INF 1771 Inteligência Artificial
|
|
|
- Bernadete Aquino Marinho
- 9 Há anos
- Visualizações:
Transcrição
1 Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 03 Resolução de Problemas por Meio de Busca
2 Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente e agir de forma a atingir determinado objetivo. Tipos de Agentes: Agentes reativos simples; Agentes reativos baseado em modelo; Agentes baseados em objetivos; Agentes baseados na utilidade; Agentes baseados em aprendizado;
3 Problema de Busca Bucharest Timisoara Sibiu Arad Zerind
4 Problema de Busca
5 Definição do Problema A definição do problema é a primeira e mais importante etapa do processo de resolução de problemas de inteligência artificial por meio de buscas. Consiste em analisar o espaço de possibilidades de resolução do problema, encontrar sequências de ações que levem a um objetivo desejado.
6 Definição de um Problema Estado Inicial: Estado inicial do agente. Ex: Em(Arad) Estado Final: Estado buscado pelo agente. Ex: Em(Bucharest) Ações Possíveis: Conjunto de ações que o agente pode executar. Ex: Ir(Cidade, PróximaCidade) Espaço de Estados: Conjunto de estados que podem ser atingidos a partir do estado inicial. Ex: Mapa da Romênia. Custo: Custo numérico de cada caminho. Ex: Distância em KM entre as cidades.
7 Considerações em Relação ao Ambiente Estático: O Ambiente não pode mudar enquanto o agente está realizando a resolução do problema. Observável: O estado inicial do ambiente precisa ser conhecido previamente. Determinístico: O próximo estado do agente deve ser determinado pelo estado atual + ação. A execução da ação não pode falhar.
8 Exemplo: Aspirador de Pó Espaço de Estados: 8 estados possíveis (figura ao lado); Estado Inicial: Qualquer estado; Estado Final: Estado 7 ou 8 (ambos quadrados limpos); Ações Possíveis: Mover para direita, mover para esquerda e limpar; Custo: Cada passo tem o custo 1, assim o custo do caminho é definido pelo numero de passos;
9 Exemplo: Aspirador de Pó
10 Exemplo: 8-Puzzle Espaço de Estados: possíveis estados; Estado Inicial: Qualquer estado; Estado Final: Figura ao lado Goal State; Ações Possíveis: Mover o quadrado vazio para direita, para esquerda, para cima ou para baixo; Custo: Cada passo tem o custo 1, assim o custo do caminho é definido pelo numero de passos; 15-puzzle (4x4) 1.3 trilhões estados possíveis. 24-puzzle (5x5) 10²⁵ estados possíveis.
11 Exemplo: Xadrez 10 Espaço de Estados: Aproximadamente possíveis estados (Claude Shannon, 1950); 40 Estado Inicial: Posição inicial de um jogo de xadrez; Estado Final: Qualquer estado onde o rei adversário está sendo atacado e o adversário não possui movimentos válidos; Ações Possíveis: Regras de movimentação de cada peça do xadrez; Custo: Quantidade de posições examinadas;
12 Exemplo: 8 Rainhas (Incremental) Espaço de Estados: Qualquer disposição de 0 a 8 rainhas no tabuleiro (1.8 x 10¹⁴ possíveis estados); Estado Inicial: Nenhuma rainha no tabuleiro; Estado Final: Qualquer estado onde as 8 rainhas estão no tabuleiro e nenhuma esta sendo atacada; Ações Possíveis: Colocar uma rainha em um espaço vaio do tabuleiro; Custo: Não importa nesse caso; * O jogo possui apenas 92 possíveis soluções (considerando diferentes rotações e reflexões). E apenas 12 soluções únicas.
13 Exemplo: 8 Rainhas (Estados Completos) Espaço de Estados: Tabuleiro com n rainhas, uma por coluna, nas n colunas mais a esquerda sem que nenhuma rainha ataque outra (2057 possíveis estados); Estado Inicial: Nenhuma rainha no tabuleiro; Estado Final: Qualquer estado onde as 8 rainhas estão no tabuleiro e nenhuma esta sendo atacada; Ações Possíveis: Adicionar uma rainha em qualquer casa na coluna vazia mais à esquerda de forma que não possa ser atacada; Custo: Não importa nesse caso;
14 Exercícios Torre de Hanói? Canibais e Missionários?
15 Exercícios Torre de Hanói: Espaço de Estados: Todas as possíveis configurações de argolas em todos os pinos (27 possíveis estados). Ações Possíveis: Mover a primeira argola de qualquer pino para o pino da direita ou da esquerda. Custo: Cada movimento tem 1 de custo. Canibais e Missionários: Espaço de Estados: Todas as possíveis configurações validas de canibais e missionários em cada lado do rio (16 possíveis estados). Ações Possíveis: Mover 1 ou 2 personagens (canibais ou missionários) para o outro lado do rio. O número de canibais em um determinado lado do rio não pode ser maior do que o número de missionários. Custo: Cada movimento tem 1 de custo.
16 Exercícios
17 Exercícios
18 Aplicações em Problemas Reais Cálculo de Rotas: Planejamento de rotas de aviões; Sistemas de planejamento de viagens; Caixeiro viajante; Rotas em redes de computadores; Jogos de computadores (rotas dos personagens); Alocação Salas de aula; Máquinas industriais;
19 Aplicações em Problemas Reais Circuitos Eletrônicos: Posicionamento de componentes; Rotas de circuitos; Robótica: Navegação e busca de rotas em ambientes reais; Montagem de objetos por robôs;
20 Como Encontrar a Solução? Uma vez o problema bem formulado, o estado final (objetivo) deve ser buscado no espaço de estados. A busca é representada em uma árvore de busca: Raiz: corresponde ao estado inicial; Expande-se o estado corrente, gerando um novo conjunto de sucessores; Escolhe-se o próximo estado a expandir seguindo uma estratégia de busca; Prossegue-se até chegar ao estado final (solução) ou falhar na busca pela solução;
21 Buscando Soluções Exemplo: Ir de Arad para Bucharest Arad Sibiu Timissoara Zerind Arad Orades Fagaras Rimnico Vilcea
22 Buscando Soluções O espaço de estados é diferente da árvore de buscas. Exemplo: 20 estados no espaço de espaços; Número de caminhos infinito; Árvore com infinitos nós;
23 Código Descritivo Busca em Árvore Função BuscaEmArvore(Problema, Estratégia) retorna solução ou falha Inicio Fim Inicializa a arvore usando o estado inicial do Problema loop do se não existem candidatos para serem expandidos então retorna falha Escolhe um nó folha para ser expandido de acordo com a Estratégia se Se o nó possuir o estado final então se não retorna solução correspondente expande o nó e adiciona os nós resultantes a arvore de busca
24 Pseudocódigo Busca em Árvore Função BuscaEmArvore(Problema, fronteira) retorna solução ou falha Inicio fronteira InsereNaFila(FazNó(Problema[EstadoInicial]), fronteira) loop do se FilaVazia(fronteira) então retorna falha nó RemovePrimeiro(fronteira) se nó[estado] for igual a Problema[EstadoFinal] então retorna Solução(nó) fronteira InsereNaFila(ExpandeFronteira(nó, Problema), fronteira) Fim - A função Solução retorna a sequência de nós necessários para retornar a raiz da arvore. - Considera-se fronteira uma estrutura do tipo fila.
25 Medida de Desempenho Desempenho do Algoritmo: (1) O algoritmo encontrou alguma solução? (2) É uma boa solução? Custo de caminho (qualidade da solução). (3) É uma solução computacionalmente barata? Custo da busca (tempo e memória). Custo Total Custo do Caminho + Custo de Busca.
26 Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos. Busca Heurística: Estima qual o melhor nó da fronteira a ser expandido com base em funções heurísticas. Busca Local: Operam em um único estado e movem-se para a vizinhança deste estado.
27 Busca Cega Algoritmos de Busca Cega: Busca em largura; Busca de custo uniforme; Busca em profundidade; Busca com aprofundamento iterativo;
28 Busca em Largura Estratégia: O nó raiz é expandido, em seguida todos os nós sucessores são expandidos, então todos próximos nós sucessores são expandidos, e assim em diante. A B C D E F G
29 Busca em Largura Pode ser implementado com base no pseudocódigo da função BuscaEmArvore apresentado anteriormente. Utiliza-se uma estrutura de fila (first-in-first-out) para armazenar os nós das fronteira. Complexidade: O( b d 1 ) Profundidade (d) Nós Tempo Memória ms 107 KB 4 111, ms 10.6 MB seg 1 GB min 103 GB horas 10 TB dias 1 PB anos 99 PB * Considerando o numero de folhas b = 10 e cada nó ocupando 1KB de memória
30 Busca de Custo Uniforme Estratégia: Expande sempre o nó de menor custo de caminho. Se o custo de todos os passos for o mesmo, o algoritmo acaba sendo o mesmo que a busca em largura. A B C D E F G H
31 Busca de Custo Uniforme A primeira solução encontrada é a solução ótima se custo do caminho sempre aumentar ao logo do caminho, ou seja, não existirem operadores com custo negativo. Implementação semelhante a busca em largura. Adiciona-se uma condição de seleção dos nós a serem expandidos. Complexidade: O( b 1 ( C / ) Onde: C = custo da solução ótima; α = custo mínimo de uma ação; )
32 Busca em Profundidade Estratégia: Expande os nós da vizinhança até o nó mais profundo. A B C D E F M N P Q
33 Busca em Profundidade Pode ser implementado com base no pseudocódigo da função BuscaEmArvore apresentado anteriormente. Utiliza-se uma estrutura de pilha (last-in-first-out) para armazenar os nós das fronteira. Pode também ser implementado de forma recursiva. Consome pouca memória, apenas o caminho de nós sendo analisados precisa armazenado. Caminhos que já foram explorados podem ser descartados da memória.
34 Busca em Profundidade Uso de memória pela busca em largura em uma arvore com 12 de profundidade: 1000 TB. Uso de memória pela busca em profundidade em uma arvore com 12 de profundidade: 118 KB. Problema: O algoritmo pode fazer uma busca muito longa mesmo quando a resposta do problema esta localizado a poucos nós da raiz da árvore.
35 Busca com Aprofundamento Iterativo Estratégia: Consiste em uma busca em profundidade onde o limite de profundidade é incrementado gradualmente. A Limit 0 B C D Limit 1 Limit 2 E F G H Limit 3 M N P Q P Q
36 Busca com Aprofundamento Iterativo Combina os benefícios da busca em largura com os benefícios da busca em profundidade. Evita o problema de caminhos muito longos ou infinitos. A repetição da expansão de estados não é tão ruim, pois a maior parte dos estados está nos níveis mais baixos. Cria menos estados que a busca em largura e consome menos memória.
37 Busca Bidirecional Estratégia: A busca se inicia ao mesmo tempo a partir do estado inicial e do estado final. A B C D E G M N
38 Comparação dos Metodos de Busca Cega Criterio Largura Uniforme Profundidade Aprofundamento Iterativo Bidirecional Completo? Sim ¹ Sim ¹,² Não Sim ¹ Sim ¹, ⁴ Ótimo? Sim ³ Sim Não Sim ³ Sim ³, ⁴ Tempo Espaço O( b O( b d 1 d 1 ) ) 1 ( / ) O( b C ) O( b m ) 1 ( / ) O( b C ) O(bm) O( b d ) O(bd) O( b O( b d / 2 d / 2 ) ) b = fator de folhas por nó. d = profundidade da solução mais profunda. m = profundidade máxima da árvore. ¹ completo se b for finito. ² completo se o custo de todos os passos for positivo. ³ ótimo se o custo de todos os passos for idêntico. ⁴ se ambas as direções usarem busca em largura.
39 Como evitar estados repetidos? Estados repetidos sempre vão ocorrer em problema onde os estados são reversíveis. Como evitar? Não retornar ao estado pai. Não retorna a um ancestral. Não gerar qualquer estado que já tenha sido criado antes (em qualquer ramo). Requer que todos os estados gerados permaneçam na memória.
40 Busca Heurística Algoritmos de Busca Heurística: Busca Gulosa A* A busca heurística leva em conta o objetivo para decidir qual caminho escolher. Conhecimento extra sobre o problema é utilizado para guiar o processo de busca.
41 Busca Heurística Como encontrar um barco perdido? Busca Cega -> Procura no oceano inteiro. Buca Heurística -> Procura utilizando informações relativas ao problema. Ex: correntes marítimas, vento, etc.
42 Busca Heurística Função Heurística (h) Estima o custo do caminho mais barato do estado atual até o estado final mais próximo. São específicas para cada problema. Exemplo: Encontrar a rota mais curta entre duas cidades: h(n) = distância em linha reta direta entre o nó n e o nó final.
43 Busca Gulosa Estratégia: Expande os nós que se encontram mais próximos do objetivo (uma linha reta conectando os dois pontos no caso de distancias), desta maneira é provável que a busca encontre uma solução rapidamente. A implementação do algoritmo se assemelha ao utilizado na busca cega, entre tanto utiliza-se uma função heurística para decidir qual o nó deve ser expandido.
44 Busca Gulosa Arad 366 Sibiu Timissoara Zerind Arad Fagaras Oradea Rimnicu Vilcea Arad 366 Mehadia 241 Bucharest 0 Neamt 234 Craiova 160 Oradea 380 Drobeta 242 Pitesti 100 Eforie 161 Rimnicu Vilcea 193 Fagaras 176 Sibiu 253 Sibiu Bucharest Giurgiu 77 Timisoara 329 Iasi 226 Vaslui 199 Lugoj 244 Zerind 374 Hirsova 151 Urziceni 80
45 Busca Gulosa Ir de Iasi para Fagaras?
46 A* Estratégia: Combina o custo do caminho g(n) com o valor da heurística h(n) g(n) = custo do caminho do nó inicial até o nó n h(n) = valor da heurística do nó n até um nó objetivo (distancia em linha reta no caso de distancias espaciais) f(n) = g(n) + h(n) É a técnica de busca mais utilizada.
47 A* Arad 0+366=366 Sibiu Timissoara Zerind = = =449 Arad Fagaras Oradea Rimnicu Vilcea = = = =413 Arad 366 Mehadia 241 Bucharest 0 Neamt 234 Craiova 160 Oradea 380 Sibiu Bucharest Craiova Pitesti Sibiu = = = = =553 Drobeta 242 Pitesti 100 Eforie 161 Rimnicu Vilcea 193 Fagaras 176 Sibiu 253 Giurgiu 77 Timisoara 329 Bucharest Craiova Rimnicu Vilcea 418+0= = =607 Iasi 226 Vaslui 199 Lugoj 244 Zerind 374 Hirsova 151 Urziceni 80
48 A* A estratégia é completa e ótima. Custo de tempo: Exponencial com o comprimento da solução, porém boas funções heurísticas diminuem significativamente esse custo. Custo memória: O( b d Guarda todos os nós expandidos na memória. ) Nenhum outro algoritmo ótimo garante expandir menos nós.
49 Definindo Heurísticas Cada problema exige uma função heurística diferente. Não se deve superestimar o custo real da solução. Como escolher uma boa função heurística para o jogo 8-Puzzle?
50 Definindo Heurísticas Como escolher uma boa função heurística para o jogo 8-Puzzle? h¹ = número de elementos fora do lugar. h² = soma das distâncias de cada número à sua posição final (movimentação horizontal e vertical). Qual das heurísticas é melhor?
51 Exemplo - A* X 2 3 4
52 Exemplo - A* Qual é o espaço de estados? Quais são as ações possíveis? Qual será o custo das ações?
53 Exemplo - A* Heurística do A*: f(n) = g(n) + h(n) g(n) = custo do caminho h(n) = função heurística Qual seria a função heurística h(n) mais adequada para este problema? A distancia em linha reta é uma opção.
54 Exemplo - A* Como calcular a heurística h(n)? Distancia de Manhattan
55 Exemplo - A* O próximo passo é gerar a árvore de busca e expandir os nós que tiverem o menor valor resultante da função heurística f(n). f(n) = g(n) + h(n)
56 Exemplo - A* [1,1] [1,2] [2,1] [1,2] = f(n) =?? +?? [2,1] = f(n) =?? +??
57 Exemplo - A* X 2 3 4
58 Exemplo - A* [1,1] [1,2] [2,1] [1,1] [2,2] [1,1] = f(n) =?? +?? [2,2] = f(n) =?? +??
59 Exemplo - A* X 2 3 4
60 Busca Local Em muitos problemas o caminho para a solução é irrelevante. Jogo das n-rainhas: o que importa é a configuração final e não a ordem em que as rainhas foram acrescentadas. Outros exemplos: Projeto de Circuitos eletronicos; Layout de instalações industriais; Escalonamento de salas de aula; Otimização de redes;
61 Busca Local Algoritmos de busca local operam sobre um unico estado corrente, ao invés de vários caminhos. Em geral se movem apenas para os vizinhos desse estado. O caminho seguido pelo algoritmo não é guardado.
62 Busca Local Vantagens: Ocupam pouquíssima memória (normalmente constante). Podem encontrar soluções razoáveis em grandes ou infinitos espaços de estados. São uteis para resolver problemas de otimização. Buscam por estados que atendam a uma função objetivo.
63 Busca Local Panorama do Espaço de Estados: Location = Estado; Elevation = Valor de custo da função heurística; Busca-se o maximo ou minimo global;
64 Subida de Encosta (Hill-Climbing) Estratégia: Se move de forma contínua no sentido do valor crescente da heurística; Termina ao alcançar um pico em que nenhum vizinho possui um valor mais alto; Não mantém nenhuma árvore de busca, somente o estado e o valor da função objetivo; Não examina antecipadamente valores de estados além de seus vizinhos imediatos; É como tentar encontrar o topo do monte Everest em meio a um denso nevoeiro e sofrendo de amnésia.
65 Subida de Encosta (Hill-Climbing) Processo: Inicialize (aleatoriamente) o ponto x no espaço de estados do problema. A cada iteração, um novo ponto x é selecionado aplicando-se uma pequena perturbação no ponto atual, ou seja, selecionando-se um ponto x que esteja na vizinhança de x. Se este novo ponto apresenta um melhor valor para a função de avaliação, então o novo ponto torna-se o ponto atual. O método é terminado quando nenhuma melhora significativa é alcançada, um número fixo de iterações foi efetuado, ou um objetivo foi atingido.
66 Pseudocódigo Hill-Climbing Função Hill-Climbing(Problema) retorna um estado que é o maximo local Inicio EstadoAtual FazNó(Problema[EstadoInicial]) loop do Vizinho SucessorDeMaiorValor(EstadoAtual) se Vizinho[Valor] for menor ou igual EstadoAtual[Valor] então retorna EstadoAtual EstadoAtual Vizinho Fim
67 Subida de Encosta (Hill-Climbing) Problemas: Máximos Locais:
68 Subida de Encosta - Exemplo Ações Possíveis: Pegar um bloco e colocar ele sobre a mesa. Pegar um bloco e colocar ele sobre outro bloco. Heurística: +1 para cada bloco em cima do bloco onde ele deve estar. -1 para cada bloco em cima do bloco errado.
69 Subida de Encosta - Exemplo Máximo Local
70 Subida de Encosta (Hill-Climbing) Problemas: Planícies:
71 Subida de Encosta (Hill-Climbing) Problemas: Encostas e Picos:
72 Subida de Encosta (Hill-Climbing) Não é ótimo e não é completo. Variações: Random-Restart Hill-Climbing;
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Métodos de Busca. Inteligência Artificial. Busca Heurística. Busca Heurística. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
MAC425/5739 Inteligência Artificial 3. Busca informada
MAC425/5739 Inteligência Artificial 3. Busca informada Denis Deratani Mauá (largamente baseado no material de aula dos Profs. Edileri de Lima e Leliane de Barros) MÉTODOS DE BUSCA Busca cega ou sistemática:
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 04 Busca Heurística Edirlei Soares de Lima Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido.
Introdução. Inteligência Artificial. Problema de Busca. Problema de Busca. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Resolução de Problemas por meio de busca Prof. Ms. Luiz Alberto Contato: [email protected] Introdução No capítulo anterior vimos a eficácia de agentes baseados em objetivo. Neste
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
Agentes que resolvem problemas através de busca Capítulo 3 Parte I
Agentes que resolvem problemas através de busca Capítulo 3 Parte I Leliane Nunes de Barros [email protected] Agente reativo simples também chamado de agente situado ou agente estímulo-resposta reage a
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL. Aula 02 Prof. Vitor Hugo Ferreira
Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Elétrica INTRODUÇÃO À INTELIGÊNCIA COMPUTACIONAL Aula 02 Prof. Vitor Hugo Ferreira Agentes Inteligentes O que torna um agente
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5 Formulação dos problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2.
Métodos de Busca Informada (best first search) Capítulo 4 Parte I
Métodos de Busca Informada (best first search) Capítulo 4 Parte I Leliane Nunes de Barros [email protected] Busca não informada: geração sistemática de estados Busca em profundidade: boa quando não se
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6 Aluno: 1. Defina o problema de busca (espaço de estados, estado inicial, estado final, ações possíveis, custo) para o seguinte caso: uma pessoa,
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Resolução de problemas por meio de busca. Inteligência Artificial. Busca. Exemplo: Romênia. Exemplo: Romênia 8/23/2010
Inteligência Artificial Aula 2 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas
lnteligência Artificial
lnteligência Artificial Busca Heurística - Informada Estratégias de Busca Heurística Usam conhecimento específico do problema na busca da solução Mais eficientes que busca não informada Busca Informada
Inteligência Artificial: 3. Resolução de problemas por meio de busca. Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3
Inteligência Artificial: 3. Resolução de problemas por meio de busca Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para
Resolução de Problemas através de Busca. Prof. Júlio Cesar Nievola PPGIA - PUC-PR
Resolução de Problemas através de Busca Prof. Júlio Cesar Nievola PPGIA - PUC-PR Solução de Problemas Sistemas inteligentes devem agir de maneira a fazer com que o ambiente passe por uma seqüência de estados
Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *
Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:
meio de busca Seções 3.1, 3.2 e 3.3
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para quais o número de regras condição
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 10 Distâncias Mínimas Edirlei Soares de Lima Distâncias Mínimas Dado um grafo ponderado G = (V, E), um vértice s e um vértice g, obter o caminho
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
Resolução de problemas por meio de busca. CAPÍTULO 3 - Russell
Resolução de problemas por meio de busca CAPÍTULO 3 - Russell Os agentes de resolução de problemas decidem o que fazer encontrando seqüências de ações que levam a estados desejáveis. Inicialmente veremos:
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
Tópicos Especiais: Inteligência Artificial
Tópicos Especiais: Inteligência Artificial RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA Material baseado e adaptado do Cap. 3 do Livro Inteligência Artificial de Russel & Norving Bibliografia Inteligência
Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.2 e 4.3
Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 1 Revisão da aula passada: Busca A * Idéia: evitar expandir caminhos que já são caros Função de avaliação f(n) = g(n) + h(n)
Busca Heurística - Informada
Busca Heurística - Informada Estratégias de Busca Exaustiva (Cega) encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria
Métodos de Busca. Estratégias de Busca Cega
Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos
Procura Informada. Capítulo 4
Procura Informada Capítulo 4 Livro Capítulo 4 Secções 1-3 Resumo Estratégias de procura informadas Gananciosa A* IDA* Melhor Primeiro Recursiva (RBFS) Heurísticas Algorítmos de procura local Hill-climbing
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
Buscas Informadas ou Heurísticas - Parte III
Buscas Informadas ou Heurísticas - Parte III Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Mestrado em Ciência da Computação / 2006 BUSCA SMA* (Simplified Memory-Bounded A*) BUSCA SMA* (Simplified
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO Material baseado e adaptado do Cap. 4 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial
Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.1
Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 1 Busca com informação (ou heurísica) UIliza conhecimento específico sobre o problema para encontrar soluções de forma mais eficiente
Busca com informação e exploração. Inteligência Artificial
Busca com informação e exploração (Capítulo 4 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura Busca pela melhor escolha Busca gulosa pela melhor escolha Busca
Busca em Espaço de Estados a
Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um
CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro
CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro [email protected] www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
Os problemas de IA empregam heurísticas, basicamente, em duas situações:
Figura: Capa do Livro Hamburger, H., Richards, D. Logic and Language Models for Computer Science, Prentice Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Inteligência Artificial Busca
Inteligência Artificial Busca Professora Sheila Cáceres Ja vimos: Agentes simples que baseiam ações em um mapeamento direto de estados. Porém: Y se o conjunto de estados e ações for muito grande? Daria
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Introdução à Resolução de Problemas por meio de Busca
Introdução à Resolução de Problemas por meio de Busca Huei Diana Lee [email protected] 2006 Conteúdo Introdução Exemplos Descrição formal Os Vasilhames com Água Estratégias de Controle Problemas Exercício!!
*Capítulo 3 (Russel & Norvig)
*Capítulo 3 (Russel & Norvig) 1 Estratégias de busca sem informação Busca em largura Busca de custo uniforme (menor custo) Busca em profundidade Busca em profundidade limitada Busca de aprofundamento iterativo
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Busca Heurística
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
Busca Heurística. Profa. Josiane M. P. Ferreira
Busca Heurística Profa. Josiane M. P. Ferreira Texto base: Stuart Russel e Peter Norving - Inteligência Artificial David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach
Estratégias de Busca Cega
Estratégias de Busca Cega Encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo. São ineficientes na maioria dos casos: utilizam apenas o custo de
Cap. 4 Busca com Informações e Exploração. do livro de Russel e Norvig
Cap. 4 Busca com Informações e Exploração do livro de Russel e Norvig Busca Heurística(Best-First Search) Largura, profundidade e aprof. iterativo: desinformadas sobre proximidade da solução Heurística:
Estratégias de Busca Cega
Estratégias de Busca Cega Encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo. São ineficientes na maioria dos casos: utilizam apenas o custo de
Resolução de Problemas
Resolução de Problemas Como um agente pode encontrar uma sequência de ações que alcança seus objetivos quando nenhuma ação isolada é capaz de fazê-lo. 1 Resolução de Problemas Agente reativo simples: baseia
Aula 03 Métodos de busca sem informação
Problema dos jarros de água ula 03 Métodos de busca sem informação Prof. Dr. lexandre da Silva Simões Existem dois vasos: um de 4 litros e um de 3 litros, inicialmente vazios, e uma fonte que jorra água
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
Heurística Curso de Análise e Desenvolvimento de Sistemas INTELIGÊNCIA ARTIFICIAL PROFESSOR FLÁVIO MURILO
Curso de Análise e Desenvolvimento de Sistemas 1 Definição Palavra de origem grega (εὑρίσκω), heurística significa descobrir ou encontrar um meio. É uma variação da palavra grega eureca (εὕρηκα), que significa
Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra
Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
BUSCA LOCAL (PARTE 4 Resolução de problemas por meio de busca) (C)Russell & Norvig, capítulo 4
BUSCA LOCAL (PARTE 4 Resolução de problemas por meio de busca) (C)Russell & Norvig, capítulo 4 1 Roteiro Algoritmos de Busca Local Subida de encosta (Hill-climbing) Têmpera Simulada (Simulated Anealing)
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Busca heurística
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Busca heurística Roteiro Retomada do
Lista 1 Sistemas Inteligentes (INE5633) 2014s2. Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul)
Lista 1 () 2014s2 Sistemas de Informação Universidade Federal de Santa Catarina Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul) 1. Tanto a medida de desempenho quanto a função de
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa
Busca Heurís9ca - Informada PCS 2428 / PCS 2059 lnteligência Ar9ficial Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa Busca Heurís9ca 2 Estratégias de Busca Heurís9ca Usam conhecimento
Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística
Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística Prof. Josenildo Silva [email protected] 2015 2012-2015 Josenildo Silva ([email protected]) Este material
Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2. Ações ou função
Resolução de Problemas. Hugo Barros
Resolução de Problemas Hugo Barros Resolução de Problemas Tópicos Conceitos Básicos Espaço de Estados Resolução de Problemas Dedica-se ao estudo e elaboração de algoritmos, capazes de resolver, por exemplo,
Técnicas Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas Inteligência Artificial Aula 03 Métodos de Busca Parte 1 Prof. Max Pereira Solução de Problemas como Busca Um problema pode ser considerado
Busca Heurísticas e Meta-Heurístca
Busca Heurísticas e Meta-Heurístca Profa. Dra. Sarajane Marques Peres Escola de Artes, Ciências e Humanidades Universidade de São Paulo http://each.uspnet.usp.br/sarajane/ Introdução Estratégias de buscas
Inteligência Artificial
Inteligência Artificial Métodos de resolução de problemas Prof. Angel Alberto Vazquez Sánchez Objetivos Caracterizar a busca como um método para resolver problemas a partir de seus elementos fundamentais
Resolução de Problemas: Busca Heurística
Resolução de Problemas: Busca Heurística Aula 3 - Inteligência Artificial Busca Heurística Duas variações: Busca usando heurística (não numérica). Busca usando funções de avaliação e funções de custo.
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig)
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig) 1 Tópicos Estratégias de busca sem informação Busca em largura ou extensão custo uniforme (menor custo)
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA BUSCA CEGA EXERCÍCIOS 1. Por que a estratégia de busca em largura só garante encontrar a solução ótima quando o custo por ação é uniforme? 2. Compare
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
