Modelos bayesianos sem MCMC com aplicações na epidemiologia

Tamanho: px
Começar a partir da página:

Download "Modelos bayesianos sem MCMC com aplicações na epidemiologia"

Transcrição

1 Modelos bayesianos sem MCMC com aplicações na epidemiologia Leo Bastos, PROCC/Fiocruz

2 Outline Introdução à inferência bayesiana Estimando uma proporção Ajustando uma regressão Métodos computacionais MCMC INLA Aplicações em Epidemiologia Uso de álcool ilícito Morbidade por doenças respiratórias no Rio de Janeiro Modelos idade-período-coorte para câncer de pulmão

3 Interpretações de probabilidade Suponha que estamos interessados na probabilidade de cara em um lançamento honesto de uma moeda honesta. Interpretação frequentista: Essa probabilidade é 50%, pois se realizássemos o experimento lançar a moeda um número muito alto de vezes, esperíamos que metade dos experimentos resultassem cara. Interpretação subjetiva: Essa probabilidade é 50%, pois em um lançamento honesto de uma moeda honesta creio que os dois possíveis resultados sejam equiprováveis.

4 Crença x probabilidade Tudo que é desconhecido pode ser representado por uma função de crença. A crença a respeito de algo está associada a nossa incerteza. Podemos quantificar crenças ou incertezas usando probabilidades.

5 Exemplo: Obesidade infantil Qual a proporção de crianças com sobrepeso ou obesidade em Presidente Prudente? O que sabemos sobre essa quantidade? Qual a nossa incerteza a respeito? Podemos representar o nosso conhecimento usando uma função de densidade e probabilidade? Será que podemos atualizar esse conhecimento usando um experimento?

6 Representando a minha incerteza

7 Realizando um experimento Suponha que vamos selecionar uma amostra aleatória de 100 adultos e medir IMC. Seja Y uma variável binária representando o total de pessoas dessa amostra com sobrepeso. Um modelo para esse tipo de experimento seria: Foi observado que 24 dessas crianças estavam com sobrepeso. Como podemos combinar nosso conhecimento a priori com os dados do experimento?

8 Atualizando a minha incerteza A minha incerteza a priori é atualizada após definirmos um modelo experimental e coletarmos os dados. Essa atualização é feita via teorema de Bayes A distribuição a priori usada no exemplo é uma Beta(3,9). Pode-se mostrar que a distribuição a posteriori também é uma Beta com parâmetros 26 e 84.

9 Priori e posteriori para

10 Algumas conclusões a posteriori O valor esperado a posteriori para a proporção de crianças com sobrepeso foi de 23.6%. Com probabilidade 0.95, a proporção de crianças com sobrepeso está no intervalo (16,2%; 32,0%) O intervalo acima é chamado de intervalo de credibilidade.

11 Exemplo: Regressão Gama Estamos interessados em avaliar o efeito do trabalho noturno no aumento do IMC em enfermeiras no Rio de Janeiro. Um questionário foi aplicado a 2100 enfermeiras no município do Rio de Janeiro, e entre outras perguntas tinha a informação de peso atual, peso aos 20 anos, altura e tempo de trabalho noturno. O modelo proposto para verificar essa relação foi:

12 Exemplo: Regressão Gama Devemos explicitar prioris para Nesse trabalho utilizamos prioris não informativas. A distribuição a posteriori dos parâmetros é dada por A integral do denominador é analicamente intratável, e métodos numéricos são necessários.

13 Efeitos do trabalho noturno Em particular estamos interessados na distribuição Modelo Valor esperado a posteriori Intervalo de credibilidade M1: BMI ~ NightWork (0.075; 0.138) M2: M1 + Age (0.028; 0.099) M3: M2 + BMI at 20 y.o (0.017; 0.072) M4: M3 + confounding (0.008; 0.062) - Efeito no IMC por ano de trabalho noturno. Esses valores só podem ser obtidos usando métodos de numéricos, como o MCMC ou o INLA.

14 Método de Monte Carlo O método de Monte Carlo é um método usado para resolver integrais do tipo: é uma função de densidade. A integral de Monte Carlo é dada por: onde são amostras geradas de

15 Monte Carlo Se soubéssemos como gerar amostras da distribuição a posteriori, então poderíamos obter várias quantidades via Monte Carlo Exemplo: Média, variância, quantis. Geralmente, as distribuições a posteriori não tem forma analítica fechada, e portanto não é possível gerar diretamente delas. Se faz necessário o uso de métodos para gerar amostras de distribuições onde somente o núcleo é conhecido. Aqui entram os métodos de Monte Carlo via Cadeias de Markov.

16 MCMC Os métodos de Monte Carlo via Cadeias de Markov (MCMC) cumprem esse papel. Em um MCMC precisamos gerar de forma iterativa amostras das condicionais completas. Seja: As condicionais completas são dadas por:

17 MCMC: Algotitmo O algoritmo para gerar amostras de Inicialize Para k de 1 até M (grande) Gere de: Gere de:... Gere de: Verifique a convergência das cadeias, após o ponto de convergência, as amostras geradas são amostras da posteriori de interesse.

18 MCMC Algoritmo de Metropolis-Hasting, e amostrador de Gibbs Os métodos de MCMC foram inicialmente desenvolvidos no final da década de Somente no início da década de 1990 que esses métodos entraram na literatura estatística (Gelfand & Smith, 1990) São métodos computacionalmente intensivos.

19 INLA O método INLA (Integrated nested Laplace approximations) fornece uma alternativa ao método de MCMC para uma classe de modelos. Seja um modelo pertencente a família exponencial, com Se pudermos atribuir prioris Gaussianas às quantidades chamados modelos Gaussianos latentes. A essa classe de modelos podemos usar o método INLA para obter aproximações das marginais da posteriori.

20 INLA As marginais da posteriori de são Rue, Martino & Chopin (2009) proporam que as marginais a posteriori podem ser aproximadas por

21 INLA A condicional completa de é aproximada numericamente por uma Normal E a distribuição a posteriori dos hiperparâmetros é a dimensão dos hiperpaametros não pode ser grande (máximo 15 a 20 hiperparâmetros)

22 INLA Exemplos de modelos: Modelos de lineares generalizados Modelos dinâmicos Modelos espaciais e espaço-temporais Essa aproximação é computacionalmente barata, e não há necessidade de checar convergência de cadeias. Essa metodologia está implementada no R

23 Exemplos Modelo de regressão logística com efeitos aleatórios para estudar o perfil do usuário de álcool ilícito. Modelo de regressão de Poisson com efeitos aleatórios espaciais na mortalidade por doenças respiratórias no Rio de Janeiro. Modelo idade-periodo-cohorte para casos de cancer de pulmão no Brasil.

24 Usuário de álcool ilícito: Descrição Um estudo seccional guiado pelo participante (RDS) foi realizado no Rio de Janeiro entre junho e setembro de 2010 em usuários adultos de álcool. O objetivo foi estudar o perfil de usuários de álcool ilícito: Bebidas caseiras, sem o devido registro das autoridades brasileiras. Uso de perfumes ou loções como bebida Produtos medicinais derivados de cachaça. 305 participantes foram considerados elegíveis.

25 Usuário de álcool ilícito: o modelo A amostragem guiada pelo participante (RDS) não é uma amostra aleatória, então incluímos ao modelo um efeito aleatório iid, ou seja, inla(y ~ x1+x2 + f( ind, model= iid ), family=binomial)

26 Uso de álcool ilícito Unadjusted OR (CI 95%) Adjusted OR (CI 95%) Male 1.33 ( ) 0.75 ( ) Age bracket years old years old ( ) 2.21 ( ) >45 years old 1.54 ( ) 2.67 ( ) Occupation Employee/civi l servant 1 1 Selfemployed/em ployer 0.37 ( ) 0.41 ( ) Unemployed 0.31 ( ) 0.22 ( ) AUDIT score > ( ) ( )

27 Uso de álcool ilícito Unadjusted OR (CI 95%) Adjusted OR (CI 95%) Use of crack cocaine in the last 12 months Never 1 1 Cocaine powder crack OR Cocaine powder AND crack Use of ecstasy in the last 12 months 1.33 ( ) 1.06 ( ) 2.55 ( ) 2.29 ( ) Never 1 1 Ecstasy OR medicines Ecstasy AND medicines Have been treated for alcohol dependence in the last 12 months 3.48 ( ) 4.05 ( ) ( ) ( ) 3.42 ( ) 3.64 ( )

28 Morbidade por doenças respiratórias no Rio de Janeiro em 2003 Com o objetivo de verificar algum padrão espacial no total internações por doenças respiratórias nos municípios do Rio de Janeiro (Y_i), o seguinte modelo foi ajustado:

29 Morbidade doenças respiratórias Foram utilizadas como variáveis de controle: Densidade populacional, SO2, PM10, frota veicular, taxa de urbanização, e IDH. Nenhuma das covariáveis foi significativa, quando a estrututra espacial foi incluída no modelo. No R o comando é: inla(morb ~ 1+f(MUN, model= besag ), family="poisson", data=data, E=E_dem_morb)

30 Morbidade doenças respiratórias

31 Modelos idade-período-coorte São modelos cujo o objetivo é avaliar o efeito temporal da ocorrência de um evento. Principalmente estimar separadamente o efeito de idade, período e coorte (geralmente de nascimento) na evolução de taxas. Efeito de idade: descreve variações associadas com a idade cronologica dos grupos. Efeito de período: são variações associadas a períodos de tempo que influenciam todas as idades simultaneamente. Efeito de coorte: mudanças associadas a diferentes gerações nas coortes (de nascimento)

32 Modelos APC Seja o seguinte exemplo hipotético: p1980 p1990 p2000 p2010 a60 c1920 c1930 c1940 c1950 a70 c1910 c1920 c1930 c1940 a80 c1900 c1910 c1920 c1930 a90 c1890 c1900 c1910 c1920 Em cada célula observa-se por exemplo o número de casos, e a população sob risco. O principal problema é o confundimento: Período fixo (estudo seccional): idade e coorte se confundem Coorte fixa (estudo longitudinal), idade e período se confundem

33 Modelos APC Yang & Land (2013) escreveram um livro sobre APC analysis, com várias propostas para estimação desse efeitos. Uma possível forma de resolver o problema foi proposta por Knorr-Held & Rainer (2001) usando modelos com efeitos aleatórios. Fazendo projeções para cancer de pulmão na Alemanha. Os autores apresentaram o modelo e o resolveram usando um MCMC, vamos implementar o mesmo modelo usando o INLA.

34 O modelo APC proposto Seja o número de óbitos por cancer de pulmão da faixa etária i e período j. Seja a população sob risco da faixa etária i e período j. O modelo de interesse é

35 O modelo APC proposto Se os efeitos aleatórios a priori seguirem um passeio aleatório de ordem 1, então o modelo é totalmente identificavél. (Knorr-Held & Rainer, 2001) Ou seja,

36 Modelos APC: Cancer de Pulmão Considere o total de casos de câncer de pulmão no Brasil por Faixas etárias: {35-39, 40-44, 45-49,...,75-79,80+} Períodos { , ,..., } Estratificado por sexo {masculino e feminino} Um modelo APC com efeitos aleatórios sgeundo Knorr- Held & Rainer (2001) será aplicado para estimar os efeitos de idade, período e coorte.

37 Hiperparâmetros dos efeitos Homens Mulheres Precisão Média IC de 95% Média IC de 95% Idade Período Coorte 20.1 (7.5,40.5) 29.1 (10.9, 58.9) (5171, 79065) 580 (142, 1474) 674 (282, 1325) 8800 (1762, 26254)

38 Efeito de Idade

39 Efeito de período

40 Efeito de coorte

41 Resumo Para uma classe de modelos é possível fazer inferência bayesiana sem a necessidade o uso do MCMC A alternativa computacional é o método INLA, que apresenta aproximações para as marginais da distribuição a posteriori conjunta. O pacote INLA está disponível no site: Os exemplos apresentados aqui são trabalhos em parceiria com pesquisadores da Fiocruz, se alguem tiver interesse fique a vontade para conversar.

42 Obrigado! Leo Bastos:

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Everton Batista da Rocha 1 2 3 Roseli Aparecida Leandro 2 Paulo Justiniano Ribeiro Jr 4 1 Introdução Na experimentação agronômica

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Emílio Augusto Coelho-Barros 1,2 Jorge Alberto Achcar 2 Josmar Mazucheli 3 1 Introdução Em análise

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Análise Bayesiana do Sistema de Cotas da UFBA

Análise Bayesiana do Sistema de Cotas da UFBA Análise Bayesiana do Sistema de Cotas da UFBA Lilia Carolina C. da Costa Universidade Federal da Bahia Marina Silva Paez Universidade Federal do Rio de Janeiro Antonio Guimarães, Nadya Araujo Guimarães

Leia mais

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício:

Leia mais

Então, O que é Inferência Bayesiana?

Então, O que é Inferência Bayesiana? Aluno: Fernando G. Moro Supervisor: Henrique A. Laureano 2 de novembro de 2015 Teorema de Bayes Thomas Bayes( 1702-1761) Estudou Teologia na Universidade de Edimburgo(Escócia). Único livro publicado The

Leia mais

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I

O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I O QUE É E COMO FUNCIONA O CREDIT SCORING PARTE I! A utilização de escores na avaliação de crédito! Como montar um plano de amostragem para o credit scoring?! Como escolher as variáveis no modelo de credit

Leia mais

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento

Leia mais

Distribuições de Probabilidade Distribuição Binomial

Distribuições de Probabilidade Distribuição Binomial PROBABILIDADES Distribuições de Probabilidade Distribuição Binomial BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Epidemiologia. Profa. Heloisa Nascimento

Epidemiologia. Profa. Heloisa Nascimento Epidemiologia Profa. Heloisa Nascimento Medidas de efeito e medidas de associação -Um dos objetivos da pesquisa epidemiológica é o reconhecimento de uma relação causal entre uma particular exposição (fator

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV SMIRNOV, ANDERSONDARLING, CRAMER VON MISES E SHAPIROWILK POR SIMULAÇÃO Vanessa Bielefeldt Leotti, Universidade Federal do Rio Grande do Sul,

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

1. Introdução. 1.1 Introdução

1. Introdução. 1.1 Introdução 1. Introdução 1.1 Introdução O interesse crescente dos físicos na análise do comportamento do mercado financeiro, e em particular na análise das séries temporais econômicas deu origem a uma nova área de

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Avaliando o que foi Aprendido

Avaliando o que foi Aprendido Avaliando o que foi Aprendido Treinamento, teste, validação Predição da performance: Limites de confiança Holdout, cross-validation, bootstrap Comparando algoritmos: o teste-t Predecindo probabilidades:função

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Introdução à análise de dados discretos

Introdução à análise de dados discretos Exemplo 1: comparação de métodos de detecção de cárie Suponha que um pesquisador lhe apresente a seguinte tabela de contingência, resumindo os dados coletados por ele, oriundos de um determinado experimento:

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO

COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA METODOLOGIA DE MONTE CARLO COMO AVALIAR O RISCO DE UM PROJETO ATRAVÉS DA O que é risco? Quais são os tipos de riscos? Quais são os tipos de análises? Qual a principal função do Excel para gerar simulações aleatórias? O que é distribuição

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

Estudos de Coorte: Definição

Estudos de Coorte: Definição Estudos de Coorte: Definição São estudos observacionais onde os indivíduos são classificados (ou selecionados) segundo o status de exposição, sendo seguidos para avaliar a incidência de doença. São conduzidos

Leia mais

Regressão logística na identificação de factores de risco em acidentes automóveis e fraude de seguros.

Regressão logística na identificação de factores de risco em acidentes automóveis e fraude de seguros. Regressão logística na identificação de factores de risco em acidentes automóveis e fraude de seguros. José Luís Mourão Faculdade de Ciências Universidade do Porto 28 de Janeiro de 2013 José Luís Mourão

Leia mais

Imputação de dados faltantes em séries temporais de poluição atmosférica

Imputação de dados faltantes em séries temporais de poluição atmosférica Programa Ares-Rio Ar e Saúde Rio de Janeiro Instituto de Medicina Social Universidade do Estado do Rio de Janeiro Imputação de dados faltantes em séries temporais de poluição atmosférica Washington Junger

Leia mais

Valor Prático da Distribuição Amostral de

Valor Prático da Distribuição Amostral de DISTRIBUIÇÃO AMOSTRAL DA MÉDIA DA AMOSTRA OU DISTRIBUIÇÃO AMOSTRAL DE Antes de falarmos como calcular a margem de erro de uma pesquisa, vamos conhecer alguns resultados importantes da inferência estatística.

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Apresentação. Introdução. Francine Leite. Luiz Augusto Carneiro Superintendente Executivo

Apresentação. Introdução. Francine Leite. Luiz Augusto Carneiro Superintendente Executivo Evolução dos Fatores de Risco para Doenças Crônicas e da prevalência do Diabete Melito e Hipertensão Arterial na população brasileira: Resultados do VIGITEL 2006-2009 Luiz Augusto Carneiro Superintendente

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

Mudanças demográficas e saúde no Brasil Dados disponíveis em 2008

Mudanças demográficas e saúde no Brasil Dados disponíveis em 2008 Mudanças demográficas e saúde no Brasil Dados disponíveis em 2008 José Cechin Superintendente Executivo Carina Martins Francine Leite Nos últimos meses, vários relatórios publicados por diferentes instituições

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda.

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. Avaliação do risco de viés de ensaios clínicos randomizados pela ferramentada colaboração Cochrane Alan P. V. de Carvalho,

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução a Probabilidade Existem dois tipos

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

AVALIAÇÃO DA EPIDEMIA DE AIDS NO RIO GRANDE DO SUL dezembro de 2007

AVALIAÇÃO DA EPIDEMIA DE AIDS NO RIO GRANDE DO SUL dezembro de 2007 AVALIAÇÃO DA EPIDEMIA DE AIDS NO RIO GRANDE DO SUL dezembro de 2007 Notas importantes: O Banco de dados (BD) do Sistema de Informação Nacional de Agravos de Notificação (SINAN) vem sofrendo nos últimos

Leia mais

1 Método de Monte Carlo Simples

1 Método de Monte Carlo Simples Método de Monte Carlo Simples Finalidade: obter uma estimativa para o valor esperado de uma função qualquer g da variável aleatória θ, ou seja, E[g(θ)]. Seja g(θ) uma função qualquer de θ. Suponha que

Leia mais

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?

(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero? Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido

Leia mais

INFORMATICA PARA A VIGILANCIA E GESTAO DE INFORMACOES EM SAUDE: Prof. Dr. Joao Bosco Siqueira

INFORMATICA PARA A VIGILANCIA E GESTAO DE INFORMACOES EM SAUDE: Prof. Dr. Joao Bosco Siqueira INFORMATICA PARA A VIGILANCIA E GESTAO DE INFORMACOES EM SAUDE: Epi-INFO Prof. Dr. Joao Bosco Siqueira No nosso exercício, vamos investigar um surto de gastroenterite aguda ocorrido após um jantar. Vamos

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA [email protected] [email protected]

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA [email protected] [email protected] 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

5 Conclusões e Recomendações

5 Conclusões e Recomendações 5 Conclusões e Recomendações 5.1 Conclusões O objetivo deste estudo foi utilizar a base de dados de clientes de uma empresa para desenvolver um modelo de regressão logística que determine o risco de cancelamento

Leia mais

26/4/2012. Inquéritos Populacionais Informações em Saúde. Dados de Inquéritos Populacionais. Principais Características. Principais Características

26/4/2012. Inquéritos Populacionais Informações em Saúde. Dados de Inquéritos Populacionais. Principais Características. Principais Características Inquéritos Populacionais Informações em Saúde Dados de Inquéritos Populacionais Zilda Pereira da Silva Estudos de corte transversal, únicos ou periódicos, onde são coletadas informações das pessoas que

Leia mais

2 Atualidade de uma base de dados

2 Atualidade de uma base de dados 2 Atualidade de uma base de dados Manter a atualidade de uma base de dados é um problema que pode ser abordado de diferentes maneiras. Cho e Garcia-Molina [CHO] definem esse problema da seguinte forma:

Leia mais

Briefing. Boletim Epidemiológico 2010

Briefing. Boletim Epidemiológico 2010 Briefing Boletim Epidemiológico 2010 1. HIV Estimativa de infectados pelo HIV (2006): 630.000 Prevalência da infecção (15 a 49 anos): 0,61 % Fem. 0,41% Masc. 0,82% 2. Números gerais da aids * Casos acumulados

Leia mais

Simulação Computacional de Sistemas, ou simplesmente Simulação

Simulação Computacional de Sistemas, ou simplesmente Simulação Simulação Computacional de Sistemas, ou simplesmente Simulação Utilização de métodos matemáticos & estatísticos em programas computacionais visando imitar o comportamento de algum processo do mundo real.

Leia mais

Exercícios Resolvidos da Distribuição Binomial

Exercícios Resolvidos da Distribuição Binomial . a. Estabeleça as condições exigidas para se aplicar a distribuição binomial? b. Qual é a probabilidade de caras em lançamentos de uma moeda honesta? c. Qual é a probabilidade de menos que caras em lançamentos

Leia mais

PRIMAVERA RISK ANALYSIS

PRIMAVERA RISK ANALYSIS PRIMAVERA RISK ANALYSIS PRINCIPAIS RECURSOS Guia de análise de risco Verificação de programação Risco rápido em modelo Assistente de registro de riscos Registro de riscos Análise de riscos PRINCIPAIS BENEFÍCIOS

Leia mais

Modelagem de Processos Espaço-temporais

Modelagem de Processos Espaço-temporais Universidade Federal do Rio de Janeiro Instituto de Matemática Modelagem de Processos Espaço-temporais Marina Silva Paez ([email protected]) April 30, 2009 Trabalho realizado em colaboração com: Dani Gamerman

Leia mais

Exercícios Resolvidos sobre Amostragem

Exercícios Resolvidos sobre Amostragem Exercícios Resolvidos sobre Amostragem Observe agora, nestes Exercícios Resolvidos, como alguns parâmetros estatísticos devem ser construídos para formar amostras fidedignas de certas populações ou fenômenos

Leia mais

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi Metodologias de Desenvolvimento de Sistemas Analise de Sistemas I UNIPAC Rodrigo Videschi Histórico Uso de Metodologias Histórico Uso de Metodologias Era da Pré-Metodologia 1960-1970 Era da Metodologia

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Como aleatorizar? (Nome professor) (Universidade) Abdul Latif Jameel Poverty Action Lab. www.povertyactionlab.org

Como aleatorizar? (Nome professor) (Universidade) Abdul Latif Jameel Poverty Action Lab. www.povertyactionlab.org Como aleatorizar? (Nome professor) (Universidade) Abdul Latif Jameel Poverty Action Lab www.povertyactionlab.org Resumo da apresentação Restrições do mundo real e alguns exemplos bem sucedidos Unidade

Leia mais

IV Prova de Epidemiologia e Bioestatística. Aluno:

IV Prova de Epidemiologia e Bioestatística. Aluno: IV Prova de Epidemiologia e Bioestatística Aluno: Questão 1. Em Julho de 2014 uma colônia de férias com de crianças de 10 a 13 anos detectou o aparecimento de uma doença viral. No início havia 50 crianças

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Estatística: Conceitos e Organização de Dados Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Introdução O que é Estatística? É a parte da matemática aplicada que

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Matemática Financeira II

Matemática Financeira II Módulo 3 Unidade 28 Matemática Financeira II Para início de conversa... Notícias como essas são encontradas em jornais com bastante frequência atualmente. Essas situações de aumentos e outras como financiamentos

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

A avaliação da incerteza do tipo B. Segundo o Guia para Expressão da Incerteza na Medição (Joint Commitee for Guides

A avaliação da incerteza do tipo B. Segundo o Guia para Expressão da Incerteza na Medição (Joint Commitee for Guides A avaliação da incerteza do tipo B Segundo o Guia para Expressão da Incerteza na Medição (Joint Commitee for Guides in Metrology, 2008a), em condições ideais, todas as incertezas em laboratório seriam

Leia mais

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM

DESENVOLVENDO HABILIDADES CIÊNCIAS DA NATUREZA I - EM Olá Caro Aluno, Você já reparou que, no dia a dia quantificamos, comparamos e analisamos quase tudo o que está a nossa volta? Vamos ampliar nossos conhecimentos sobre algumas dessas situações. O objetivo

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD

ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD RESUMO Thereza P. P. Padilha Fabiano Fagundes Conceição Previero Laboratório de Solos

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

GERAÇÃO DE VIAGENS. 1.Introdução

GERAÇÃO DE VIAGENS. 1.Introdução GERAÇÃO DE VIAGENS 1.Introdução Etapa de geração de viagens do processo de planejamento dos transportes está relacionada com a previsão dos tipos de viagens de pessoas ou veículos. Geralmente em zonas

Leia mais

Probabilidade - aula III

Probabilidade - aula III 27 de Março de 2014 Regra da Probabilidade Total Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a Regra da Probabilidade

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia

Empresa de Pesquisa Energética (EPE) 2014. Analista de Projetos da Geração de Energia Empresa de Pesquisa Energética (EPE) 2014 Analista de Projetos da Geração de Energia Oi, pessoal! Vou resolver as quatro questões de Estatística (53 a 56) da prova elaborada pela banca Cesgranrio para

Leia mais

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A:

Logo, para estar entre os 1% mais caros, o preço do carro deve ser IGUAL OU SUPERIOR A: MQI 00 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 6/05/008 GABARITO PROBLEMA O preço de um certo carro usado é uma variável Normal com média R$ 5 mil e desvio padrão R$ 400,00. a) Você está interessado

Leia mais