Busca em Espaço de Estados a
|
|
|
- Sandra Maria de Fátima Nunes Tavares
- 8 Há anos
- Visualizações:
Transcrição
1 Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC)
2 Introdução 2
3 Agente orientado a meta O projetista não determina um mapeamento entre percepções e ações, mas determina que objetivo o agente deve alcançar É necessário que o próprio agente construa um plano de ações que atinjam seu objetivo (como se o próprio agente construísse seu programa) Exemplos: o agente aspirador de pó, um agente motorista de táxi, uma sonda espacial,... Introdução Agente orientado a meta BandTec 3
4 O que é busca? O mundo do agente tem um conjunto de estados possíveis (muitas vezes este conjunto é infinito) Existem transições entre os estados do mundo, formando um grafo. São utilizados algoritmos para encontrar um caminho neste grafo partindo do estado inicial (atual) até o estado objetivo Introdução O que é busca? BandTec 4
5 Exemplo do aspirador de pó Um robô aspirador de pó deve limpar uma casa com duas posições. As operações que ele sabe executar são: sugar ir para a posição da esquerda ir para a posição da direita Como o aspirador pode montar um plano para limpar a casa se inicialmente ele esta na posição direita e as duas posições têm sujeira? Quais os estados possíveis do mundo do aspirador e as transições? Introdução Exemplo do aspirador de pó BandTec 5
6 Estados possíveis: Introdução Exemplo do aspirador de pó BandTec 6
7 Espaço de busca L R L R S S L R R L R R L L S S S S L R L R S S Introdução Exemplo do aspirador de pó BandTec 7
8 Por que estados? As informações do mundo real são absurdamente complexas, é praticamente impossível modelá-las todas No exemplo do aspirador, o mundo dele tem várias outras informações: a cor do tapete, se é dia, de que material o aspirador é feito, quanto ele tem de energia, como é o nome do/a proprietário/a,... A noção de estado é utilizada para abstrair esses detalhes e considerar somente o que é relevante para a solução do problema O mesmo se dá com as operações modeladas: são abstrações das operações reais (ir para a posição da direita implica em várias outras operações). Introdução Por que estados? BandTec 8
9 Exemplo do homem, o lobo, o carneiro e o cesto de alface. Uma pessoa, um lobo, um carneiro e um cesto de alface estão à beira de um rio. Dispondo de um barco no qual pode carregar apenas um dos outros três, a pessoa deve transportar tudo para a outra margem. Determine uma série de travessias que respeite a seguinte condição: em nenhum momento devem ser deixados juntos e sozinhos o lobo e o carneiro ou o carneiro e o cesto de alface. Introdução Exemplo do homem, o lobo, o carneiro e o cesto de alface. BandTec 9
10 Busca como desenvolvimento de software No desenvolvimento de um software para resolver um problema, o projetista pode optar por várias paradigmas de modelagem do problema: O sistema é modelado por procedimentos que alteram os dados de entrada O sistema é modelado por funções O sistema é modelado por predicados O sistema é modelado por objetos... Introdução Busca como desenvolvimento de software BandTec 10
11 Busca é mais uma forma de modelar um problema: Definir os estados Definir as transições Escolher um algoritmo de busca Introdução Busca como desenvolvimento de software BandTec 11
12 Exercício O que é estado transição estado meta e custo da solução encontrada para os seguintes problemas Introdução Exercício BandTec 12
13 8-Puzzle Start State Goal State Introdução Exercício BandTec 13
14 Encontrar um caminho da cidade i até x i e f d h g p b k n m x a l 1 c o Introdução Exercício BandTec 14
15 Algoritmos de Busca Cega 15
16 Árvore de busca Coloca-se o estado inicial como nodo raiz Cada operação sobre o estado raiz gera um novo nodo (chamado de sucessor) Repete-se este processo para os novos nodos até gerar o nodo que representa o estado meta Estratégia de busca: que nodo escolher para expandir Exemplo: (fazer as árvores para o exemplo do aspirador e do homem no rio) Algoritmos de Busca Cega Árvore de busca BandTec 16
17 Estratégias de busca Busca em largura: o nodo de menor profundidade mais a esquerda é escolhido para gerar sucessores Busca em profundidade: o nodo de maior profundidade mais a esquerda é escolhido para gerar sucessores Algoritmos de Busca Cega Estratégias de busca BandTec 17
18 Nodos da árvore Cada nodo tem o estado que representa o nodo pai o operador que o gerou sua profundidade na árvore de busca o custo de ter sido gerado (dentado por g) opcionalmente, os nodos sucessores (fazer a figura) Algoritmos de Busca Cega Nodos da árvore BandTec 18
19 Estratégias de poda da árvore de busca Um nodo não gera um sucessor igual a seu pai Um nodo não gera um sucessor igual a um de seus ascendentes Um nodo não gera um sucessor que já exista na árvore de busca Algoritmos de Busca Cega Estratégias de poda da árvore de busca BandTec 19
20 Detalhes de implementação: Verificar se um estado já esta na árvore pode levar muito tempo imagine uma árvore com milhares de estados do jogo de xadrez, cada novo estado deve ser comparado com outros milhares de estados! Ter uma tabela hash (que tem tempo ótimo de consulta) para saber se determinado nodo existe na árvore Algoritmos de Busca Cega Estratégias de poda da árvore de busca BandTec 20
21 Algoritmo de busca em largura function BL(Estado inicial): Nodo Fila abertos abertos.add(new Nodo(inicial)) while abertos.size() > 0 do Nodo n abertos.removefirst() if n.getestado().émeta() then return n end if abertos.append(n.sucessores()) end while return null Algoritmos de Busca Cega Algoritmo de busca em largura BandTec 21
22 Critérios de comparação entre os algoritmos Completo: o algoritmo encontra a solução se ela existir Ótimo: o algoritmo encontra a solução de menor custo Tempo: quanto tempo o algoritmo leva para encontrar a solução no pior caso Espaço: quanto de memória o algoritmo ocupa Algoritmos de Busca Cega Critérios de comparação entre os algoritmos BandTec 22
23 Análise do algoritmo BL Completo: sim Ótimo: sim Tempo: explorar O(b d ) nodos b = fator de ramificação d = profundidade do estado meta O(b d ) = 1 + b + b 2 + b b d Espaço: guardar O(b d ) nodos. Algoritmos de Busca Cega Análise do algoritmo BL BandTec 23
24 Exemplo de complexidade Prof. Nodos Tempo Memória 0 1 1ms 100 bytes ,1 seg 11 Kbytes seg 1 Mbyte min 111 Mbytes horas 11 Gbytes anos 111 Tbytes anos Tbytes (b = 10, 1000 nodos por segundo, 100 bytes por nodo) Algoritmos de Busca Cega Exemplo de complexidade BandTec 24
25 Algoritmo de busca em profundidade function BP(Estado inicial, int m): Nodo Pilha abertos abertos.add(new Nodo(inicial)) while abertos.size() > 0 do Nodo n abertos.removetopo() if n.getestado().émeta() then return n end if if n.getprofundidade() < m then abertos.insert(n.sucessores()) end if end while return null Algoritmos de Busca Cega Algoritmo de busca em profundidade BandTec 25
26 Análise do algoritmo BP Completo: não (caso a meta esteja em profundidade maior que m) Se m =, é completo se o espaço de estados é finito e existe poda para não haver loops entre as operações Ótimo: não Tempo: explorar O(b m ) nodos (ruim se m é muito maior que d) Espaço: guardar O(bm) nodos. (em profundidade 12, ocupa 12 Kbytes!) Algoritmos de Busca Cega Análise do algoritmo BP BandTec 26
27 Algoritmo de busca em profundidade iterativo function BPI(Estado inicial): Nodo int p 1 loop Nodo n BP(inicial, p) if n null then return n end if p p + 1 end loop Algoritmos de Busca Cega Algoritmo de busca em profundidade iterativo BandTec 27
28 Análise do algoritmo BPI Completo: sim Ótimo: sim se todas as ações tem o mesmo custo Tempo: explorar O(b d ) nodos Espaço: guardar O(bd) nodos. Algoritmos de Busca Cega Análise do algoritmo BPI BandTec 28
29 Algoritmo de busca de custo uniforme function BCU(Estado inicial): Nodo Set abertos ordenados por custo abertos.add(new Nodo(inicial)) while abertos.size() > 0 do Nodo n abertos.removefirst() if n.getestado().émeta() then return n end if abertos.append(n.sucessores()) end while return null Algoritmos de Busca Cega Algoritmo de busca de custo uniforme BandTec 29
30 Algoritmo de busca de custo uniforme Expande nós de acordo com o custo. Se custo = profundidade do nó então temos uma busca em largura. Algoritmos de Busca Cega Algoritmo de busca de custo uniforme BandTec 30
31 Resumo BL BP BPI BCU Completo sim não sim sim Ótimo sim não sim sim Tempo O(b d ) O(b m ) O(b d ) O(b d ) Espaço O(b d ) O(bm) O(bd) O(b d ) Algoritmos de Busca Cega Resumo BandTec 31
32 Algoritmos de Busca Inteligente 32
33 Exemplo: ir de h para o (com BL) i e f d h g p b k n m x a l 1 c o A árvore de busca gerada é inteligente? Algoritmos de Busca Inteligente Exemplo: ir de h para o (com BL) BandTec 33
34 Heurística Heurística: Estimativa de custo até a meta. (denotado pela função h : Estados Reais) No exemplo das cidades, poderia ser a distância em linha reta. Algoritmo de busca gananciosa: retira de abertos sempre o nodo com menor estimativa de custo (menor h). Refazer a busca de um caminho entre h e o. Refazer a busca de um caminho entre i e x. Fazer a tabela de h para os dois casos. Algoritmos de Busca Inteligente Heurística BandTec 34
35 Refazer a busca de um caminho entre h e o. ótimo! Refazer a busca de um caminho entre i e x. não ótimo! Algoritmos de Busca Inteligente Heurística BandTec 35
36 Busca A* Idéia: Evitar expandir caminhos que já estão muito caros mas também considerar os que têm menor expectativa de custo. Utilizar na escolha de um nodo da lista de abertos tanto a estimativa de custo de um nodo (h(n)) quanto o custo acumulado para chegar no nodo (g(n)) f(n) = g(n) + h(n) Refazer a busca de um caminho entre i e x utilizando f. Algoritmos de Busca Inteligente Busca A* BandTec 36
37 Algoritmo de busca A* function BA*(Estado inicial): Nodo PriorityList(f) abertos {lista ordenada por f} abertos.add(new Nodo(inicial)) while abertos.size() > 0 do Nodo n abertos.removefirst() if n.getestado().émeta() then return n end if abertos.append(n.sucessores()) end while return null Algoritmos de Busca Inteligente Algoritmo de busca A* BandTec 37
38 Propriedades da função h Supondo que o valor de h, no exemplo das cidades, é dados por 10 * a distância em linha reta. O algoritmo A* ainda é ótimo? h(n): estimativa de custo de n até a meta h (n): custo real de n até a meta Se h(n) h (n), então h é admissível. Se h é admissível, o algoritmo A* é ótimo! Algoritmos de Busca Inteligente Propriedades da função h BandTec 38
39 Análise do algoritmo A* Completo: sim Ótimo: sim (se h é admissível) Tempo: explorar O(b d ) nodos no pior caso (quando a heurística é do contra ) Espaço: guardar O(b d ) nodos no pior caso. Algoritmos de Busca Inteligente Análise do algoritmo A* BandTec 39
40 Exercício Determine uma heurística para o problema 8-Puzzle e verifique se é admissível Start State Goal State Algoritmos de Busca Inteligente Exercício BandTec 40
41 h 1 : número de peças fora do lugar h 2 : distância de cada peça de seu lugar h 3 : peças fora da formação de caracol Algoritmos de Busca Inteligente Exercício BandTec 41
42 Exercício Determine uma heurística para o problema das 8-raínhas e verifique se é admissível. Algoritmos de Busca Inteligente Exercício BandTec 42
43 h: soma do número de ataques Algoritmos de Busca Inteligente Exercício BandTec 43
44 Algoritmo Subida da Montanha-1 Idéia: escolher sempre um sucessor melhor ( subir sempre ). function BSM-1(Estado inicial): Estado Estado atual inicial loop prox melhor sucessor de atual (segundo h) if h(prox) h(atual) then {sem sucessor melhor} return atual end if atual prox end loop Algoritmos de Busca Inteligente Algoritmo Subida da Montanha-1 BandTec 44
45 Análise do algoritmo BSM-1 Não mantém a árvore (logo, não pode retornar o caminho que usou para chegar à meta). Completo: não (problema de máximos locais) Ótimo: não se aplica Tempo:? Espaço: nada! Algoritmos de Busca Inteligente Análise do algoritmo BSM-1 BandTec 45
46 Algoritmo Subida da Montanha-2 function BSM-2(Estado inicial): Estado Estado atual inicial loop prox melhor sucessor de atual (segundo h) if h(prox) h(atual) then {sem sucessor melhor} if atual.émeta() then return atual else atual estado gerado aleatóriamente end if else atual prox end if end loop Algoritmos de Busca Inteligente Algoritmo Subida da Montanha-2 BandTec 46
47 Análise do algoritmo BSM-2 Completo: sim (se a geração de estados aleatórios distribuir normalmente os estados gerados) Ótimo: não se aplica Tempo:? Espaço: nada! Algoritmos de Busca Inteligente Análise do algoritmo BSM-2 BandTec 47
48 Material de consulta Capítulos 3 e 4 do livro do Russell & Norvig Algoritmos de Busca Inteligente Material de consulta BandTec 48
Busca em Espaço de Estados
Busca em Espaço de Estados Jomi Fred Hübner [email protected] FURB / BCC Introdução 2 Agente orientado a meta O projetista não determina um mapeamento entre percepções e ações, mas determina que objetivo
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
Resolução de Problemas através de Busca. Prof. Júlio Cesar Nievola PPGIA - PUC-PR
Resolução de Problemas através de Busca Prof. Júlio Cesar Nievola PPGIA - PUC-PR Solução de Problemas Sistemas inteligentes devem agir de maneira a fazer com que o ambiente passe por uma seqüência de estados
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO
Tópicos Especiais: Inteligência Artificial BUSCA COM INFORMAÇÃO E EXPLORAÇÃO Material baseado e adaptado do Cap. 4 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
Técnicas Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas Inteligência Artificial Aula 03 Métodos de Busca Parte 1 Prof. Max Pereira Solução de Problemas como Busca Um problema pode ser considerado
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig)
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig) 1 Tópicos Estratégias de busca sem informação Busca em largura ou extensão custo uniforme (menor custo)
CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro
CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro [email protected] www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de
Estratégias de Busca: Métodos Informados. March 9, 2015
Estratégias de Busca: Métodos Informados March 9, 2015 Busca de Soluções: Métodos Informados Utilizam conhecimento específico do problema para encontrar a solução algoritmo geral de busca somente permite
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6
REDES NEURAIS / INTELIGÊNCIA ARTIFICIAL LISTA DE EXERCÍCIOS 6 Aluno: 1. Defina o problema de busca (espaço de estados, estado inicial, estado final, ações possíveis, custo) para o seguinte caso: uma pessoa,
Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *
Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5 Formulação dos problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2.
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos.
Resumo Inteligência Artificial Russel e Norvig Capítulos 3,4 e 5 Prof. MsC Ly Freitas UEG Resolução de problemas por meio de busca Como um agente busca de seqüência de ações para alcançar seus objetivos.
*Capítulo 3 (Russel & Norvig)
*Capítulo 3 (Russel & Norvig) 1 Estratégias de busca sem informação Busca em largura Busca de custo uniforme (menor custo) Busca em profundidade Busca em profundidade limitada Busca de aprofundamento iterativo
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2. Ações ou função
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.1
Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 1 Busca com informação (ou heurísica) UIliza conhecimento específico sobre o problema para encontrar soluções de forma mais eficiente
lnteligência Artificial
lnteligência Artificial Busca Heurística - Informada Estratégias de Busca Heurística Usam conhecimento específico do problema na busca da solução Mais eficientes que busca não informada Busca Informada
Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística
Inteligência Artificial (SI 214) Aula 4 Resolução de Problemas por meio de Busca Heurística Prof. Josenildo Silva [email protected] 2015 2012-2015 Josenildo Silva ([email protected]) Este material
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Busca com informação e exploração. Capítulo 4 Russell & Norvig Seção 4.2 e 4.3
Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 1 Revisão da aula passada: Busca A * Idéia: evitar expandir caminhos que já são caros Função de avaliação f(n) = g(n) + h(n)
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
Agentes que resolvem problemas através de busca Capítulo 3 Parte I
Agentes que resolvem problemas através de busca Capítulo 3 Parte I Leliane Nunes de Barros [email protected] Agente reativo simples também chamado de agente situado ou agente estímulo-resposta reage a
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
Métodos de Busca. Estratégias de Busca Cega
Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos
Busca com informação e exploração. Inteligência Artificial
Busca com informação e exploração (Capítulo 4 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura Busca pela melhor escolha Busca gulosa pela melhor escolha Busca
MAC425/5739 Inteligência Artificial 3. Busca informada
MAC425/5739 Inteligência Artificial 3. Busca informada Denis Deratani Mauá (largamente baseado no material de aula dos Profs. Edileri de Lima e Leliane de Barros) MÉTODOS DE BUSCA Busca cega ou sistemática:
Aula 03 Métodos de busca sem informação
Problema dos jarros de água ula 03 Métodos de busca sem informação Prof. Dr. lexandre da Silva Simões Existem dois vasos: um de 4 litros e um de 3 litros, inicialmente vazios, e uma fonte que jorra água
Resolução de problemas por meio de busca. Inteligência Artificial. Busca. Exemplo: Romênia. Exemplo: Romênia 8/23/2010
Inteligência Artificial Aula 2 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Cap. 4 Busca com Informações e Exploração. do livro de Russel e Norvig
Cap. 4 Busca com Informações e Exploração do livro de Russel e Norvig Busca Heurística(Best-First Search) Largura, profundidade e aprof. iterativo: desinformadas sobre proximidade da solução Heurística:
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
PCS Gabarito da 1a. lista
PCS -2428 Gabarito da 1a. lista 1. Estado: situação (configuração) do ambiente no qual deve ser resolvido o problema. Espaço de estados: conjunto dos possíveis estados. Árvore de busca: estrutura de dados
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Métodos de Busca. Inteligência Artificial. Busca Heurística. Busca Heurística. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
Resolução de problemas por meio de busca. CAPÍTULO 3 - Russell
Resolução de problemas por meio de busca CAPÍTULO 3 - Russell Os agentes de resolução de problemas decidem o que fazer encontrando seqüências de ações que levam a estados desejáveis. Inicialmente veremos:
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Busca Heurística. Profa. Josiane M. P. Ferreira
Busca Heurística Profa. Josiane M. P. Ferreira Texto base: Stuart Russel e Peter Norving - Inteligência Artificial David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA BUSCA CEGA EXERCÍCIOS 1. Por que a estratégia de busca em largura só garante encontrar a solução ótima quando o custo por ação é uniforme? 2. Compare
meio de busca Seções 3.1, 3.2 e 3.3
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para quais o número de regras condição
Tópicos Especiais: Inteligência Artificial
Tópicos Especiais: Inteligência Artificial RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA Material baseado e adaptado do Cap. 3 do Livro Inteligência Artificial de Russel & Norving Bibliografia Inteligência
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO GABARITO
PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman GABARITO 1. Em artigo publicado em 1950, Alan Turing apresentou à comunidade acadêmica o que ficou conhecido
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Buscas Informadas ou Heurísticas - Parte I
Buscas Informadas ou Heurísticas - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCAS INFORMADAS OU HEURÍSTICAS Consideram a probabilidade
Agentes de Procura Procura Estocástica. Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA.
Agentes de Procura Procura Estocástica Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA. AGENTES DE PROCURA ESTOCÁSTICA 1 Procura Aleatória O
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Lista 1 Sistemas Inteligentes (INE5633) 2014s2. Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul)
Lista 1 () 2014s2 Sistemas de Informação Universidade Federal de Santa Catarina Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul) 1. Tanto a medida de desempenho quanto a função de
Inteligência Artificial
Inteligência Artificial Métodos de resolução de problemas Prof. Angel Alberto Vazquez Sánchez Objetivos Caracterizar a busca como um método para resolver problemas a partir de seus elementos fundamentais
Técnicas para Implementação de Jogos
Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Busca heurística
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Busca heurística Roteiro Retomada do
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber
Busca Heurística - Informada
Busca Heurística - Informada Estratégias de Busca Exaustiva (Cega) encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria
Procura Informada. Capítulo 4
Procura Informada Capítulo 4 Livro Capítulo 4 Secções 1-3 Resumo Estratégias de procura informadas Gananciosa A* IDA* Melhor Primeiro Recursiva (RBFS) Heurísticas Algorítmos de procura local Hill-climbing
Heurística Curso de Análise e Desenvolvimento de Sistemas INTELIGÊNCIA ARTIFICIAL PROFESSOR FLÁVIO MURILO
Curso de Análise e Desenvolvimento de Sistemas 1 Definição Palavra de origem grega (εὑρίσκω), heurística significa descobrir ou encontrar um meio. É uma variação da palavra grega eureca (εὕρηκα), que significa
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010
Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.
Sistemas Inteligentes / Inteligência Artificial, Outros Métodos de Procura
Sistemas Inteligentes / Inteligência Artificial, 14-15 1 Outros Métodos de Procura Sistemas Inteligentes / Inteligência Artificial, 14-15 2 Exemplos de Aplicações Jogo dos oito :-) Mundo dos blocos (ex:
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 03 Resolução de Problemas por Meio de Busca Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Resolução de problemas por meio de busca. Prof. Pedro Luiz Santos Serra
Resolução de problemas por meio de busca Prof. Pedro Luiz Santos Serra Agentes de resolução de problemas Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensores e de agir sobre
Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais.
istemas Inteligentes, 10-11 1 Exemplos Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas Criptoaritmética Missionários e Canibais Resta-um e muitos outros... istemas Inteligentes,
