Fundamentos de Inteligência Artificial [5COP099]
|
|
|
- Bento Pais Arruda
- 8 Há anos
- Visualizações:
Transcrição
1 Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Saulo Martiello Mastelini Departamento de Computação - UEL 1 o Semestre
2 Assunto Aula 11 Modelos Preditivos - Árvore de Decisão (corte) 2 de 11
3 (corte) Sumário Poda em Árvores de Decisão Métodos de Proda Pré-poda Pos-poda 3 de 11
4 Poda em Árvores de Decisão A pode é uma parte das mais importantes do processo de construção da árvore, principalmente em domínios ruidosos. Os ruídos causam dois problemas: Podem classificar novos objetos em um modo não confiável; Uma árvore induzida tende a ser grande e difícil de interpretação; Os nós mais profundos tem baixa importância pois poucas amostras são classificadas pelas folhas destes; Nós mais profundos refletem mais o conjunto de treinamento (overfitting - superajustamento) e aumentam o nível erro devido a variância. 4 de 11
5 Poda em Árvores de Decisão Podar uma árvore é trocar nós mais profundos por folhas, minimizando os problemas. Podar uma árvore de decisão certamente irá causar a classificação incorreta de alguns exemplos de treinamento, porém é eficiente na avaliação de novos exemplos. 5 de 11
6 Poda em Árvores de Decisão 6 de 11
7 Métodos de Poda Podar uma árvore é trocar nós mais profundos por folhas, minimizando os problemas. Podar uma árvore de decisão certamente irá causar a classificação incorreta de alguns exemplos de treinamento, porém é eficiente na avaliação de novos exemplos. Os métodos de poda pode ser divididos em dois grupos: Pré-poda: durante a construção da árvore quando algum critério é atingido; Pós-poda: após a construção observado certos critérios. O importante é estimar o ponto de equiĺıbrio entre a árvore e a estimativa de erro. 7 de 11
8 Métodos de Poda - Pré-poda Este tipo de poda conta com regras de para que previnem a construção daqueles ramos que não melhoram a precisão preditiva da árvore; Tem a vantagem de economia de tempo da montagem da árvore; Normalmente temos as seguintes regras de parada: Todas as observações de um nó pertencem a uma mesma classe; Todas as observações alcançando um nó tem mesmo vetor de características (mas não necessariamente pertencem a mesma classe) O número de observações é menor que um certo limiar; O mérito atribuído a todos os possíveis testes que particionaram o conjunto de observações é muito baixo; 8 de 11
9 Métodos de Poda - Pós-poda Este é o método mais comum para as Árvores de Decisão; Segundo Quinlan (1988) Construir e podar uma árvore é lento, mas mais confiável ; Um dos métodos mais simples é baseado em duas medidas: Erro estático: É o número de classificações incorretas considerando que todos os exemplos que chegam nesse nó são classificados usando a classificação majoritária da distribuição de classes deste nó; Erro de Backed-up: É a soma das classificações incorretas de todas as subárvores do nó corrente; Se o erro de backed-up é maior ou igual ao erro estático, então o nó é trocado pela folha com a classe majoritária; 9 de 11
10 Métodos de Poda - Pós-poda A poda por custo de complexidade é um dos mais utilizados; Inicialmente é gerada uma árvore completa e consequentemente uma sequencia de árvores cada vez menores, sendo escolhida uma das subárvores; Este método é baseado em dois parâmetros: taxa de erro R(T) e tamanho da árvore T em termos de folhas. A medida de custo complexidade é: R α (T ) = R(T ) + α T ; O valor de α é a importância relativa do tamanhã da árvore em relação à taxa de erro; A árvore selecionada é a que apresentar o menor R α (T ); Este é o core de funcionamento da árvore CART. 10 de 11
11 Fundamentos de Inteligência Artificial Referências 1. Coppin, B. Inteligência Artificial. LTC Russell, S.; Norvig, P. Artificial Intelligence: a modern approach. Prentice Hall Localização: BC Número de Chamada: R967a 3.ed. 3. Luger, G. F. Inteligência Artificial: estruturas e estratégias para a resolução de problemas complexos.bookman Localização: BC Número de Chamada: L951a 4.ed. 4. Carvalho, André, et al. Inteligência Artificial uma abordagem de aprendizado de máquina. Rio de Janeiro: LTC (2011). 11 de 11
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 10 Modelos Preditivos - Árvore de Decisão 2 de 20 Aula 10 - Árvore de
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 5 Algoritmos de Busca 2 de 27 Sumário Introdução Gerar e Testar Busca
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 16 Redes Neurais Artificiais (MLP) 2 de 24 (MLP) Sumário Introdução
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL Disciplina Anual Assunto Aula 1 Fundamentos de Inteligência Artificial 2 de 18 Sumário Introdução
Fundamentos de Inteligência Artificial [5COP099]
Fundamentos de Inteligência Artificial [5COP099] Dr. Sylvio Barbon Junior Departamento de Computação - UEL 1 o Semestre Assunto Aula 2 Agentes Inteligentes 2 de 22 Sumário Introdução Propriedades dos Agentes
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II. Análise de Dados. Sylvio Barbon Junior 29 de julho de 2016 DC-UEL Sylvio Barbon Jr 1
Tópicos Especiais: INTELIGÊNCIA DE NEGÓCIOS II Análise de Dados Sylvio Barbon Junior [email protected] 29 de julho de 2016 DC-UEL Sylvio Barbon Jr 1 Sumário Introdução Caracterização de Dados Exploração de
INTELIGÊNCIA ARTIFICIAL
INTELIGÊNCIA ARTIFICIAL Apresentação da Disciplina Tiago Alves de Oliveira 1 O QUE É INTELIGÊNCIA ARTIFICIAL? Tiago Alves de Oliveira 2 O QUE É INTELIGÊNCIA ARTIFICIAL? Área de pesquisa que tem como objetivo
Inteligência Artificial
Inteligência Artificial Apresentação da Disciplina Tiago Alves de Oliveira 1 O que é Inteligência Artificial? Tiago Alves de Oliveira 2 O que é Inteligência Artificial? Área de pesquisa que tem como objetivo
Aprendizado por Árvores de Decisão
Universidade Federal de Santa Maria Departamento de Eletrônica e Computação Prof. Cesar Tadeu Pozzer Disciplina de Programação de Jogos 3D E-mail: [email protected] Período: 2006/01 Aprendizado por Árvores
Inteligência Artificial Redes Neurais
Inteligência Artificial Jarley P. Nóbrega, Dr. Faculdade Nova Roma Bacharelado em Ciência da Computação [email protected] Semestre 2018.2 Jarley P. Nóbrega, Dr. (Nova Roma) Inteligência Artificial Semestre
Pontifícia Universidade Católica de São Paulo Programa de TIDD
Disciplina: 2854 - Sistemas Inteligentes e Ambientes Virtuais Turma A Área de Concentração: Processos Cognitivos e Ambientes Digitais Linha de Pesquisa: Inteligência Coletiva e Ambientes Interativos Professor:
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Aula 12 Árvores de Decisão Prof. Augusto Baffa Árvores de Decisão Uma das formas de algoritmo de aprendizado mais simples e de maior sucesso. Uma
Inteligência Artificial. Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo]
Inteligência Artificial Raimundo Osvaldo Vieira [DComp IFMA Campus Monte Castelo] Aprendizagem de Máquina Área da Inteligência Artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre
Fabrício Jailson Barth BandTec
Introdução à Inteligência Artificial Fabrício Jailson Barth [email protected] BandTec 1 o semestre de 2012 Objetivos e Sumário O que é Inteligência Artificial (IA)? Objetivos da IA. Influência
Árvore de Decisão. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE
Árvore de Decisão George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Tópicos Introdução Representando Árvores de Decisão O algoritmo ID3 Definições Entropia Ganho de Informação Overfitting Objetivo
Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010
Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 09 Árvores de Decisão Max Pereira Classificação É a tarefa de organizar objetos em uma entre diversas categorias pré-definidas. Exemplos
[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações
[2CTA121] Processamento de Imagens em Alimentos: Conceitos e Aplicações Dr. Sylvio Barbon Junior PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DE ALIMENTOS - UEL 2016 Assunto Aula 4 Segmentação de Imagens 2 de
Inteligência Computacional
Inteligência Computacional CP78D Apresentação do Plano de Ensino Aula 1 Prof. Daniel Cavalcanti Jeronymo Universidade Tecnológica Federal do Paraná (UTFPR) Engenharia Eletrônica 9º Período 1/14 Professor
Agentes Inteligentes. Inteligência Artificial
Agentes Inteligentes (Capítulo 2 - Russell) Inteligência Artificial Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Ambiente de Tarefas 3. Exemplos de ambiente de Tarefas 4. Propriedades
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem como
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall.
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Curso de Bacharelado
Tópicos Especiais: Inteligência Artificial REDES NEURAIS
Tópicos Especiais: Inteligência Artificial REDES NEURAIS Material baseado e adaptado do Cap. 20 do Livro Inteligência Artificial de Russell & Norvig Bibliografia Inteligência Artificial Russell & Norvig
Inteligência Artificial
Inteligência Artificial Aula #2: Resolução de Problemas Via Busca Prof. Eduardo R. Hruschka 1 Agenda Tipos de Problemas Estados únicos (totalmente observável) Informação parcial Formulação do Problema
Aprendizado em IA. Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação
Aprendizado em IA Prof. Carlos H. C. Ribeiro ITA Divisão de Ciência da Computação Tópicos Agentes baseados em aprendizado Aprendizado indutivo Árvores de decisão Método ID3 Aprendizado em redes neurais
Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? O que é Inteligência Artificial? Área de pesquisa que tem
Inteligência Artificial
Inteligência Artificial Aula 3 Métodos de Busca para Resolução de Problemas Busca Informada Heurísticas Busca Gulosa Busca A* Busca Local Prática #2 Prof. Ricardo M. Marcacini [email protected]
Árvores de Decisão. Sistemas Inteligentes
Árvores de Decisão Sistemas Inteligentes Uma Abordagem típica em aprendizagem simbólica Árvores de decisão: inductive decision trees (ID3) Instâncias (exemplos) são representadas por pares atributo-valor
INTELIGÊNCIA ARTIFICIAL
Figura: Capa do Livro Russell, S., Norvig, P. Artificial Intelligence A Modern Approach, Pearson, 2009. Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Curso de Pós-Graduação
Aprendizagem de Máquina. Prof. Júlio Cesar Nievola PPGIA - PUCPR
Aprendizagem de Máquina Prof. Júlio Cesar Nievola PPGIA - PUCPR Introdução Justificativa Recente progresso em algoritmos e teoria Disponibilidade crescente de dados online Poder computacional disponível
Determinação de vícios refrativos oculares utilizando Support Vector Machines
Determinação de vícios refrativos oculares utilizando Support Vector Machines Giampaolo Luiz Libralão, André Ponce de Leon F. de Carvalho, Antonio Valerio Netto, Maria Cristina Ferreira de Oliveira Instituto
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
SUPPORT VECTOR MACHINE - SVM
SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento
Thiago Marzagão 1. 1 Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21
MINERAÇÃO DE DADOS Thiago Marzagão 1 1 [email protected] ÁRVORE DE DECISÃO & VALIDAÇÃO Thiago Marzagão (Universidade de Brasília) MINERAÇÃO DE DADOS 1 / 21 árvore de decisão Aulas passadas: queríamos
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si
Classificação e Predição de Dados - Profits Consulting - Consultoria Empresarial - Serviços SAP- CRM Si Classificação de Dados Os modelos de classificação de dados são preditivos, pois desempenham inferências
Combinação de Classificadores (fusão)
Combinação de Classificadores (fusão) André Tavares da Silva [email protected] Livro da Kuncheva Roteiro Sistemas com múltiplos classificadores Fusão por voto majoritário voto majoritário ponderado
Aprendizado de Máquina (Machine Learning)
Ciência da Computação Aprendizado de Máquina (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo (knn) Um algoritmo supervisionado usado para classificar
Trabalho Prático 2 Mundo dos Blocos Alocação Dinâmica / Listas Encadeadas
Disciplina: Algoritmos e Estrutura de Dados I CIC / 9 Trabalho Prático Mundo dos Blocos Alocação Dinâmica / Listas Encadeadas Valor:,5 pontos (5% da nota total) Documentação não-latex: -, pontos Impressão
Lista de Exercícios - Capítulo 8 [1] SCC Inteligência Artificial 1o. Semestre de Prof. João Luís
ICMC-USP Lista de Exercícios - Capítulo 8 [1] SCC-630 - Inteligência Artificial 1o. Semestre de 2011 - Prof. João Luís 1. Seja breve na resposta às seguintes questões: (a) o que você entende por Aprendizado
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Inteligência Artificial. Agentes computacionais. Aula IV Cap.2 Russell e Norvig (continuação)
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Inteligência Artificial Agentes computacionais Aula IV Cap.2 Russell e Norvig (continuação) Roteiro: Russell e Norvig,
SISTEMA AUTOMÁTICO PARA AVALIAÇÃO POSTURAL BASEADO EM DESCRITORES DE IMAGENS
SISTEMA AUTOMÁTICO PARA AVALIAÇÃO POSTURAL BASEADO EM DESCRITORES DE IMAGENS GIAN LUCAS DE OLIVEIRA PAIVA GRADUANDO EM ENGENHARIA ELETRÔNICA ORIENTADOR: PROF. CRISTIANO JACQUES MIOSSO DR. EM ENGENHARIA
Aprendizado de Máquina (Machine Learning)
Ciência da Computação (Machine Learning) Aula 07 Classificação com o algoritmo knn Max Pereira Classificação com o algoritmo k-nearest Neighbors (knn) Como os filmes são categorizados em gêneros? O que
INSTITUTO FEDERAL CEARÁ - IFCE CAMPUS AVANÇADO DE ARACATI CURSO: BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO PROGRAMA DE UNIDADE DIDÁTICA PUD.
PROGRAMA DE UNIDADE DIDÁTICA PUD DISCIPLINA: INTRODUÇÃO A COMPUTAÇÃO Código: Carga Horária: 40h Número de Créditos: 2 Código pré-requisito: Semestre: Nível: EMENTA S1 Bacharelado PARTE A: 1) Introdução
Aprendizagem de Máquina - 2. Prof. Júlio Cesar Nievola PPGIa - PUCPR
Aprendizagem de Máquina - 2 Prof. Júlio Cesar Nievola PPGIa - PUCPR Inteligência versus Aprendizado Aprendizado é a chave da superioridade da Inteligência Humana Para que uma máquina tenha Comportamento
Aprendizado de Máquina
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCENS UFES Departamento de Computação Aprendizado de Máquina Inteligência Artificial Site: http://jeiks.net E-mail: [email protected]
Aprendizagem de Máquinas
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Aprendizagem de Máquinas DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1 Aprendizagem de Máquinas
Redes Neurais (Inteligência Artificial)
Redes Neurais (Inteligência Artificial) Aula 03 Resolução de Problemas por Meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades capazes de observar o ambiente
DCBD. Avaliação de modelos. Métricas para avaliação de desempenho. Avaliação de modelos. Métricas para avaliação de desempenho...
DCBD Métricas para avaliação de desempenho Como avaliar o desempenho de um modelo? Métodos para avaliação de desempenho Como obter estimativas confiáveis? Métodos para comparação de modelos Como comparar
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta
Agregação de Algoritmos de Aprendizado de Máquina (AM) Professor: Eduardo R. Hruschka Estagiário PAE: Luiz F. S. Coletta ([email protected]) Sumário 1. Motivação 2. Bagging 3. Random Forest 4. Boosting
3 Aprendizado por reforço
3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina
Mineração de Dados em Biologia Molecular
Mineração de Dados em Biologia Molecular André C.. L. F. de Carvalho Monitor: Valéria Carvalho lanejamento e Análise de Experimentos rincipais tópicos Estimativa do erro artição dos dados Reamostragem
Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Redes Perceptron e Multilayer Perceptron aplicadas a base de dados IRIS Aluno: Fabricio Aparecido Breve Prof.: Dr. André Ponce
Árvores de Decisão. Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação
Árvores de Decisão Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Ciências de Computação Rodrigo Fernandes de Mello [email protected] Árvores de Decisão Método
Redes Neurais MLP: Exemplos e Características
Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Redes Neurais MLP: Exemplos e Características DCA0121 Inteligência Artificial Aplicada Heitor Medeiros 1
Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende
Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS REDE ADALINE e REGRA DELTA Prof. Dr. André A. P. Biscaro 2º Semestre de 2017 Aspectos históricos O ADALINE foi idealizado por Widrow & Hoff em 1960. Sua principal aplicação estava
Inteligência nos Negócios (Business Inteligente)
Inteligência nos Negócios (Business Inteligente) Sistemas de Informação Sistemas de Apoio a Decisão Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Fundamentação da disciplina Analise de dados Decisões
Aprendizado de Máquina. Combinando Classificadores
Universidade Federal do Paraná (UFPR) Departamento de Informática (DInf) Aprendizado de Máquina Combinando Classificadores David Menotti, Ph.D. web.inf.ufpr.br/menotti Introdução O uso de vários classificadores
INF 1771 Inteligência Artificial
INF 1771 Inteligência Artificial Apresentação da Disciplina Edirlei Soares de Lima O que é Inteligência Artificial? Área de pesquisa que tem como objetivo buscar métodos ou dispositivos
UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica
REDES NEURAIS ARTIFICIAIS MÁQUINA DE VETOR DE SUPORTE (SUPPORT VECTOR MACHINES) Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Introdução Poderosa metodologia para resolver problemas de aprendizagem
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes
Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste
