Inteligência Artificial
|
|
|
- William Viveiros Carlos
- 7 Há anos
- Visualizações:
Transcrição
1 Inteligência Artificial Métodos de resolução de problemas Prof. Angel Alberto Vazquez Sánchez
2 Objetivos Caracterizar a busca como um método para resolver problemas a partir de seus elementos fundamentais I N T E L I G E N C I A A R T I F I C I A L
3 Bibliografía Bello, Rafael, Curso de Métodos de Solución de Problemas para la Inteligencia Artificial, Tyugu, Enn, Algorithms and Architectures of Artificial Intelligence, Konar, Amit, Artificial Intelligence and Soft Computing, Behavioral and Cognitive Modeling of the Human Brain, I N T E L I G E N C I A A R T I F I C I A L
4 Jogos 8 puzzle Missionários contra canibales 8 queens I N T E L I G E N C I A A R T I F I C I A L
5 Outras questões de interesse Reconheça personagens Diagnosticando uma doença Descubra o conhecimento implícito em bases de dados. I N T E L I G E N C I A A R T I F I C I A L
6 Características dos problemas anteriores Não existe uma solução algorítmica conhecida, ou A solução conhecida é tão complexa que uma implementação computacional prática não é possível I N T E L I G E N C I A A R T I F I C I A L
7 Solução de problemas A resolução de problemas é uma forma muito complexa de raciocínio que requer a geração e assimilação de novas estruturas de memória para responder a uma pergunta. I N T E L I G E N C I A A R T I F I C I A L
8 Solução de problemas No processamento da informação, a abordagem dada à resolução de problemas foi tentar traçar o gráfico da seqüência de eventos desde a formulação do problema até sua solução final. I N T E L I G E N C I A A R T I F I C I A L
9 Métodos 1. A aplicação de uma fórmula explícita que dá a solução. 2. O uso de uma definição recursiva. 3. O uso de um algoritmo que converge para a solução. 4. A aplicação de outros processos, em especial de tentativa e erro. Sempre que possível, o primeiro método é o melhor. I N T E L I G E N C I A A R T I F I C I A L
10 Métodos 1. A aplicação de uma fórmula explícita que dá a solução. 2. O uso de uma definição recursiva. 3. O uso de um algoritmo que converge para a solução. 4. A aplicação de outros processos, em especial de tentativa e erro. I N T E L I G E N C I A A R T I F I C I A L
11 Métodos 1. A aplicação de uma fórmula explícita que dá a solução. 2. O uso de uma definição recursiva. 3. O uso de um algoritmo que converge para a solução. 4. A aplicação de outros processos, em especial de tentativa e erro. I N T E L I G E N C I A A R T I F I C I A L
12 A busca A resposta foi desenvolver novas técnicas de resolução de problemas, semelhantes às humanas, uma das mais importantes foi a busca. I N T E L I G E N C I A A R T I F I C I A L
13 A busca A busca por I.A. procura uma maneira que conecta a descrição inicial do problema com uma descrição do estado desejado para o problema, ou seja, o problema foi resolvido. Esse caminho representa os passos para resolver o problema. I N T E L I G E N C I A A R T I F I C I A L
14 Métodos de Búsqueda Métodos relatados heuristicamente (Hill Climbing, Best-First, A*,Recursive Breadth First Search). Métodos Locais (Simulated Annealing, Local Beam Search, Búsqueda Tabú). Métodos populacionais. Algoritmos genéticos, Swarm Intelligence. Busca com adversários. I N T E L I G E N C I A A R T I F I C I A L
15 Algoritmo general function General_Search(Problem, Strategy) return Solução; Inicialize a árvore de pesquisa usando o estado inicial ou Fail Loop do if nenhum nó para expandir e retornar Fails Selecione um nó de folha para expandir de acordo com a Estratégia. if o nó contém um estado meta then return Solução else expanda o nó e adicionar nós resultantes espaço de busca. end loop. end I N T E L I G E N C I A A R T I F I C I A L
16 Busca Existem diferentes alternativas para realizar a pesquisa. Do ponto de vista, podemos apreciar três alternativas: aleatório, cego e dirigido. I N T E L I G E N C I A A R T I F I C I A L
17 Buscas Em relação à direção de busca Dirigido por dados (para frente) Direção dirigida (para trás) I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
18 Definição formal Estado inicial Possíveis ações (operador) Espaço de estado Caminho no espaço de estado Critério objetivo (meta?) Custo de um caminho Solução (caminho) Custo da busca (tempo e memória) Custo total da busca (custo caminho + busca) I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
19 Exemplos 8 puzzle Missionários e canibais I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
20 Estratégia de busca (EB) O EB define os critérios para selecionar o próximo nó a ser expandido. É avaliado por: Completude: A estratégia garante a busca de uma solução quando existe? Complexidade do tempo: quanto tempo demora para encontrar uma solução? Complexidade do espaço: quanto memória é necessária para realizar a pesquisa? Optimalidade: A melhor solução é alcançada mesmo quando há várias soluções diferentes? I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
21 Classificação Em geral e muitas vezes as estratégias de busca são: busca exaustiva, (examine o espaço do estado completamente) busca cega (não existe informação para decidir qual nó se expandirá) busca informada ("algumas informações" estão disponíveis na proximidade de cada estado em um estado objetivo). I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
22 Busca Cega Exploração sistemática da árvore de busca sem informações. Tipos de busca: Busca (primeiro) em profundidade (depth first search). Busca (primeiro) em amplitude (breadth first search). I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
23 Busca em profundidad Estratégia: expandir os nós mais profundos primeiro se alguém chegar a um nó sem sucessores, recuar e expandir o próximo nó mais profundo Resultado: o método está explorando um "caminho atual" nem sempre o nó está profundidade mínima I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
24 Busca em profundidad a b c d e f g h i j hk Secuencia: a, b, d, h, d, b, e, i, e, j I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
25 Busca em profundidad Vantagens Memória baixa: apenas armazena nós do caminho atual. Ele pode encontrar uma solução sem examinar muito do espaço estadual. Desvantagens Pode cair em ciclos infinitos, se não controlados. Você pode explorar desnecessariamente estradas longínquas e não promissoras. I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
26 Busca em amplitude Pesquisando a árvore por níveis, a partir do nó raiz. Explore progressivamente em camadas do mesmo gráfico de profundidade. I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
27 Busca em amplitude: Estratégia: gerar a árvore por níveis de profundidade expandir todos os nós do nível i, antes de expandir os nós do nível i + 1 Resultado: primeiro considere todos os caminhos do longitude 1, então os caminhos do longitude 2, etc. O estado alvo de menor profundidade é encontrado I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
28 Busca em aplitude Eles levam várias estradas. Se qualquer solução atual for objetivo: FIN Se nenhum for: Formule todos os caminhos novos dos atuais (adicionando um arco) e siga a pesquisa Não há necessidade de se retratar. I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
29 CONCLUSÕES I N T E L I G E N C I A A R T I F I C I A L m l i c e u c i. c u
30 Estudo Independente Faça uma definição formal do problema tic-tac-toe (3 em uma linha) para ser resolvido por um método de busca. I N T E L I G E N C I A A R T I F I C I A L 02:37 PM
31
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Técnicas Inteligência Artificial
Universidade do Sul de Santa Catarina Ciência da Computação Técnicas Inteligência Artificial Aula 03 Métodos de Busca Parte 1 Prof. Max Pereira Solução de Problemas como Busca Um problema pode ser considerado
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Resolução de Problemas através de Busca. Prof. Júlio Cesar Nievola PPGIA - PUC-PR
Resolução de Problemas através de Busca Prof. Júlio Cesar Nievola PPGIA - PUC-PR Solução de Problemas Sistemas inteligentes devem agir de maneira a fazer com que o ambiente passe por uma seqüência de estados
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Busca com informação e exploração. Inteligência Artificial
Busca com informação e exploração (Capítulo 4 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura Busca pela melhor escolha Busca gulosa pela melhor escolha Busca
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig)
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig) 1 Tópicos Estratégias de busca sem informação Busca em largura ou extensão custo uniforme (menor custo)
Introdução à Resolução de Problemas por meio de Busca
Introdução à Resolução de Problemas por meio de Busca Huei Diana Lee [email protected] 2006 Conteúdo Introdução Exemplos Descrição formal Os Vasilhames com Água Estratégias de Controle Problemas Exercício!!
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5
Inteligência Artificial 04. Busca Sem Informação (Cega) Capítulo 3 Russell & Norvig; Seções 3.4 e 3.5 Formulação dos problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2.
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Sistemas Inteligentes / Inteligência Artificial, Outros Métodos de Procura
Sistemas Inteligentes / Inteligência Artificial, 14-15 1 Outros Métodos de Procura Sistemas Inteligentes / Inteligência Artificial, 14-15 2 Exemplos de Aplicações Jogo dos oito :-) Mundo dos blocos (ex:
Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2. Ações ou função
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Métodos de Busca. Inteligência Artificial. Busca Heurística. Busca Heurística. Prof. Ms. Luiz Alberto Contato:
Inteligência Artificial Prof. Ms. Luiz Alberto Contato: [email protected] Métodos de Busca Busca Cega ou Exaustiva: Não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo
Busca em Espaço de Estados a
Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Agentes que resolvem problemas através de busca Capítulo 3 Parte I
Agentes que resolvem problemas através de busca Capítulo 3 Parte I Leliane Nunes de Barros [email protected] Agente reativo simples também chamado de agente situado ou agente estímulo-resposta reage a
Inteligência Artificial
Inteligência Artificial Prof. Rafael Stubs Parpinelli DCC / UDESC-Joinville [email protected] www.joinville.udesc.br/portal/professores/parpinelli www2.joinville.udesc.br/~coca/ Agentes solucionadores
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
Inteligência Artificial
Licenciatura em Engenharia Informática e de Computadores Inteligência Artificial Primeiro Teste 31 de Outubro de 2009 09:00 10:30 Nome: Número: Esta prova, individual e sem consulta, tem 9 páginas com
Métodos de Busca. Estratégias de Busca Cega
Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos
Capítulo 4 Secção 1. Livro
Procura Local Capítulo 4 Secção 1 Livro Procura local Algorítmos de procura local Hill-climbing Simulated annealing Local beam Genetic algorithms Resumo Procura Sistemática No capítulo 3, analisamos estratégias
Inteligência Computacional
Rafael D. Ribeiro, M.Sc. [email protected] http://www.rafaeldiasribeiro.com.br Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensorese de agir sobre este ambiente
MAC425/5739 Inteligência Artificial 3. Busca informada
MAC425/5739 Inteligência Artificial 3. Busca informada Denis Deratani Mauá (largamente baseado no material de aula dos Profs. Edileri de Lima e Leliane de Barros) MÉTODOS DE BUSCA Busca cega ou sistemática:
Introdução à Inteligência Artificial MAC MAC 415. Exercício Programa 1 Busca
Introdução à Inteligência Artificial MAC 5739 - MAC 415 006 Exercício Programa 1 Busca Data de Divulgação: 6 de agosto Data de Entrega: 6 de setembro 1 Objetivo Implementar os algoritmos de busca em Inteligência
Inteligência Artificial PCS3438. Escola Politécnica da USP Engenharia de Computação (PCS)
Inteligência Artificial PCS3438 Escola Politécnica da USP Engenharia de Computação (PCS) Estrutura do Agente Agente = arquitetura de HW + Arquitetura de HW: arquitetura de SW onde o agente vai ser implementado
Exemplos. Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas. Criptoaritmética. Missionários e Canibais.
istemas Inteligentes, 10-11 1 Exemplos Jogo dos oito :-) Mundo dos blocos (ex: torre de Hanoi) Poblema das rainhas Criptoaritmética Missionários e Canibais Resta-um e muitos outros... istemas Inteligentes,
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 5 Algoritmos de Busca 2 de 27 Sumário Introdução Gerar e Testar Busca
Backtracking. Túlio Toffolo Marco Antônio Carvalho BCC402 Aula 10 Algoritmos e Programação Avançada
Backtracking Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho [email protected] BCC402 Aula 10 Algoritmos e Programação Avançada Backtracking Backtracking é um refinamento do algoritmo de busca
Busca Heurística - Informada
Busca Heurística - Informada Estratégias de Busca Exaustiva (Cega) encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria
Inteligência Artificial
Inteligência Artificial CTC15 Aula 3b CTC15 Aula 3b 1 Sumário Exemplos de PSR Busca genérica aplicada à PSRs Backtracking Verificação forward Heurísticas para PSRs CTC15 Aula 3b 2 Problemas de satisfação
Buscas Informadas ou Heurísticas - Parte III
Buscas Informadas ou Heurísticas - Parte III Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Mestrado em Ciência da Computação / 2006 BUSCA SMA* (Simplified Memory-Bounded A*) BUSCA SMA* (Simplified
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Os problemas de IA empregam heurísticas, basicamente, em duas situações:
Figura: Capa do Livro Hamburger, H., Richards, D. Logic and Language Models for Computer Science, Prentice Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos.
Resumo Inteligência Artificial Russel e Norvig Capítulos 3,4 e 5 Prof. MsC Ly Freitas UEG Resolução de problemas por meio de busca Como um agente busca de seqüência de ações para alcançar seus objetivos.
Inteligência Artificial
Contextualizando Inteligência Artificial Buscas Onde podemos usar a IA Problemas que não possuem soluções algortimicas Problemas que possuem soluções algoritimicas, mas são impraticáveis (Complexidade,
Inteligência Artificial. Conceitos Gerais
Inteligência Artificial Conceitos Gerais Inteligência Artificial - IA IA é um campo de estudo multidisciplinar e interdisciplinar, que se apóia no conhecimento e evolução de outras áreas do conhecimento.
Tópicos Especiais: Inteligência Artificial
Tópicos Especiais: Inteligência Artificial RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA Material baseado e adaptado do Cap. 3 do Livro Inteligência Artificial de Russel & Norving Bibliografia Inteligência
Aula 03 Métodos de busca sem informação
Problema dos jarros de água ula 03 Métodos de busca sem informação Prof. Dr. lexandre da Silva Simões Existem dois vasos: um de 4 litros e um de 3 litros, inicialmente vazios, e uma fonte que jorra água
Paulo Roberto Quícoli - Raul Peres de Góes - Faculdade de Tecnologia de Taquaritinga (FATEC) SP Brasil
1 ESTUDO COMPARATIVO DOS MÉTODOS DE BUSCA POR LARGURA, PROFUNDIDADE, A* HAMMING E MANHATTAN PARA SOLUÇÃO DO 8-PUZZLE COMPARATIVE STUDY OF THE METHODS BFS, DFS, A* HAMMING AND MANHATTAN FOR THE 8-PUZZLE
Grafos: Busca. SCE-183 Algoritmos e Estruturas de Dados 2. Thiago A. S. Pardo Maria Cristina
Grafos: Busca SCE-183 Algoritmos e Estruturas de Dados 2 Thiago A. S. Pardo Maria Cristina Percorrendo um grafo Percorrendo um Grafo Percorrer um grafo é um problema fundamental Deve-se ter uma forma sistemática
GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira
Ciência da Computação GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira Busca em Largura (Breadth-First Search) Um dos algoritmos mais simples para exploração de um grafo.
Resolução de problemas por meio de busca. Inteligência Artificial. Busca. Exemplo: Romênia. Exemplo: Romênia 8/23/2010
Inteligência Artificial Aula 2 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas
Primeiro Trabalho de IA/SI: Buscas. Entrega: 03/03/2019 (2 semanas)
Primeiro Trabalho de IA/SI: Buscas Entrega: 03/03/2019 (2 semanas) 18 de Fevereiro de 2019 Este trabalho é para ser submetido via Moodle. Será desenvolvido principalmente durante as aulas práticas, mas
Teoria dos Grafos Aula 6
Teoria dos Grafos Aula 6 Aula passada Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Aula de hoje BFS implementação Complexidade Busca em profundidade (DFS) Conectividade, componentes
Departamento de Ciência de Computadores - FCUP Primeiro Teste de Inteligência Artificial / Sistemas Inteligentes (Duração: 2 horas)
Departamento de Ciência de Computadores - FCUP Primeiro Teste de Inteligência Artificial / Sistemas Inteligentes (Duração: horas) Nome: Data: 7 de Abril de 016 1) Considere a aplicação da busca em profundidade
BUSCA LOCAL (PARTE 4 Resolução de problemas por meio de busca) (C)Russell & Norvig, capítulo 4
BUSCA LOCAL (PARTE 4 Resolução de problemas por meio de busca) (C)Russell & Norvig, capítulo 4 1 Roteiro Algoritmos de Busca Local Subida de encosta (Hill-climbing) Têmpera Simulada (Simulated Anealing)
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 03 Resolução de Problemas por Meio de Busca Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente
lnteligência Artificial
lnteligência Artificial Busca Heurística - Informada Estratégias de Busca Heurística Usam conhecimento específico do problema na busca da solução Mais eficientes que busca não informada Busca Informada
Pesquisa em Grafos. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/ / 33
Pesquisa em Grafos Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/2015 1 / 33 Pesquisa em Grafos Uma das tarefas mais importantes é saber percorrer um grafo, ou seja
Procura Informada. Capítulo 4
Procura Informada Capítulo 4 Livro Capítulo 4 Secções 1-3 Resumo Estratégias de procura informadas Gananciosa A* IDA* Melhor Primeiro Recursiva (RBFS) Heurísticas Algorítmos de procura local Hill-climbing
Busca com informação e exploração. Inteligência Artificial. Busca pela melhor escolha. Romênia com custos em km. Busca com informação (ou heurística)
Inteligência Artificial Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.1 Busca com informação (ou heurística) Utiliza
Agentes de Procura Procura Estocástica. Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA.
Agentes de Procura Procura Estocástica Capítulo 3: Costa, E. e Simões, A. (2008). Inteligência Artificial Fundamentos e Aplicações, 2.ª edição, FCA. AGENTES DE PROCURA ESTOCÁSTICA 1 Procura Aleatória O
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
Resolução de Problemas: Busca Heurística
Resolução de Problemas: Busca Heurística Aula 3 - Inteligência Artificial Busca Heurística Duas variações: Busca usando heurística (não numérica). Busca usando funções de avaliação e funções de custo.
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
Estratégias de Busca: Métodos Informados. March 9, 2015
Estratégias de Busca: Métodos Informados March 9, 2015 Busca de Soluções: Métodos Informados Utilizam conhecimento específico do problema para encontrar a solução algoritmo geral de busca somente permite
Jogos com Oponentes. espaço de busca muito grande tempo para cada jogada
Jogos com Oponentes Jogos com Oponentes ˆ Problemas de busca: não assumem a presença de um oponente ˆ Jogos: oponente INCERTEZA! ˆ Incerteza porque não se conhece as jogadas exatas do oponente e não por
*Capítulo 3 (Russel & Norvig)
*Capítulo 3 (Russel & Norvig) 1 Estratégias de busca sem informação Busca em largura Busca de custo uniforme (menor custo) Busca em profundidade Busca em profundidade limitada Busca de aprofundamento iterativo
Uma Introdução à Busca Tabu André Gomes
Uma Introdução à Busca Tabu André Gomes Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, SP, Brasil Novembro de 2009 INTRODUÇÃO Método de Busca Local
Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente
istemas Inteligentes, 10-11 1 Jogos com ponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente e não
Inteligência Artificial: 3. Resolução de problemas por meio de busca. Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3
Inteligência Artificial: 3. Resolução de problemas por meio de busca Capítulo 3 Russell e Norvig; Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para
UNIVERSIDADE DE SÃO PAULO - ICMC Departamento de Ciências da Computação SCC-203 Algoritmos e Estruturas de Dados 2-2 Sem /2012 Profa.
UNIVERSIDADE DE SÃO AULO - ICMC Departamento de Ciências da Computação SCC-203 Algoritmos e Estruturas de Dados 2-2 Sem /2012 rofa.: Maria Cristina 3 a ROVA (27 de junho) Aluno: N o US: Atenção: favor
