fatores Climáticos A precipitação e a evaporação são fatores climáticos indispensáveis para o estudo do regime hidrológico
Estabilidade Desenvolvimento das Nuvens
Estabilidade Desenvolvimento das Nuvens Por que a estabilidade é importante? O movimento vertical é parte crítica no transporte de energia e influencia intensamente o ciclo hidrológico Sem movimento vertical
TERMODINÂMICA E ESTÁTICA DA ATMOSFERA. Capítulo 2 Vianello & Alves Meteorologia Básica e Aplicações
TERMODINÂMICA E ESTÁTICA DA ATMOSFERA Capítulo 2 Vianello & Alves Meteorologia Básica e Aplicações INTRODUÇÃO A atmosfera é uma imensa máquina térmica, cuja principal fonte de calor é a energia solar.
FATORES CLIMÁTICOS Quais são os fatores climáticos?
Quais são os fatores climáticos? o Latitude A distância a que os lugares se situam do equador determina as suas características climáticas. Por isso, existem climas quentes, temperados e frios. o Proximidade
Estado do Tempo e Clima
Estado do Tempo e Clima Estado do tempo Estado do tempo Expressão do comportamento momentâneo da atmosfera sobre um determinado lugar. É na atmosfera, mais precisamente na sua camada inferior, designada
Debate: Aquecimento Global
CLIMA Debate: Aquecimento Global Aquecimento Resfriamento Ação Natural Ação antrópica (Homem) MOVIMENTO DE TRANSLAÇÃO magnetosfera (escudo formado pelo campo magnético da terra) desvia as partículas
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica
Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Exercícios Sugeridos (14 de novembro de 2008) A numeração corresponde ao Livro Texto. 16.19 Um balão de ar quente
Fenómenos de condensação
Fenómenos de condensação Quando o ar atmosférico atinge a saturação, o vapor de água em excesso condensa-se, o que se traduz pela formação de nuvens, constituídas por pequenas gotículas de água ou cristais
Departamento de Engenharia de Biossistemas - ESALQ/USP LCE Física do Ambiente Agrícola Prova Final 2010/II NOME:
Departamento de Engenharia de Biossistemas - ESALQ/USP LCE000 - Física do Ambiente Agrícola Prova Final 00/II NOME:. Um sistema com ar à pressão de 0 5 Pa passa por um processo em que se alteram sua temperatura
Tópicos para Análise de previsões Nuno Gomes
Tópicos para Análise de previsões Nuno Gomes 2004 NOOA http://www.arl.noaa.gov/ready-bin/main.pl Um dos sites mais completos para previsão meteorológica. Permite consultar: Meteogramas; Windgram ; Sondagens;
O ar húmido. Além dos componentes do ar seco, indicados no quadro 2-1 a atmosfera contém uma quantidade variável de vapor de água.
Página 1 HUMIDADE DO AR Embora a água esteja presente na atmosfera, em maior ou menor quantidade, a sua presença é geralmente invisível, porque se encontra sob a forma de vapor. De vez em quando, no entanto,
Elementos e fatores climáticos
Elementos e fatores climáticos Debate atual: Aquecimento Global Aquecimento Resfriamento Ação Natural Ação antrópica (Homem) Terra: localização e proporção de tamanho A camada de ozônio é uma espécie
Formado por turbulência mecânica ou convecção Tempo de vida: de minutos
Circulação Local Escalas do Movimento Microescala: metros Vórtices (eddies) Turbulentos Formado por turbulência mecânica ou convecção Tempo de vida: de minutos Mesoscala: km a centenas de km Ventos locais
ATMOSFERA TEPERATURA, PRESSÃO E DENSIDADE EM FUNÇÃO DA ALTITUDE
ATMOSFERA TEPERATURA, PRESSÃO E DENSIDADE EM FUNÇÃO DA ALTITUDE . 2 Variação da Temperatura e Estrutura Regiões de transição as pausas Nomenclatura introduzida na década de 1950 baseia-se no perfil de
CLIMAS DO BRASIL Profº Gustavo Silva de Souza
CLIMAS DO BRASIL Profº Gustavo Silva de Souza CLIMA BRASIL: tipos climáticos 1 Equatorial 2 Tropical 3 Tropical de Altitude 4 Tropical Atlântico/Úmido 5 Semi-Árido 6- Subtropical -Inverno rigoroso - chuvas
2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.
FÍSICA BÁSICA II - LISTA 3 Termodinâmica 1. Uma substância possui calor específico dado por c = a+bt, em cal/g., com a = 0,1 cal/g., b = 0,005 cal/g. 2. Calcule o calor trocado por 100 g dessa substância
Exercício 1. Exercício 2.
Exercício 1. Como resultado de um aumento de temperatura de 32 o C, uma barra com uma rachadura no seu centro dobra para cima (Figura). Se a distância fixa for 3,77 m e o coeficiente de expansão linear
Propriedades da água e o ciclo hidrológico
Capítulo 2 Propriedades da água e o ciclo hidrológico Os conceitos fundamentais do ciclo hidrológico. A água é uma substância com características incomuns. É a substância mais presente na superfície do
Termodinâmica Aplicada. (PF: comunicar eventuais erros para Exercícios 6
Termodinâmica Aplicada (PF: comunicar eventuais erros para [email protected]) Exercícios 6 1. Um mole de um gás de van der Waals sofre uma expansão isotérmica (à temperatura ) entre um volume inicial
PSICROMETRIA PSICROMETRIA PSICRÔMETRO 15/10/2018 PROPRIEDADES DAS MISTURAS AR SECO-VAPOR 1. COMPOSIÇÃO AR ÚMIDO VAPOR D ÁGUA AR SECO.
15/10/2018 PSICROMETRIA Definição Ciência da Física que estuda as propriedades e o comportamento das misturas de vapor e ar seco Baseada na Lei dos Gases Perfeitos, na Lei de Dalton e na 1ª. Lei da Termodinâmica
Estrutura Vertical da Temperatura
Estrutura Vertical da Temperatura 6 7 Ana Picado 8 Carina Lopes 868 Introdução: 6 7 Temperatura: Troposfera, Estratosfera, Mesosfera e Termosfera. Termosfera: temperatura aumenta em altitude até que atinge
Geografia Física. Turmas: T/R Chicão. Aula 1 Dinâmica Climática
Geografia Física Turmas: T/R Chicão Aula 1 Dinâmica Climática Geografia Física Turmas TR 1 Sem Cartografia, escala, fuso horário, geologia e relevo 02/08 Dinâmica climática 16/08 Dinâmica climática 30/08
Energética Industrial
Universidade do Minho Departamento de Engenharia Mecânica Energética Industrial Problemas propostos José Carlos Fernandes Teixeira 1) 1.5 kg de gelo à temperatura de 260 K, funde-se, à pressão de 1 bar,
CLIMATOLOGIA GEOGRÁFICA Prof ª Gustavo Silva de Souza
CLIMATOLOGIA GEOGRÁFICA Prof ª Gustavo Silva de Souza CLIMATOLOGIA GEOGRÁFICA O CONCEITO DE CLIMA Para compreender o clima de um determinado local, é preciso estudar os diversos tipos de tempo que costumam
Clima tempo atmosférico
CLIMA E TEMPO ATMOSFÉRICO Clima tempo atmosférico é o conjunto de variações do tempo determinado lugar necessita de pelo menos de 30 anos de medições, observações e estudos das características dos tipos
TEA007 - Termodinâmica Ambiental
TEA007 - Termodinâmica Ambiental Lista de exercícios 3 1. Um aquecedor de ambientes opera por radiação térmica. A superfície aquecedora apresenta temperatura igual a 1000 K e ε = 0,8. Determine a área
Resolução Comentada UFPR - 1ª fase-2014
Resolução Comentada UFPR - 1ª fase-2014 01 - No circuito esquematizado abaixo, deseja-se que o capacitor armazene uma energia elétrica de 125 μj. As fontes de força eletromotriz são consideradas ideais
ATMOSFERA Temperatura, pressão, densidade e volume molar
ATMOSFERA Temperatura, pressão, densidade e volume molar As camadas na atmosfera são: Troposfera. Estratosfera. Mesosfera Termosfera Exosfera A variação da temperatura com a altitude permite definir 5
Termodinâmica II - FMT 259
Termodinâmica II - FMT 259 Diurno e Noturno, primeiro semestre de 2009 Lista 3 GABARITO (revisado em 22/04/0). Se as moléculas contidas em,0 g de água fossem distribuídas uniformemente sobre a superfície
O que é um ciclone/anticiclone?
O que é um ciclone/anticiclone? A figura abaixo mostra linhas de pressão reduzida ao nível do mar em hpa. Questão 1 Localize na própria figura: (0,5) A centro de alta pressão (0,5) B centro de baixa pressão
ATMOSFERA Temperatura, pressão, densidade e grandezas associadas.
ATMOSFERA Temperatura, pressão, densidade e grandezas associadas. As camadas na atmosfera são: Troposfera. Estratosfera. Mesosfera Termosfera Exosfera As camadas na atmosfera são definidas a partir de
Física e Química A. Versão 1. Teste de Avaliação. 10º Ano de Escolaridade. Autor do teste global: Francisco Cubal como representante de Resumos.
Teste de Física e Química A Versão 1 Teste de Avaliação Física e Química A Versão 1 10º Ano de Escolaridade Autor do teste global: Francisco Cubal como representante de Resumos.tk Nome do aluno: N.º: Turma:
Calcule o valor mínimo de M para permitir o degelo (e recongelação) do bloco à medida que é atravessado pela barra.
Termodinâmica Aplicada (PF: comunicar eventuais erros para [email protected]) Exercícios 7. Uma barra metálica rectangular fina, com 0 cm de comprimento e mm de largura, está assente num bloco de gelo
EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves
FÍSICA 10 EXERCÍCIOS e problemas Exames 2006 2007 2008 2009 2010 2011 Testes intermédios 2008 2009 2010 2011 Escola Técnica Liceal Salesiana do Estoril Professor Luís Gonçalves 2 3 Unidade 1 Do Sol ao
Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia
Módulo VI - 1ª Lei da Termodinâmica Aplicada a Sistemas Fechados. Processos Politrópicos, Balanço de Energia Processos Politrópicos Processos reais podem ter a pressão e o volume relacionados pela seguinte
RECURSOS HÍDRICOS. Precipitação
RECURSOS HÍDRICOS Precipitação Precipitação Compreende todas formas de umidade vindas da atmosfera e depositadas na superfície terrestre. umidade atmosférica elemento fundamental para formação de precipitações
FUNDAMENTOS FÍSICOS DO AR COMPRIMIDO
DEFINIÇÃO: O ar é incolor, insípido e é uma mistura de diversos gases. Composição percentual do ar seco padrão: (ISO 2533). Elementos Percentual em volume Percentual em massa Nitrogênio 78,08 75,52 Oxigênio
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA UNIGRANRIO DE FÍSICA RESOLVIDAS E COMENTADAS
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA UNIGRANRIO DE FÍSICA RESOLVIDAS E COMENTADAS AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE
Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos
UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecnia e Engenharia de Alimentos Departamento de Engenharia de Alimentos 1 a Lista de Exercícios (2014) ZEA 0466 TERMODINÂMICA Profa. Alessandra Lopes de Oliveira
Umidade do ar. 23 de maio de 2017
Umidade do ar 23 de maio de 2017 1 Introdução Umidade do ar é a água na fase de vapor Fontes naturais Superfícies de água, gelo e neve, solo, vegetais e animais Processos físicos Evaporação, condensação
FÍSICA II. Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada
FÍSICA II Duração: 2 H 30 (exactas) 1ª Chamada 22 de Janeiro de 2002 Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada g = 9,8 m/s 2 1 atm = 1 x 10 5 Pa ρ água =
Camadas da Atmosfera (características físico químicas)
Camadas da Atmosfera (características físico químicas) Gradiente médio negativo temperatura aumenta conforme aumenta a altitude. Gradiente médio positivo temperatura diminui conforme aumenta a altitude.
Atrito na Camada Limite atrito interno
Circulações Locais e Turbulência Atmosférica Atrito na Camada Limite atrito interno Atrito interno está relacionado a viscosidade molecular Viscosidade é o freiamento de um fluido devido ao movimento molecular.
Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Gases ideais e Termodinâmica
Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Gases ideais e Termodinâmica 01 - (ACAFE SC) No estudo da termodinâmica é
INTRODUÇÃO AOS CONCEITOS DE TEMPO E CLIMA
INTRODUÇÃO AOS CONCEITOS DE TEMPO E CLIMA Glauber Lopes Mariano Faculdade de Meteorologia Universidade Federal de Pelotas E-mail: [email protected] Meteorologia Ciência que estuda os fenômenos
Meteorologia. Nuno Gomes
Meteorologia Nuno Gomes 2004 Motivação para a Meteorologia Segurança Possível alteração das condições Previsão de desenvolvimentos verticais Evitar voo em local errado relativamente á direcção do vento
2 bt2 20 o C. O calor trocado pelo sistema é, fazendo a = 5,4 cal/g.k, b = 0,0024 cal/g.k 2, c = 0, cal.k/g, dt, T 2. = 230,2kcal.
FÍSICA - LISTA 4 Termodinâmica 1. Uma substância possui calor específico dado por c = a+bt, em cal/g., com a = 0,1 cal/g., b = 0,005 cal/g. 2. Calcule o calor trocado por 100 g dessa substância se a temperatura
PME 3344 Termodinâmica Aplicada
PME 3344 Termodinâmica Aplicada Aula de exercícios 01 1 v. 1.3 Exercício 01 Considere o conjunto mostrado na figura. O pistão pode mover-se sem atrito entre os dois conjuntos de batentes. Quando o pistão
Prof. Vanderlei I Paula -
Centro Universitário Anchieta Engenharia Química Físico Química I Prof. Vanderlei I Paula Gabarito 3 a lista de exercícios 01 Alimentos desidratados apresentam maior durabilidade e mantêm a maioria das
Gases. 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação?
Capítulo 2 Gases 1. Qual a equação de Van der Waals para o gás real e qual o significado de cada termo dessa equação? Van der Waals verificou que o fato do gás real não se comportar como o gás ideal é
Debate: Aquecimento Global
Clima Debate: Aquecimento Global Aquecimento Resfriamento Ação Natural Ação antrópica (Homem) 1ª Hipótese: O que aconteceria com o clima se a Terra fosse plana? 2ª Hipótese: O que aconteceria com o clima
A atmosfera é uma massa de ar gasosa que envolve o globo terrestre. Sua composição se divide em:
Meteorologia Introdução Meteorologia é a ciência que estuda a atmosfera, seus fenômenos e atividades. Ela é importante na aviação para proporcionar segurança e economia aos vôos. Atmosfera Terrestre A
METEOROLOGIA MÓDULO 2. Aula 2
METEOROLOGIA MÓDULO 2 Aula 2 Professor: Alexandre Rodrigues Silva www.aerocurso.com ALTITUDE DEVIDO AO FUNCIONAMENTO DO ALTÍMETRO E AS DIFERENTES PRESSÕES DE REFERENCIA, SE ENTENDE POR ALTITUDE A DISTANCIA
Exercícios e exemplos de sala de aula Parte 1
PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 1 Propriedade das substâncias puras: 1- Um tanque rígido com volume de 1m 3 contém
ESTABILIDADE ATMOSFÉRICA, NUVENS E PRECIPITAÇÃO (PARTE 1)5
ESTABILIDADE ATMOSFÉRICA, NUVENS E PRECIPITAÇÃO (PARTE 1)5 Rita Yuri Ynoue Michelle S. Reboita Tércio Ambrizzi Gyrlene A. M. da Silva Nathalie T. Boiaski Introdução 5.1 Leis dos gases 5.2 Primeira Lei
DISPERSÃO DE POLUENTES NA ATMOSFERA. G4 João Paulo Vanessa Tiago Lars
DISPERSÃO DE POLUENTES NA ATMOSFERA G4 João Paulo Vanessa Tiago Lars INTRODUÇÃO A concentração de uma determinada substância na atmosfera varia no tempo e no espaço em função de reações químicas e/ou fotoquímicas,
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 8.º Teste sumativo de FQA 16. março. 015 10.º Ano Turma A Professora: Maria do Anjo Albuquerque Versão 1 Duração da prova: 90 minutos. Este teste é constituído por 7 páginas
EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0
EN 010 1. Uma pequena esfera de massa m está presa a um fio ideal de comprimento L = 0,4m, que tem sua outra extremidade presa ao teto, conforme indica a figura. No instante t = 0, quando o fio faz um
Fenômenos Térmicos : segundo conjunto de problemas. Velocidade quadrática média, livre caminho médio, distribuição de velocidades.
Fenômenos Térmicos - 2014: segundo conjunto de problemas Velocidade quadrática média, livre caminho médio, distribuição de velocidades. 1. Num período de 1.00 s, 5.00 10 23 moléculas de nitrogênio atingem
Introdução. Vento Movimento do ar atmosférico em relação à superfície terrestre. Gerado por:
Tópico 7 - Ventos Introdução Vento Movimento do ar atmosférico em relação à superfície terrestre. Gerado por: Gradientes de pressão atmosférica; Rotação da Terra; Força gravitacional; Força de atrito.
Escola Básica e Secundária Gonçalves Zarco Física e Química A, 10º ano. Ano lectivo 2008/2009
Escola Básica e Secundária Gonçalves Zarco Física e Química A, º ano Ano lectivo 2008/2009 Correcção do Teste de Avaliação Sumativa (7/5/2009) Nome: Nº de Aluno: Turma: Classificação: Professor: Formulário
Universidade de São Paulo Instituto de Física
Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina
BC 0303: Fenômenos Térmicos 2 a Lista de Exercícios
BC 33: Fenômenos Térmicos a Lista de Exercícios ** Onde for necessário adote a constante universal dos gases R = 8,3 J/mol K e o número de Avogadro N A = 6,. 3 ** Caminho Livre Médio. Em um dado experimento,
b) Qual o menor fluxo de calor que deve ser retirado ao tanque de água para que todo o sistema funcione e retire 1kW à casa.
Termodinâmica I 1º Exame 13 de Janeiro de 2005 (Duração da Prova : 180 min) Problema 1 (6 valores) Pretende-se manter a temperatura de uma casa em 20ºC, quando o ar exterior está a 32ºC, com uma máquina
MOVIMENTO DE TRANSLAÇÃO
CLIMA MOVIMENTO DE TRANSLAÇÃO Link para o vídeo que demonstra o movimento de translação da terra, comentando sobre as estações do ano e sobre a incidência dos raios solares na terra. http://www.youtube.com/watch?v=xczimavuxge
Observações de Nuvens
Observações de Nuvens Como e por que as nuvens se formam? Quais são suas características? Por quê? O principal culpado pelas nuvens é o Sol Sistemas naturais geralmente buscam estado de energia baixo Logo,
Lista de Térmica Professor: Janer Telles
Lista de Térmica Professor: Janer Telles Questão 01) Dois corpos A e B, de massas iguais, são aquecidos simultaneamente. O gráfico abaixo representa o comportamento térmico desses corpos durante o processo
1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?
BC0303: Fenômenos Térmicos - 1 a Lista de Exercícios Termômetros, Temperatura e Escalas de Temperatura 1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X.
grande extensão horizontal, homogênea. A homogeneidade é caracterizada pela uniformidade na temperatura e umidade do ar.
9.1 Massas de Ar Massa de ar: corpo de ar, caracterizado por uma grande extensão horizontal, homogênea. A homogeneidade é caracterizada pela uniformidade na temperatura e umidade do ar. Cobrem centenas
1,0 atm; 3,0 atm; 3,3 atm; 3,9 atm; 4,0 atm.
1. Um tubo cilíndrico de oxigênio de um mergulhador contém 3,2 kg de O 2. Antes de mergulhar, verificou-se que a temperatura e a pressão no interior do cilindro valiam, respectivamente, 27 C e 1,5 atm.
2ª LEI, ENTROPIA E FORMALISMO TERMODINÂMICO. 1) Um gás perfeito de capacidades térmicas constantes. , ocupando inicialmente o volume V 0,
ermodinâmica Ano Lectivo 00/0 ª LEI, ENROIA E FORMALISMO ERMODINÂMIO ) Um gás perfeito de capacidades térmicas constantes p =, ocupando inicialmente o volume 0, expande-se adiabaticamente até atingir o
Capítulo 6 Processos Envolvendo Vapores
Capítulo 6 Processos Envolvendo Vapores Pressão de vapor Define-se vapor como um componente no estado gasoso que se encontra a pressão e temperatura inferiores às do ponto crítico. Assim, um vapor pode
Universidade Federal do ABC. EN 2411 Aula 10 Convecção Livre
Universidade Federal do ABC EN 2411 Aula 10 Convecção ivre Convecção ivre Convecção natural (ou livre): transferência de calor que ocorre devido às correntes de convecção que são induzidas por forças de
Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016
Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2 prof. Daniela Szilard 23 de maio de 2016 1. Julgue os itens: verdadeiro ou falso. ( ) A lei de Stevin é válida para qualquer
LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:
LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1 Essa prova destina-se exclusivamente a alunos do 1 o e o anos e contém vinte (0) questões. Os alunos do 1 o ano devem escolher livremente oito (8) questões para
LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON. PROF : José Lucas
LISTA 4: EXERCÍCIOS TRANSFORMAÇÕES TERMODINÂMICAS, MASSA MOLAR E EQUAÇÃO DE CLAPEYRON PROF : José Lucas 1) Um gás ideal ocupa 6 litros em um recipiente, a pressão dentro do frasco é de 3 atm. Suponha que
Resoluções dos exercícios propostos
1 P.109 p a) AB corresponde a uma fusão (passagem da Sólido F fase sólida para a fase líquida). A B Líquido G b) B corresponde a uma vaporização E (passagem da fase líquida para a fase de D Vapor vapor).
2007 3ª. fase Prova para alunos 1º. e 2º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:
2007 3ª. fase Prova para alunos 1º. e 2º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 1o e 2o anos e contém vinte (20) questões. 02) Os alunos do 1o
Aquecimento de um sistema
Aquecimento de um sistema Aquecimento de diferentes quantidades de água Quando se fornece, num dado intervalo de tempo, a mesma quantidade de energia a dois sistemas, A e B, que diferem apenas na sua massa.
1. Introdução. no item anterior tratamos do Balanço de energia: como o calor é transformado e usado no sistema da Terra-Atmosfera
O AQUECIMENTO DA ATMOSFERA TEMPERATURA 1. Introdução no item anterior tratamos do Balanço de energia: como o calor é transformado e usado no sistema da Terra-Atmosfera Uma mudança no conteúdo de calor
FÍSICA - 1 o ANO MÓDULO 26 ENERGIA
FÍSICA - 1 o ANO MÓDULO 26 ENERGIA m g h E pg = t P = m g h 16 F (N) 8 0 2 4 S (m) Como pode cair no enem? (ENEM) Com o objetivo de se testar a eficiência de fornos de micro-ondas, planejou-se o aquecimento
