Resolução de Problemas
|
|
|
- Thalita Bacelar Guimarães
- 9 Há anos
- Visualizações:
Transcrição
1 Resolução de Problemas 1
2 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai ? Já o agente baseado em objetivo... sabe, pois segue um objetivo explícito
3 Agente de Resolução de Problemas (2/2) 3 Dentre as maneiras de implementar um agente baseado em objetivo existe o chamado Agente de Resolução de Problemas serve para alguns tipos de problemas requer pouco conhecimento explícito basicamente busca uma seqüência de ações que leve a estados desejáveis (objetivos) Questões O que é um problema e como formulá-lo? Como buscar a solução do problema?
4 Problemas e Soluções bem Definidos (1/2) 4 Um problema em IA é definido em termos de... 1) um espaço de estados possíveis, incluindo um estado inicial e um estado final (objetivo) exemplo 1: dirigir do Rio de Janeiro a Juiz de Fora exemplo 2: jogo de 8-números 2) um conjunto de ações (ou operadores) que permitem passar de um estado a outro ex1. dirigir de uma cidade a outra ex2. mover uma peça do jogo de n-números (n-puzzle)
5 Problemas e Soluções bem Definidos (2/2) 5 Espaço de Estados: conjunto de todos os estados alcançáveis a partir do estado inicial por qualquer seqüência de ações. Definição do objetivo: propriedade abstrata ex., condição de xeque-mate no Xadrez conjunto de estados finais do mundo ex., estar em na cidade-destino Solução: caminho (seqüência de ações ou operadores) que leva do estado inicial a um estado final (objetivo).
6 Solucionando o Problema: formulação, busca e execução 6 Formulação do problema e do objetivo: quais são os estados e as ações a considerar? qual é (e como representar) o objetivo? Busca (solução do problema): processo que gera/analisa seqüências de ações para alcançar um objetivo solução = caminho entre estado inicial e estado final. Execução: Executar (passo a passo) a solução completa encontrada
7 Agentes Solucionadores de Problemas formulação, busca e execução 7 função Agente-Simples Simples-SP(p) retorna uma ação entrada: p, um dado perceptivo estado Atualiza-Estado (estado, p) se s (seqüência de ações) está vazia então o (objetivo) Formula-Objetivo (estado) problema Formula-Problema (estado, o) s Busca (problema) ação Primeira (s, estado) s Resto (s, estado) retorna ação
8 Medida de Desempenho na Busca 8 Desempenho de um algoritmo de busca: 1. O algoritmo encontrou alguma solução? 2. É uma boa solução? custo de caminho (qualidade da solução) 3. É uma solução computacionalmente barata? custo da busca (tempo e memória) Custo total custo do caminho + custo de busca Espaço de estados grande: compromisso (conflito) entre a melhor solução e a solução mais barata
9 Outro Exemplo: Ir de Arad a Bucharest 9
10 Exemplo Romênia 10 Ida para Bucharest: estados = cada possível cidade do mapa estado inicial = Arad teste de término = estar em Bucarest operadores = dirigir de uma cidade para outra custo do caminho = número de cidades visitadas, distância percorrida, tempo de viagem, grau de divertimento, etc
11 Mais um Exemplo Aspirador de pó estados = estado inicial = teste de término = operadores = custo da solução =
12 Custo Diferente => Solução Diferente 12 Função de custo de caminho (1) número de cidades visitadas, (2) distância entre as cidades, (3) tempo de viagem, etc. Solução mais barata: (1) Rio, Niterói, São Gonçalo,... (2) Rio, Niterói, Mage,... (3) Rio, Mage, Araruama, Cabo Frio, São Gonçalo
13 Importância da formulação: 8 rainhas 13 Jogo das 8 Rainhas dispor 8 rainhas no tabuleiro de forma que não possam se atacar não pode haver mais de uma rainha em uma mesma linha, coluna ou diagonal somente o custo da busca conta não existe custo de caminho Existem diferentes estados e operadores possíveis essa escolha pode ter conseqüências boas ou nefastas na complexidade da busca ou no tamanho do espaço de estados
14 Importância da formulação: 8 rainhas 14 Formulação A estados: qualquer disposição com n (n 8) rainhas operadores: adicionar uma rainha a qualquer quadrado 64^8 possibilidades: vai até o fim para testar se dá certo Formulação B estados: disposição com n (n 8) rainhas sem ataque mútuo (teste gradual) operadores: adicionar uma rainha na coluna vazia mais à esquerda em que não possa ser atacada melhor (2057 possibilidades), mas pode não haver ação possível Formulação C estados: disposição com 8 rainhas, uma em cada coluna operadores: mover uma rainha atacada para outra casa na mesma coluna
15 Importância da formulação: 8-números 15 Jogo de 8 números: estados = cada possível configuração do tabuleiro estado inicial = qualquer um dos estados possíveis teste de término = ordenado, com branco na posição [3,3] operadores = mover branco (esquerda, direita, para cima e para baixo) custo da solução = número de passos da solução down up right right down
16 Algumas Aplicações 16
17 Aplicações de Busca: Toy Problems 17 Jogo das n rainhas Jogo dos n números (n-puzzle) Torre de Hanoi Palavras cruzadas Canibais e missionários
18 Aplicações: Problemas Reais 18 Cálculo de rotas (pathfinding) rotas em redes de computadores sistemas de planejamento de viagens planejamento de rotas de aviões Caixeiro viajante Jogos de computadores (rotas dos personagens) Alocação (Scheduling) Salas de aula Máquinas industriais (job shop) Projeto de VLSI Cell layout Channel routing
19 Aplicações: Problemas Reais 19 Navegação de robôs: generalização do problema da navegação robôs movem-se em espaços contínuos, com um conjunto (infinito) de possíveis ações e estados controlar os movimentos do robô no chão, e de seus braços e pernas requer espaço multi-dimensional Montagem de objetos complexos por robôs: ordenar a montagem das diversas partes do objeto etc...
20 Problemas com Informação Parcial 20
21 Problemas com informação Parcial 21 Até agora só vimos problemas de estado único o agente sabe em que estado está e pode determinar o efeito de cada uma de suas ações sabe seu estado depois de uma seqüência qualquer de ações Solução: seqüência de ações Porém existem 3 outros tipos de problemas...
22 Problemas com Informação Parcial 22 Sensorless or conformant problem Agente não sabe seu estado inicial (percepção deficiente) Deve raciocinar sobre os conjuntos de estados Solução: seqüência de ações (via busca) Problema de contingência Efeito das ações não-determinístico e/ou mundo parcialmente observável => novas percepções depois de ação ex. aspirador que suja ao sugar e/ou só percebe sujeira localmente Solução: árvore de decisão (via planejamento) Problema exploratório (on-line) Espaço de estados desconhecido ex. dirigir sem mapa Solução... via aprendizagem por reforço
23 Problemas com Informação Parcial 23 Estado simples Início: 5, Solução: [dir, suga] Conformant problem Percepção deficiente Início: {1,2,3,4,5,6,7,8} Direita => {2,4,6,8}, Sugar => {4,8},... Solução: [dir, suga, esq, suga] Problema de contingência Efeito das ações não-determinístico Início: [lado esq, sujo] = {1,3} Solução? Sugar => {5,7}, Dir => {6,8}, Sugar no 6 => 8 mas sugar no 8 => 6 Solução: [sugar, dir, se sujo sugar] Solução geral: [dir, se sujo suga, esq, se sujo suga]
24 24 Buscando Soluções Busca Cega
25 Busca em Espaço de Estados 25 Uma vez o problema bem formulado... o estado final deve ser buscado Em outras palavras, deve-se usar um método de busca para saber a ordem correta de aplicação dos operadores que lavará do estado inicial ao final Isto é feito por um processo de geração (de estados possíveis) e teste (para ver se o objetivo está entre eles) Uma vez a busca terminada com sucesso, é só executar a solução (= conjunto ordenado de operadores a aplicar)
26 Busca em Espaço de Estados: Geração e Teste 26 Fronteira do espaço de estados nós (estados) a serem expandidos no momento. Algoritmo: Obs: começa com a fronteira contendo o estado inicial do problema. 1. Selecionar o primeiro nó (estado) da fronteira do espaço de estados; - se a fronteira está vazia, o algoritmo termina com falha. 2. Testar se o nó é um estado final (objetivo): - se sim, então retornar nó - a busca termina com sucesso. 3. Gerar um novo conjunto de estados pela aplicação dos operadores ao nó selecionado; 4. Inserir os nós gerados na fronteira, de acordo com a estratégia de busca usada, e voltar para o passo (1).
27 Métodos de Busca 27 Busca exaustiva ou cega Não sabe qual o melhor nó da fronteira a ser expandido = menor custo de caminho desse nó até um nó final (objetivo). Busca heurística - informada Estima qual o melhor nó da fronteira a ser expandido com base em funções heurísticas => conhecimento
28 Busca Cega Estratégias para determinar a ordem de ramificação dos nós: 1. Busca em largura 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da ramificação: 1. Do estado inicial para um estado final 2. De um estado final para o estado inicial 3. Busca bi-direcional
29 29
30 Critérios de Avaliação das Estratégias de Busca Completa? a estratégia sempre encontra uma solução quando existe alguma? Ótima? a estratégia encontra a melhor solução quando existem soluções diferentes? menor custo de caminho Custo de tempo? quanto tempo gasta para encontrar uma solução? Custo de memória? quanta memória é necessária para realizar a busca?
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 Comparando Estratégias de Busca Exaustiva Critério Largura Custo Uniforme Profundidade Aprofundamento Iterativo Tempo b d b d b m b d Espaço b d b d bm bd Otima? Sim Sim* Não Sim Completa? Sim Sim Não Sim
42 42
43 Evitar Geração de Estados Repetidos 43 Problema geral em busca expandir estados presentes em caminhos já explorados É inevitável quando existe operadores reversíveis ex. encontrar rotas, canibais e missionários, 8-números, etc. a árvore de busca é potencialmente infinita 3 soluções com diferentes níveis de eficácia e custo de implementação...
44 Evitar Estados Repetidos: soluções 1. Não retornar ao estado pai 2. Não retorna a um ancestral 3. Não gerar qualquer estado que já tenha sido criado antes (em qualquer ramo) requer que todos os estados gerados permaneçam na memória: custo O(b d ) pode ser implementado mais eficientemente com hash tables quando encontra nó igual tem de escolher o melhor (menor custo de caminho até então)
45 45
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
Introdução à Resolução de Problemas por meio de Busca
Introdução à Resolução de Problemas por meio de Busca Huei Diana Lee [email protected] 2006 Conteúdo Introdução Exemplos Descrição formal Os Vasilhames com Água Estratégias de Controle Problemas Exercício!!
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
Resolução de Problemas através de Busca. Prof. Júlio Cesar Nievola PPGIA - PUC-PR
Resolução de Problemas através de Busca Prof. Júlio Cesar Nievola PPGIA - PUC-PR Solução de Problemas Sistemas inteligentes devem agir de maneira a fazer com que o ambiente passe por uma seqüência de estados
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
meio de busca Seções 3.1, 3.2 e 3.3
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para quais o número de regras condição
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Resolução de problemas por meio de busca. CAPÍTULO 3 - Russell
Resolução de problemas por meio de busca CAPÍTULO 3 - Russell Os agentes de resolução de problemas decidem o que fazer encontrando seqüências de ações que levam a estados desejáveis. Inicialmente veremos:
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Resolução de Problemas
Resolução de Problemas Como um agente pode encontrar uma sequência de ações que alcança seus objetivos quando nenhuma ação isolada é capaz de fazê-lo. 1 Resolução de Problemas Agente reativo simples: baseia
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
Resolução de problemas por meio de busca. Inteligência Artificial. Busca. Exemplo: Romênia. Exemplo: Romênia 8/23/2010
Inteligência Artificial Aula 2 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
Tópicos Especiais: Inteligência Artificial
Tópicos Especiais: Inteligência Artificial RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA Material baseado e adaptado do Cap. 3 do Livro Inteligência Artificial de Russel & Norving Bibliografia Inteligência
Agentes que resolvem problemas através de busca Capítulo 3 Parte I
Agentes que resolvem problemas através de busca Capítulo 3 Parte I Leliane Nunes de Barros [email protected] Agente reativo simples também chamado de agente situado ou agente estímulo-resposta reage a
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 03 Resolução de Problemas por Meio de Busca Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Inteligência Artificial PCS3438. Escola Politécnica da USP Engenharia de Computação (PCS)
Inteligência Artificial PCS3438 Escola Politécnica da USP Engenharia de Computação (PCS) Estrutura do Agente Agente = arquitetura de HW + Arquitetura de HW: arquitetura de SW onde o agente vai ser implementado
Resolução de Problemas. Hugo Barros
Resolução de Problemas Hugo Barros Resolução de Problemas Tópicos Conceitos Básicos Espaço de Estados Resolução de Problemas Dedica-se ao estudo e elaboração de algoritmos, capazes de resolver, por exemplo,
Introdução. Inteligência Artificial. Problema de Busca. Problema de Busca. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Resolução de Problemas por meio de busca Prof. Ms. Luiz Alberto Contato: [email protected] Introdução No capítulo anterior vimos a eficácia de agentes baseados em objetivo. Neste
lnteligência Artificial
lnteligência Artificial Busca Heurística - Informada Estratégias de Busca Heurística Usam conhecimento específico do problema na busca da solução Mais eficientes que busca não informada Busca Informada
Inteligência Artificial Busca
Inteligência Artificial Busca Professora Sheila Cáceres Ja vimos: Agentes simples que baseiam ações em um mapeamento direto de estados. Porém: Y se o conjunto de estados e ações for muito grande? Daria
INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL. Aula 02 Prof. Vitor Hugo Ferreira
Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Elétrica INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL Aula 02 Prof. Vitor Hugo Ferreira Agentes Inteligentes O que torna um agente
Resolução de Problemas. Resolução de Problemas. Primeiros problemas por computador: prova automática de teoremas e jogos.
Figura: Capa do Livro Hamburger, H., Richards, D. Logic and Language Models for Computer Science, Prentice Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
Busca Heurística - Informada
Busca Heurística - Informada Estratégias de Busca Exaustiva (Cega) encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria
CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro
CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro [email protected] www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de
Busca em Espaço de Estados a
Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Aula 03 Métodos de busca sem informação
Problema dos jarros de água ula 03 Métodos de busca sem informação Prof. Dr. lexandre da Silva Simões Existem dois vasos: um de 4 litros e um de 3 litros, inicialmente vazios, e uma fonte que jorra água
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra
Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula I - Introdução
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO Material baseado e adaptado do Cap. 4 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial
Métodos de Busca. Inteligência Artificial. Busca Heurística. Busca Heurística. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
Métodos de Busca. Estratégias de Busca Cega
Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos
Inteligência Artificial: 3. Resolução de problemas por meio de busca. Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3
Inteligência Artificial: 3. Resolução de problemas por meio de busca Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para
Inteligência Computacional
Rafael D. Ribeiro, M.Sc. [email protected] http://www.rafaeldiasribeiro.com.br Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensorese de agir sobre este ambiente
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Os problemas de IA empregam heurísticas, basicamente, em duas situações:
Figura: Capa do Livro Hamburger, H., Richards, D. Logic and Language Models for Computer Science, Prentice Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Técnicas Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas Inteligência Artificial Aula 03 Métodos de Busca Parte 1 Prof. Max Pereira Solução de Problemas como Busca Um problema pode ser considerado
INTRODUÇÃO A BUSCA EXERCÍCIOS
INTRODUÇÃO USC EXERCÍCIOS 1. Formule um problema de busca de forma que um agente possa planejar sua ida do Portal da Graciosa à ntonina pelo caminho de menor custo. Não é necessário prever caminhos de
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais.
istemas Inteligentes, 10-11 1 Exemplos Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas Criptoaritmética Missionários e Canibais Resta-um e muitos outros... istemas Inteligentes,
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2. Ações ou função
INTELIGÊNCIA ARTIFICIAL
INTELIGÊNCIA ARTIFICIAL Primeiro Teste 29 de Outubro de 2011 17:00-18:30 Este teste é composto por 9 páginas contendo 11 perguntas. Para perguntas com resposta de escolha múltipla, respostas erradas com
Inteligência Computacional
Rafael D. Ribeiro, M.Sc. [email protected] http://www.rafaeldiasribeiro.com.br Métodos Revogáveis de Busca Busca em profundidade Backtracking Busca em largura Busca em profundidade iterativa
PCS Gabarito da 1a. lista
PCS -2428 Gabarito da 1a. lista 1. Estado: situação (configuração) do ambiente no qual deve ser resolvido o problema. Espaço de estados: conjunto dos possíveis estados. Árvore de busca: estrutura de dados
Sistemas Inteligentes / Inteligência Artificial, Outros Métodos de Procura
Sistemas Inteligentes / Inteligência Artificial, 14-15 1 Outros Métodos de Procura Sistemas Inteligentes / Inteligência Artificial, 14-15 2 Exemplos de Aplicações Jogo dos oito :-) Mundo dos blocos (ex:
Lista 1 Sistemas Inteligentes (INE5633) 2014s2. Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul)
Lista 1 () 2014s2 Sistemas de Informação Universidade Federal de Santa Catarina Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul) 1. Tanto a medida de desempenho quanto a função de
Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa
Busca Heurís9ca - Informada PCS 2428 / PCS 2059 lnteligência Ar9ficial Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa Busca Heurís9ca 2 Estratégias de Busca Heurís9ca Usam conhecimento
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5 Formulação dos problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2.
*Capítulo 3 (Russel & Norvig)
*Capítulo 3 (Russel & Norvig) 1 Estratégias de busca sem informação Busca em largura Busca de custo uniforme (menor custo) Busca em profundidade Busca em profundidade limitada Busca de aprofundamento iterativo
Enunciados dos Exercícios Cap. 2 Russell & Norvig
Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO GABARITO
PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman GABARITO 1. Em artigo publicado em 1950, Alan Turing apresentou à comunidade acadêmica o que ficou conhecido
Primeiro Trabalho de IA/SI: Buscas. Entrega: 03/03/2019 (2 semanas)
Primeiro Trabalho de IA/SI: Buscas Entrega: 03/03/2019 (2 semanas) 18 de Fevereiro de 2019 Este trabalho é para ser submetido via Moodle. Será desenvolvido principalmente durante as aulas práticas, mas
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Busca heurística
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Busca heurística Roteiro Retomada do
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig)
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig) 1 Tópicos Estratégias de busca sem informação Busca em largura ou extensão custo uniforme (menor custo)
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016
NOTAS DE AULA 1 METAHEURÍSTICA 13/10/2016 Metaheurística: São técnicas de soluções que gerenciam uma interação entre técnicas de busca local e as estratégias de nível superior para criar um processo de
Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *
Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:
Busca com informação e exploração. Inteligência Artificial
Busca com informação e exploração (Capítulo 4 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura Busca pela melhor escolha Busca gulosa pela melhor escolha Busca
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA BUSCA CEGA EXERCÍCIOS 1. Por que a estratégia de busca em largura só garante encontrar a solução ótima quando o custo por ação é uniforme? 2. Compare
Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.1
Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 1 Busca com informação (ou heurísica) UIliza conhecimento específico sobre o problema para encontrar soluções de forma mais eficiente
INTELIGÊNCIA ARTIFICIAL 2008/09
INTELIGÊNI RTIFIIL 2008/09 PROUR 1) onsidere o problema da torre de Hanoi com discos. Neste problema, existem três pinos, e e discos de diâmetros diferentes, estando no início todos os discos colocados
Estratégias de Busca Cega
Estratégias de Busca Cega Encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo. São ineficientes na maioria dos casos: utilizam apenas o custo de
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6 Aluno: 1. Defina o problema de busca (espaço de estados, estado inicial, estado final, ações possíveis, custo) para o seguinte caso: uma pessoa,
