Fundamentos de Inteligência Artificial [5COP099]
|
|
|
- Sandra César Salvado
- 8 Há anos
- Visualizações:
Transcrição
1 Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre
2 Assunto Aula 5 Algoritmos de Busca 2 de 27
3 Sumário Introdução Gerar e Testar Busca em Profundidade Busca em Largura Busca em Espaço de Estados 3 de 27
4 Introdução Soluções de problemas de busca são parte dos problemas estudados pelos algoritmos de Inteligência Artificial; Um problema consiste de: Objetivo (Estado Objetivo); Estados (iniciando no estado Inicial); Busca (é o método utilizado para examinar o espaço do problema para encontrar o objetivo) Espaço de busca; 4 de 27
5 Gerar e Testar Solução mais simples; Selecionar um estado e verificar se é o objetivo, caso contrário iria para um próximo nó. Esta é uma forma de força bruta; Força bruta (ou busca exaustiva) não pressupõe ou tem informações extras. Simplesmente irá percorrer todos os estados; Para ter sucesso um algoritmo Gerar e Testar, deve: Ser completo (gerar todas as soluções possíveis); Não ser redundante; Deve ser bem informado (Não deve examinar estados não adequados com o espaço de busca); Também chamado de busca cega, é muito utilizado quando não se tem informações extras. Exemplo: Busca em Largura e Profundidade. 5 de 27
6 Gerar e Testar Solução mais simples; Selecionar um estado e verificar se é o objetivo, caso contrário iria para um próximo nó. Esta é uma forma de força bruta; Força bruta (ou busca exaustiva) não pressupõe ou tem informações extras. Simplesmente irá percorrer todos os estados; Para ter sucesso um algoritmo Gerar e Testar, deve: Ser completo (gerar todas as soluções possíveis); Não ser redundante; Deve ser bem informado (Não deve examinar estados não adequados com o espaço de busca); Também chamado de busca cega, é muito utilizado quando não se tem informações extras. Exemplo: Busca em Largura e Profundidade. 6 de 27
7 Busca em Profundidade Tem este nome pois segue um caminho até a sua maior profundidade, daí começa um novo caminho; A busca em profundidade utiliza um método chamado retrocesso cronológico para voltar até a árvore de busca, uma vez que um caminho sem saída foi detectado; Um exemplo da aplicação da busca em profundidade é para indexação de páginas na Internet; Tem a desvantagem quando os caminhos são muito longos ou mesmo infinitos; Tem a vantagem quando os caminhos tem mesmo comprimento ou todos os caminhos levam ao estado objetivo; 7 de 27
8 Busca em Profundidade 8 de 27
9 Busca em Profundidade 9 de 27
10 Busca em Profundidade 10 de 27
11 Busca em Largura Este algoritmo começa avaliando os nós por nível e não por caminho; Este algoritmo tem a vantagem quando os caminhos possíveis são muito profundos; Este algoritmo tem vantagens quando o estado objetivo se localiza em estados em uma parte mais rasa da árvore; A busca em largura não é adequada quando deve-se investigar árvores onde todos os caminhos levam ao estado objetivo; Não é adequada para soluções como jogos, pois estes tem árvores muito profundas; 11 de 27
12 Busca em Largura 12 de 27
13 Busca em Largura 13 de 27
14 Comparando algoritmos (algoritmos) 14 de 27
15 Busca em Estados de Espaço Um grafo pode ser usado para representar um espaço de estados, onde: Os nós correspondem a situações de um problema; As arestas correspondem aos movimentos permitidos; Um dado problema é solucionado encontrando-se um caminho no grafo; Se não houver custos, há interesse em soluções de caminho mínimo; 15 de 27
16 Busca em Estados de Espaço Quebra cabeça 8 (Estado Inicial e Final) 16 de 27
17 Busca em Estados de Espaço 17 de 27
18 Busca em Estados de Espaço Considere o problema de encontrar um plano (estratégia) para rearranjar uma pilha de blocos como na figura; Somente é permitido um movimento por vez Um bloco somente pode ser movido se não há nada em seu topo Um bloco pode ser colocado na mesa ou acima de outro bloco 18 de 27
19 Busca em Estados de Espaço 19 de 27
20 Exemplo do problema do Aspirador Um espaço de estados e definido por um conjunto S de estados e por um conjunto A de ações que mapeiam um estado em outro. Estados S ao representados por estruturas, onde cada componente denota um atributo do estado representado. Por exemplo, no Mundo do Aspirador, cada estado pode ser representado por uma estrutura da forma [X, Y, Z], onde X {1, 2} indica a posição do aspirador, Y {0, 1} indica se a primeira sala está suja e Z {0, 1} indica se a segunda sala está suja. Dessa forma, o estado em que o aspirador encontra-se na segunda sala e apenas essa sala está suja e representada por [2, 0, 1]. 20 de 27
21 Exemplo do problema do Aspirador *** Representação dos estados O conjunto de estados para o Mundo do Aspirador é S = {[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 0, 1], [2, 1, 0], [2, 1, 1]}. O problema de busca conta com os seguintes componentes: um espaço de estados (denotado pelos conjuntos S e A); um estado inicial (denotado por um estado particular s 0 S); um conjunto de estados meta (denotado por um conjunto G S); 21 de 27
22 Grafo do problema do asprirador 22 de 27
23 Exemplo do problema do Aspirador *** Representação das ações As ações são representadas por operadores da forma: oper (, s, s ) = β α: É a ação que transforma um estado; s: estado inicial; s : estado final; β: condição Então, temos: A = {oper(entrarsala1, [2, Y, Z], [1, Y, Z]), oper(entrarsala2, [1, Y, Z], [2, Y, Z]), oper(aspirar, [1, 1, Z], [1, 0, Z]), oper(aspirar, [2, Y, 1], [2, Y, 0])} 23 de 27
24 Exemplo do problema do Aspirador *** O problema de busca espaço de estados: conjuntos S e A; estado inicial: [1, 1, 1] e estados meta: G = {[1, 0, 0], [2, 0, 0]}. A solução para um problema de busca consiste numa sequência de ações que rotulam o caminho que leva do estado inicial a um dos estados meta no espaço de estados do problema. O rastreamento da chamada Busca(A, s 0, G) pode produzir, por exemplo, a árvore de busca apresentada no próximo slide: 24 de 27
25 Busca em Estados de Espaço Exemplo 1 - Sejam A o conjunto de ações para o Mundo do Aspirador, s 0 = [1, 1, 1] e G = {[2, 0, 1]}. O rastreamento de BuscaProfundidade(A, s 0, G) produz a árvore de busca abaixo. 25 de 27
26 Busca em Estados de Espaço Exemplo 2 - Sejam A o conjunto de ações para o Mundo do Aspirador, s 0 = [1, 1, 1] e G = {[1, 0, 0], [2, 0, 0]}. O rastreamento de BuscaLargura(A, s 0, G) produz a arvore de busca abaixo. 26 de 27
27 Fundamentos de Inteligência Artificial Referências 1. Coppin, B. Inteligência Artificial. LTC Russell, S.; Norvig, P. Artificial Intelligence: a modern approach. Prentice Hall Localização: BC Número de Chamada: R967a 3.ed. 3. Luger, G. F. Inteligência Artificial: estruturas e estratégias para a resolução de problemas complexos.bookman Localização: BC Número de Chamada: L951a 4.ed. 27 de 27
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Saulo Martiello Mastelini Departamento de Computação - UEL 1 o Semestre Assunto Aula 11 Modelos Preditivos - Árvore de Decisão
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 1 Fundamentos de Inteligência Artificial 2 de 18 Sumário Introdução
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 10 Modelos Preditivos - Árvore de Decisão 2 de 20 Aula 10 - Árvore de
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 2 Agentes Inteligentes 2 de 22 Sumário Introdução Propriedades dos Agentes
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Análise de Dados. Sylvio Barbon Junior 29 de julho de 2016 DC-UEL Sylvio Barbon Jr 1
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Análise de Dados Sylvio Barbon Junior [email protected] 29 de julho de 2016 DC-UEL Sylvio Barbon Jr 1 Sumário Introdução Caracterização de Dados Exploração de
Técnicas Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas Inteligência Artificial Aula 03 Métodos de Busca Parte 1 Prof. Max Pereira Solução de Problemas como Busca Um problema pode ser considerado
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução
Introdução à Resolução de Problemas por meio de Busca
Introdução à Resolução de Problemas por meio de Busca Huei Diana Lee [email protected] 2006 Conteúdo Introdução Exemplos Descrição formal Os Vasilhames com Água Estratégias de Controle Problemas Exercício!!
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem como
Resolução de Problemas com Métodos de Busca
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Resolução de Problemas com Métodos de Busca Inteligência Artificial Site: http://jeiks.net E-mail:
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
Busca no espaço de estados
Busca no espaço de estados Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Idéia básica A idéia básica da busca no espaço de estados é considerar
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
Inteligência Artificial
Inteligência Artificial Métodos de resolução de problemas Prof. Angel Alberto Vazquez Sánchez Objetivos Caracterizar a busca como um método para resolver problemas a partir de seus elementos fundamentais
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
Resolução de problemas por meio de busca. CAPÍTULO 3 - Russell
Resolução de problemas por meio de busca CAPÍTULO 3 - Russell Os agentes de resolução de problemas decidem o que fazer encontrando seqüências de ações que levam a estados desejáveis. Inicialmente veremos:
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Inteligência Artificial
Figura: Capa do Livro Hamburger, H., Richards, D. Logic and Language Models for Computer Science, Prentice Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação
INTELIGÊNCIA ARTIFICIAL
INTELIGÊNCIA ARTIFICIAL Apresentação da Disciplina Tiago Alves de Oliveira 1 O QUE É INTELIGÊNCIA ARTIFICIAL? Tiago Alves de Oliveira 2 O QUE É INTELIGÊNCIA ARTIFICIAL? Área de pesquisa que tem como objetivo
Paulo Roberto Quícoli - Raul Peres de Góes - Faculdade de Tecnologia de Taquaritinga (FATEC) SP Brasil
1 ESTUDO COMPARATIVO DOS MÉTODOS DE BUSCA POR LARGURA, PROFUNDIDADE, A* HAMMING E MANHATTAN PARA SOLUÇÃO DO 8-PUZZLE COMPARATIVE STUDY OF THE METHODS BFS, DFS, A* HAMMING AND MANHATTAN FOR THE 8-PUZZLE
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall.
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Inteligência Artificial
Inteligência Artificial Apresentação da Disciplina Tiago Alves de Oliveira 1 O que é Inteligência Artificial? Tiago Alves de Oliveira 2 O que é Inteligência Artificial? Área de pesquisa que tem como objetivo
Aula 04 / LAB 01 Resolução de problemas por meio de busca Prof. Dr. Alexandre da Silva Simões. Exercício 1. Problema dos jarros de água
Aula 04 / LAB 01 Resolução de problemas por meio de busca Prof. Dr. Alexandre da Silva Simões Exercício 1 Prof. Dr. Alexandre da Silva Simões Problema dos jarros de água Problema dos jarros de água: modelagem
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Inteligência Computacional
Inteligência Computacional CP78D Apresentação do Plano de Ensino Aula 1 Prof. Daniel Cavalcanti Jeronymo Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia Eletrônica 9º Período 1/14 Professor
Trabalho Prático 2 Mundo dos Blocos Alocação Dinâmica / Listas Encadeadas
Disciplina: Algoritmos e Estrutura de Dados I CIC / 9 Trabalho Prático Mundo dos Blocos Alocação Dinâmica / Listas Encadeadas Valor:,5 pontos (5% da nota total) Documentação não-latex: -, pontos Impressão
Busca em Espaço de Estados a
Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula I - Introdução
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO Material baseado e adaptado do Cap. 4 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
Inteligência Artificial PCS3438. Escola Politécnica da USP Engenharia de Computação (PCS)
Inteligência Artificial PCS3438 Escola Politécnica da USP Engenharia de Computação (PCS) Estrutura do Agente Agente = arquitetura de HW + Arquitetura de HW: arquitetura de SW onde o agente vai ser implementado
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? Área de pesquisa que tem como objetivo buscar métodos ou dispositivos
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
Busca no espaço de estados (parte I)
Busca no espaço de estados (parte I) Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo Idéia básica A idéia básica da busca no espaço de estados
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Inteligência Computacional
Rafael D. Ribeiro, M.Sc. [email protected] http://www.rafaeldiasribeiro.com.br Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensorese de agir sobre este ambiente
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Busca Heurística. Profa. Josiane M. P. Ferreira
Busca Heurística Profa. Josiane M. P. Ferreira Texto base: Stuart Russel e Peter Norving - Inteligência Artificial David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Inteligência Artificial. Estratégias de Busca Outros. Huei Diana Lee
Inteligência Artificial Estratégias de Busca Outros Huei Diana Lee Redução de Problemas Até então consideramos estratégias para as quais o espaço de busca é representado por meio de Grafos OU Objetivo:
Inteligência Computacional
Rafael D. Ribeiro, M.Sc. [email protected] http://www.rafaeldiasribeiro.com.br Métodos Revogáveis de Busca Busca em profundidade Busca em largura Busca em profundidade iterativa Busca ordenada
Teoria dos Grafos Aula 14
Teoria dos Grafos Aula 14 Aula passada MST Aula de hoje Construção de algoritmos Paradigma guloso Escalonando tarefas no tempo (interval scheduling) Projetando Algoritmos Dado um problema P, como projetar
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
MAC425/5739 Inteligência Artificial 3. Busca informada
MAC425/5739 Inteligência Artificial 3. Busca informada Denis Deratani Mauá (largamente baseado no material de aula dos Profs. Edileri de Lima e Leliane de Barros) MÉTODOS DE BUSCA Busca cega ou sistemática:
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
meio de busca Seções 3.1, 3.2 e 3.3
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para quais o número de regras condição
Tópicos Especiais: Inteligência Artificial
Tópicos Especiais: Inteligência Artificial RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA Material baseado e adaptado do Cap. 3 do Livro Inteligência Artificial de Russel & Norving Bibliografia Inteligência
Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra
Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre
Algoritmos 2 - Introdução
DAINF - Departamento de Informática Algoritmos 2 - Introdução Prof. Alex Kutzke (http://alex.kutzke.com.br/courses) 19 de Agosto de 2015 Slides adaptados do material produzido pelo Prof. Rodrigo Minetto
Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010
Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
Resolução de problemas por meio de busca. Inteligência Artificial. Busca. Exemplo: Romênia. Exemplo: Romênia 8/23/2010
Inteligência Artificial Aula 2 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas
Recursividade, Tentativa e Erro
Recursividade, Tentativa e Erro Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho [email protected] BCC402 Aula 07 Algoritmos e Programação Avançada Na aula anterior Prova 2 Na aula de hoje Técnicas
Desenho e Análise de Algoritmos
Desenho e Análise de Algoritmos Pedro Ribeiro DCC/FCUP 2016/2017 Pedro Ribeiro (DCC/FCUP) Desenho e Análise de Algoritmos 2016/2017 1 / 14 Informações Gerais Site: http://www.dcc.fc.up.pt/~pribeiro/aulas/daa1617/
Inteligência Artificial Busca
Inteligência Artificial Busca Professora Sheila Cáceres Ja vimos: Agentes simples que baseiam ações em um mapeamento direto de estados. Porém: Y se o conjunto de estados e ações for muito grande? Daria
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 12 Árvores de Decisão Prof. Augusto Baffa Árvores de Decisão Uma das formas de algoritmo de aprendizado mais simples e de maior sucesso. Uma
Agentes Inteligentes. Inteligência Artificial
Agentes Inteligentes (Capítulo 2 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Ambiente de Tarefas 3. Exemplos de ambiente de Tarefas 4. Propriedades
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
GRAFOS Aula 03 Representações de Grafos Max Pereira
Ciência da Computação GRAFOS Aula 03 Representações de Grafos Max Pereira A maior vantagem de um grafo é a sua representação visual da informação. Mas para a manipulação e armazenamento em um computador,
CES-11. Algoritmos e Estruturas de Dados
CES-11 Algoritmos e Estruturas de Dados CES-11 Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CES-11 Conceito de árvore Tantos as pilhas como as filas são estruturas lineares, isto é, de uma única
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1
BCC402 Algoritmos e Programação Avançada Prof. Marco Antonio M. Carvalho Prof. Túlio Ângelo M. Toffolo 2011/1 Na aula anterior Prova 2 Na aula de hoje Técnicas básicas de contagem; Tentativa e Erro; Recursividade.
Teoria dos Grafos Aula 3
Teoria dos Grafos Aula 3 Aula passada Exemplo (mapas) Definições Algumas propriedades Aula de hoje Representando grafos Matriz e lista Comparando tempos de acesso Grafo G=(V, E) Grafo V = conjunto de vértices
