INTRODUÇÃO A BUSCA EXERCÍCIOS
|
|
|
- Vinícius Franca de Andrade
- 8 Há anos
- Visualizações:
Transcrição
1 INTRODUÇÃO USC EXERCÍCIOS 1. Formule um problema de busca de forma que um agente possa planejar sua ida do Portal da Graciosa à ntonina pelo caminho de menor custo. Não é necessário prever caminhos de ida e volta (espaço de estados = grafo direcionado acíclico). 2. Sobre o problema formulado em 1, faça/responda: a. Desenhe o grafo de estados. b. Desenhe a árvore de busca gerada pelo algoritmo busca-em-árvore a partir do grafo de estados (=formulação do problema). Estratégia de busca: selecione o nó mais raso da árvore e, em caso de empate, escolha o nó (cidade) por ordem alfabética DECRESCENTE. c. Compare as medidas obtidas para o espaço de estados e para a árvore de busca construída i. número de vértices do grafo do espaço de estados x nós da árvore de busca ii. tamanho máximo de caminho para dois nós quaisquer do espaço de estados x máxima profundidade da árvore de busca (m) iii. qual a profundidade do nó objetivo mais raso (d) x tamanho do menor caminho do estado inicial ao estado objetivo? iv. número máximo de sucessores de um estado do grafo de estados x número máximo de sucessores de um nó da árvore (b). 3. Suponha um personagem de um jogo que pode se deslocar em uma matriz de dimensões 3 x 2. Considere que em uma modalidade do jogo o personagem somente se move para cima, baixo, esquerda e direita e, em outra modalidade, ele é capaz de se mover também nas diagonais. O estado inicial é a posição superior esquerda e o estado objetivo, a inferior direita.
2 a. Desenhe os grafos que representam os espaços de estados para a 1ª. e 2ª. modalidade b. Caracterize os espaços de estados das duas modalidades em função das medidas de quantidade de vértices e arestas, fator de ramificação máximo, tamanho máximo de caminho no grafo de estados e caminho mais curto do estado inicial ao estado objetivo (em arestas). c. O que poderia causar aumento no tamanho do espaço de estados neste exemplo? d. ssuma uma estratégia de busca onde o nó mais raso da fronteira é selecionado primeiramente (e em caso de empate, o nó do ramo mais a esquerda é escolhido). Desenhe a árvore de busca para cada uma das modalidades e compare os parâmetros: número de nós, m (tamanho máximo de caminho), b (fator de ramificação) e d (profundidade do nó objetivo mais raso) e. Suponha que o custo de cada ação que movimente o agente na horizontal ou vertical é igual a 1 e na diagonal, 1.4. Encontre as soluções ótimas para as duas modalidades e as compare em termos de custo e solução (sequência de ações). RESPOSTS 1. FEIT EM SL 2. a) espaço de estados foi representado como um grafo direcionado acíclico. O tamanho do espaço de estados é 5, pois temos os estados {PG, SJ,, M, } que correspondem às localidades onde o agente pode estar. PG SJ M b) árvore de busca gerada pelo algoritmo busca-em-árvore com a estratégia mais raso primeiro (desempate: pegar por ordem alfabética DECRESCENTE). Observar que o teste de objetivo só é realizado quando o nó é selecionado para expansão.
3 PG SJ M c) comparação das medidas espaço de estados árvore de busca tamanho (qtd. vértices) 5 7 tam. máximo de caminho 4 4 prof. nó objetivo mais raso 3 3 fator de ramificação 2 2 árvore de busca tem 2 vértices a mais do que o espaço de estados porque o pedaço de caminho - aparece replicado. O motivo é que ele faz parte de dois caminhos diferentes que levam do estado inicial ao objetivo. profundidade máxima da árvore = 4 (a profundidade máxima obtida foi igual ao tamanho máximo de caminho do grafo = caminho mais longo = PG-SJ-M--). Se a profundidade máxima da árvore fosse maior, significaria que o algoritmo fez passos desnecessários dado que cada passo custa >= 0. Fator de ramificação no espaço de estados é igual ao da árvore de busca (SJ tem o maior fator de ramificação = dois sucessores). Como o grafo de estados é direcionado, não contamos o caminho de volta para PG. profundidade do nó objetivo mais raso na árvore de busca corresponde ao nó que está no caminho PG-SJ--. Sua profundidade é 3 e equivale ao caminho mais curto em número de arestas do estado inicial ao estado objetivo no espaço de estados. 5 estados no grafo de estados x 7 nós na árvore de busca (que representam estados). Na estratégia de busca utilizada, o pedaço - apareceu em dois caminhos possíveis, daí obtermos um número maior de nós na árvore de busca.
4 3. a) 1ª. modalidade C!!! D --- E --- F 2ª. modalidade C!!! D --- E --- F b) modalidade 1 modalidade 2 tam. espaço de estados 6 vértices 6 vértices 7 arestas 11 arestas fator de ramificação 3 ( tem 3 sucessores) (E tem 3 sucessores) 5 ( tem 5 sucessores) (C tem 5 sucessores) tam. máximo de caminho 5 -D-E--C-F 5 -D-E--C-F caminho mais curto do 3 2 início ao objetivo c) Primeiramente, o tamanho do espaço de estados é dado pelo estado inicial e pelos estados alcançáveis a partir das ações possíveis para cada estado (função sucessora). Um aumento nas dimensões da matriz causaria um aumento no número de estados alcançáveis a partir do estado inicial (ex. matriz 4 x 4 = 16 estados). d) ÁRVORE MODLIDDE 1 [ [ [C F] [E F]] [D [E F]]] ÁRVORE MODLIDDE 2 [ [ [C [F]] [D] [E [F]] [F]] [D [E F]] [E [C F] [F]]]
5 medidas modalidade 1 modalidade 2 nós 9 15 (devido ao número de sucessores para cada estado ser maior, o número de nós também aumentou) d 3 2 (como há movimentos na diagonal, o nó objetivo mais raso é alcançável com apenas duas ações) b 2 4 (as posições do meio do tabuleiro permitem movimentos para todas as demais, com exceção dela mesma e das posições já exploradas). m 3 3 (observar que foi menor do que o m para o grafo do espaço de estados; significa que não necessitou explorar caminhos tão longos quanto o mais longo possível) e) soluções de menor custo para modalidade 1: --C-F : custo = 3 -D-E-F: custo =3 --E-F: custo = 3 soluções de menor custo para modalidade 2 --F: Custo 2.4 -E-F: custo 2.4
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig)
RESOLUÇÃO DE PROBLEMAS POR MEIO DE BUSCA (PARTE 1) *Capítulo 3 (Russel & Norvig) 1 Tópicos 1. Agentes para resolução de problemas 2. Formulação de problemas 3. Exemplos de problemas 4. Soluções aos problemas
Resolução de Problemas. Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial
Resolução de Problemas Universidade Católica de Pelotas Engenharia da Computação Disciplina: Inteligência Artificial 2 Resolução de Problemas Introdução Componentes Solução Busca de soluções 3 Resolução
Teoria dos Grafos Aula 5
Teoria dos Grafos Aula Aula passada Explorando grafos Mecanismos genéricos Ideias sobre BFS, DFS Aula de hoje Busca em grafos Busca em largura (BFS Breadth First Search) Propriedades Busca em Grafos Problema
Resolução de Problemas
Resolução de Problemas 1 Agente de Resolução de Problemas (1/2) 2 O agente reativo Escolhe suas ações com base apenas nas percepções atuais não pode pensar no futuro, não sabe aonde vai 4 5 8 1 6 7 2 3?
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas
Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções
Busca em Profundidade e em Largura
Busca em Profundidade e em Largura Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Mais sobre Caminhos TEOREMA: Se um grafo possui exatamente 2 vértices de
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 01 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula II Algoritmos básicos de busca cega
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Resolução de problemas por meio de algoritmos de busca Aula II Algoritmos básicos de busca
Implementação e Avaliação do Algoritmo MCTS-UCT para o jogo Chinese Checkers. Jhonny Moreira
Implementação e Avaliação do Algoritmo MCTS-UCT para o jogo Chinese Checkers Jhonny Moreira Introdução Introdução Na área da inteligência artificial (IA), a motivação é conseguir colocar os computadores
Inteligência Artificial - IA. Resolução de problemas por meio de busca
Resolução de problemas por meio de busca 1 Agente reativo - definido por ação reação Agente de resolução de problemas (ou baseado em objetivos) encontra sequencias de ações que leva ao estado desejável.
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA
SISTEMAS INTELIGENTES 1 PROF. TACLA/UTFPR/CPGEI-PPGCA BUSCA CEGA EXERCÍCIOS 1. Por que a estratégia de busca em largura só garante encontrar a solução ótima quando o custo por ação é uniforme? 2. Compare
INTELIGÊNCIA ARTIFICIAL 2008/09
INTELIGÊNCIA ARTIFICIAL 2008/09 JOGOS Ex. 1) ( Teste 2005/06) Considere a seguinte árvore de procura de dois agentes. Reordene as folhas de modo a maximizar o número de cortes com uma procura da esquerda
Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2
LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7
INTELIGÊNCIA ARTIFICIAL 2008/09
INTELIGÊNI RTIFIIL 2008/09 PROUR 1) onsidere o problema da torre de Hanoi com discos. Neste problema, existem três pinos, e e discos de diâmetros diferentes, estando no início todos os discos colocados
Combinando relações. Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações
1 / 11 Combinando relações Combinando relações Exemplo Seja A = {1, 2, 3} e B = {1, 2, 3, 4}. As relações R 1 = {(1, 1), (2, 2), (3, 3)} e R 2 = {(1, 1), (1, 2), (1, 3), (1, 4)} podem ser combinadas para
Inteligência Artificial Alameda e Taguspark
Inteligência Artificial Alameda e Taguspark Primeiro Teste 31 de Outubro de 2008 19H00-20H30 Nome: Número: Este teste tem 7 perguntas e 7 páginas. Escreva o número em todas as páginas. Deve ter na mesa
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST)
Volmir Eugênio Wilhelm Departamento de Engenharia de Produção UFPR 45 Problema da Árvore Geradora Mínima (The Minimum Spanning Tree Problem-MST) Alguns problemas de otimização combinatória podem ser formulados
Estruturas de Dados Grafos
Estruturas de Dados Grafos Prof. Eduardo Alchieri (introdução) Grafo é um conjunto de pontos e linhas que conectam vários pontos Formalmente, um grafo G(V,A) é definido pelo par de conjuntos V e A, onde:
Resolução de Problemas de Busca
Resolução de Problemas de Busca 1 Ao final desta aula a gente deve Compreender o que é um problema de busca em IA Ser capaz de formulá-lo Conhecer algumas aplicações Entender como buscar a solução do problema
Grafos: algoritmos de busca
busca em grafos como caminhar no grafo de modo a percorrer todos os seus vértices evitando repetições desnecessárias do mesmo vértice? e por onde começar? solução: necessidade de recursos adicionais que
INTELIGÊNCIA ARTIFICIAL
INTELIGÊNCIA ARTIFICIAL Primeiro Teste 29 de Outubro de 2011 17:00-18:30 Este teste é composto por 9 páginas contendo 11 perguntas. Para perguntas com resposta de escolha múltipla, respostas erradas com
3. Resolução de problemas por meio de busca
Inteligência Artificial - IBM1024 3. Resolução de problemas por meio de busca Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 3. Resolução de problemas por
Inteligência Artificial - IA
Busca sem informação Estratégias para determinar a ordem de expansão dos nós: 1. Busca em extensão 2. Busca de custo uniforme 3. Busca em profundidade 4. Busca com aprofundamento iterativo Direção da expansão:
Introdução à Resolução de Problemas por meio de Busca
Introdução à Resolução de Problemas por meio de Busca Huei Diana Lee [email protected] 2006 Conteúdo Introdução Exemplos Descrição formal Os Vasilhames com Água Estratégias de Controle Problemas Exercício!!
Buscas Não Informadas (Cegas) - Parte I
Buscas Não Informadas (Cegas) - Parte I Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 BUSCA EM LARGURA(BREADTH-FIRST ) - 1/5 A raiz é expandida.
Resolução de problemas por meio de busca. CAPÍTULO 3 - Russell
Resolução de problemas por meio de busca CAPÍTULO 3 - Russell Os agentes de resolução de problemas decidem o que fazer encontrando seqüências de ações que levam a estados desejáveis. Inicialmente veremos:
Resolução de problemas por meio de busca. Inteligência Artificial
1 Resolução de problemas por meio de busca (Capítulo 3 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto 2 Estrutura 1. Agente de resolução de problema 2. Tipos de problema
CI065 CI755 Algoritmos e Teoria dos Grafos
CI065 CI755 Algoritmos e Teoria dos Grafos Exercícios 11 de outubro de 2017 1 Fundamentos 1. Seja S = {S 1,..., S n } uma família de conjuntos. O grafo intercessão de S é o grafo G S cujo conjunto de vértices
Projeto e Análise de Algoritmos
Projeto e Análise de Algoritmos Aula 06 Busca em Profundidade e Busca em Largura Edirlei Soares de Lima Grafos (Revisão) G = (V, A) G: grafo; V: conjunto de vértices; A: conjunto
Lista de exercícios 1
Lista de exercícios 1 Paulo Gurgel Pinheiro MC906A - Inteligência Articial Universidade Estadual de Campinas - UNICAMP [email protected] 3 de setembro de 2010 1. Considere o problema do quebra-cabeças
Resolução de problemas por meio de busca. Capítulo 3 Inteligência Artificial Sistemas de Informação
Resolução de problemas por meio de busca Capítulo 3 Inteligência Artificial Sistemas de Informação Conteúdo Um exemplo Resolução de problemas por meio de busca Exemplos de problemas Em busca de soluções
Resolução de Problemas através de Busca. Prof. Júlio Cesar Nievola PPGIA - PUC-PR
Resolução de Problemas através de Busca Prof. Júlio Cesar Nievola PPGIA - PUC-PR Solução de Problemas Sistemas inteligentes devem agir de maneira a fazer com que o ambiente passe por uma seqüência de estados
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA
ÁRVORES E ÁRVORE BINÁRIA DE BUSCA Prof. André Backes Definição 2 Diversas aplicações necessitam que se represente um conjunto de objetos e as suas relações hierárquicas Uma árvore é uma abstração matemática
GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira
Ciência da Computação GRAFOS Aula 05 Algoritmos de percurso: busca em largura e profundidade Max Pereira Busca em Largura (Breadth-First Search) Um dos algoritmos mais simples para exploração de um grafo.
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig)
BUSCA CEGA OU SEM INFORMAÇÃO (parte 2 Resolução de problemas por busca) *Capítulo 3 (Russel & Norvig) 1 Tópicos Estratégias de busca sem informação Busca em largura ou extensão custo uniforme (menor custo)
meio de busca Seções 3.1, 3.2 e 3.3
Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reativos não funcionam em ambientes para quais o número de regras condição
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
*Capítulo 3 (Russel & Norvig)
*Capítulo 3 (Russel & Norvig) 1 Estratégias de busca sem informação Busca em largura Busca de custo uniforme (menor custo) Busca em profundidade Busca em profundidade limitada Busca de aprofundamento iterativo
Árvores: Conceitos Básicos e Árvore Geradora
Árvores: Conceitos Básicos e Árvore Geradora Grafos e Algoritmos Computacionais Prof. Flávio Humberto Cabral Nunes [email protected] 1 Introdução No dia a dia aparecem muitos problemas envolvendo árvores:
CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02
. CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
PROCURA E PLANEAMENTO
PROCURA E PLANEAMENTO Primeiro Exame 12 de Janeiro de 2006 17:00-19:00 Este exame é composto por 13 páginas contendo 6 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
GRAFOS DIRIGIDOS: DA TEORIA À APLICAÇÃO EM SITUAÇÕES REAIS
ISSN 2177-9139 GRAFOS DIRIGIDOS: DA TEORIA À APLICAÇÃO EM SITUAÇÕES REAIS Gabriel Prates Brener [email protected] Gabriel de Oliveira Soares [email protected] Jorge Mario Ebrenz [email protected]
PCS Gabarito da 1a. lista
PCS -2428 Gabarito da 1a. lista 1. Estado: situação (configuração) do ambiente no qual deve ser resolvido o problema. Espaço de estados: conjunto dos possíveis estados. Árvore de busca: estrutura de dados
ESTUDO COMPARATIVO ENTRE ALGORITMO A* E BUSCA EM LARGURA PARA PLANEJAMENTO DE PERSONAGENS EM JOGOS DO TIPO PACMAN
ESTUDO COMPARATIVO ENTRE ALGORITMO A* E BUSCA EM LARGURA PARA PLANEJAMENTO DE PERSONAGENS EM JOGOS DO TIPO PACMAN Acadêmica: Jeanita Bassani da Silva Orientador: Prof. Paulo César C Rodacki Gomes ROTEIRO
Resolução de problemas por meio de busca. Inteligência Artificial. Formulação de problemas. Estratégias de busca
Inteligência Artificial Aula 4 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Algoritmo
Pesquisa em Grafos. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/ / 33
Pesquisa em Grafos Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/2015 1 / 33 Pesquisa em Grafos Uma das tarefas mais importantes é saber percorrer um grafo, ou seja
Buscas Informadas ou Heurísticas - Parte II
Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste
O estudo utilizando apenas este material não é suficiente para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os
Teoria dos Grafos Aula 2
Teoria dos Grafos Aula 2 Aula passada Logística, regras Objetivos Grafos, o que são? Formando pares Encontrando caminhos Aula de hoje Outro problema real Definições importantes Algumas propriedades Grafo
Busca em Largura. Adaptado de Humberto C. B. Oliveira
Busca em Largura Adaptado de Humberto C. B. Oliveira Últimas aulas Introdução: História Aplicações Conceitos Básicos: Grafo simples Grafo completo/vazio Grafo não orientado: Arestas laço Arestas paralelas
Grafos. Fabio Gagliardi Cozman. PMR2300 Escola Politécnica da Universidade de São Paulo
PMR2300 Escola Politécnica da Universidade de São Paulo Um grafo é uma estrutura que generaliza árvores, sendo formado por nós e arestas. Cada nó em um grafo pode ser conectado a vários outros nós por
CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro
CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro [email protected] www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Alguns Exercícios de Inteligência Artificial
Alguns Exercícios de Inteligência Artificial Ana Paula Tomás Nelma Moreira Departamento de Ciência de Computadores Faculdade de Ciências, Universidade do Porto email: {apt,nam}@ncc.up.pt 1997 1. Números
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko. Capítulo 3
Introdução à Teoria dos Grafos (MAC-5770) IME-USP Depto CC Profa. Yoshiko Capítulo 3 Árvores Problema: Suponha que numa cidade haja n postos telefônicos. Para que seja sempre possível haver comunicação
Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *
Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO. 5 a Lista de Exercícios
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO MATEMÁTICA COMBINATÓRIA 5 a Lista de Exercícios 1. O grafo de intersecção de uma coleção de conjuntos A 1,..., A n é o grafo
Comunicação e redes. Aula 2: Teoria dos Grafos Conceitos básicos. Professor: Guilherme Oliveira Mota.
Comunicação e redes Aula 2: Teoria dos Grafos Conceitos básicos Professor: Guilherme Oliveira Mota [email protected] Aula passada Redes complexas Grafo G: Conjunto de pontos e linhas ligando esses pontos
BCC204 - Teoria dos Grafos
BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal
Projecto de Algoritmos e Estruturas de Dados
Projecto de Algoritmos e Estruturas de Dados Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrónica 1 o ano, 2 o Semestre, 2005/2006 Instituto Superior Técnico
Algoritmos de retrocesso
Algoritmos de retrocesso Algoritmos em que se geram escolhas que vão sendo testadas e eventualmente refeitas Problemas para os quais não existem algoritmos eficientes: retrocesso é melhor que pesquisa
Oalgoritmo de Dijkstra
Dijkstra Oalgoritmo de Dijkstra O algoritmo de Dijkstra, concebido pelo cientista da computação holandês Edsger Dijkstra em 1956 e publicado em 1959, soluciona o problema do caminho mais curto num grafo
Lista 1 Sistemas Inteligentes (INE5633) 2014s2. Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul)
Lista 1 () 2014s2 Sistemas de Informação Universidade Federal de Santa Catarina Cap. 2 - Russel & Norvig - Exercícios selecionados (respostas em azul) 1. Tanto a medida de desempenho quanto a função de
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios
Instituto de Computação - Universidade Federal Fluminense Teoria dos Grafos - Lista de exercícios 1 Conceitos 1. Prove o Teorema da Amizade: em qualquer festa com pelo menos seis pessoas, ou três se conhecem
Inteligência Artificial
Licenciatura em Engenharia Informática e de Computadores Inteligência Artificial Primeiro Teste 31 de Outubro de 2009 09:00 10:30 Nome: Número: Esta prova, individual e sem consulta, tem 9 páginas com
Exercícios de Procura e Planeamento 2013/2014
Exercícios de Procura e Planeamento 203/204 Fausto lmeida ula Prática de PP apítulo 2 apítulo 2 Estratégias ásicas de Procura Heurística Exercício onsidere o seguinte espaço de estados, com estado inicial,
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013
SCC603 Algoritmos e Estruturas de Dados II Prof.a Rosane Minghim 1o sem. 2013 Lista de Exercícios 1 1) Escrever em C funções para: a) Obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que
Grafos Orientados (digrafos)
Grafos Orientados (digrafos) Grafo Orientado ou digrafo Consiste em um grafo G = (V,A) onde V = {v 1,, v n } é um conjunto de vértices e A = {a 1,, a k } é um conjunto de arcos tais que a k, k=1,,m é representado
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes
Sistemas Inteligentes Lista de Exercícios sobre Busca e Agentes Inteligentes 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo
Aula 20: Revisão Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464 / PCC174 Departamento de Computação - UFOP Breve Revisão Programação Linear vs Programação Inteira Modelagem
Problema do Caminho Mínimo
Departamento de Engenharia de Produção UFPR 63 Problema do Caminho Mínimo O problema do caminho mínimo ou caminho mais curto, shortest path problem, consiste em encontrar o melhor caminho entre dois nós.
Enunciados dos Exercícios Cap. 2 Russell & Norvig
Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença
CEFET/RJ Inteligência Artificial (2017.2) Professor: Eduardo Bezerra Lista de exercícios 03
. CEFET/RJ Inteligência Artificial (2017.2) Professor: Eduardo Bezerra ([email protected]) Lista de exercícios 03 Créditos: essa lista de exercícios contém a tradução dos exercícios disponibilizados
a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.
Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado
Busca Cega (Exaustiva) e Heurística. Busca Aula 2
Busca Cega (Exaustiva) e Heurística Busca Aula 2 Ao final desta aula a gente deve saber: Conhecer as várias estratégias de realizar Busca não-informada (Busca Cega) Determinar que estratégia se aplica
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO GABARITO
PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman GABARITO 1. Em artigo publicado em 1950, Alan Turing apresentou à comunidade acadêmica o que ficou conhecido
