POLIEDROS SEMI-REGULARES
|
|
|
- Washington Lacerda Faria
- 8 Há anos
- Visualizações:
Transcrição
1 1 POLIEDROS SEMI-REGULARES INTRODUÇÃO Em nossa segunda aula de Geometria Descritiva continuaremos o estudo dos poliedros abordando agora, os poliedros semi-regulares, também conhecidos como arquimedianos. Você aprenderá a classificá-los segundo seus ângulos e faces e também aprenderá a construí-los através dos moldes. DEFINIÇÃO E CLASSIFICAÇÃO DOS POLIEDROS SEMI-REGULARES Também chamado de poliedro arquimediano, é um poliedro convexo constituído por faces regulares (mas de número de lados diferentes) e ângulos sólidos iguais ou simétricos. Estas faces são de dois ou, mesmo, três tipos e os ângulos são triédricos, tetraédricos ou pentaédricos. Os poliedros são divididos em dois grupos: I - Os equiangulares II- Os equifaciais POLIEDROS SEMI-REGULARES EQUIANGULARES São poliedros que têm todos os ângulos sólidos iguais entre si, mas as faces não são todas iguais. São gerados pelo truncamento dos 5 poliedros regulares. Em número de 13 eles se originam: 1 do truncamento do tetraedro t e t r a t r o n c o e d r o 1 6 do truncamento do cubo ou tetraedro
2 2 c u b o c t a t r o n c o e d r o s do truncamento do dodecaedro ou Icosaedro d o d e c a i c o s i t r o n c o e d r o s POLIEDROS SEMI-REGULARES EQUIFACIAIS São poliedros que têm todas as faces iguais entre si, mas os ângulos sólidos não são todos iguais. Em número de 13 eles se originam: 1 do truncamento do tetraedro t e t r a t r o n c o e d r o 1 6 do truncamento do cubo ou tetraedro
3 3 c u b o c t a t r o n c o e d r o s do truncamento do dodecaedro ou Icosaedro d o d e c a i c o s i t r o n c o e d r o s Existem ainda, as pirâmides duplas e os trapezoedros. POLIEDROS SEMI-REGULARES EQUIANGULARES COM 2 TIPOS DE FACES E ÂNGULOS SÓLIDOS TRIEDROS 1 Troncotetraedro (tetraedro truncado) 4 Troncoctaedro (octaedro truncado)
4 4 10 Troncoicosaedro (icosaedro truncado) 2 Troncocubo (cubo truncado) 8 Troncododecaedro (dodecaedro truncado) POLIEDROS SEMI-REGULARES EQUIANGULARES COM 2 TIPOS DE FACES E ÂNGULOS SÓLIDOS QUADRAEDROS 5 Rombicuboctaedro
5 5 3 Cuboctaedro (é a interseção do Cubo como o Octaedro) 9 Icosidodecaedro ou dodecaicosaedro POLIEDROS SEMI-REGULARES EQUIANGULARES COM 2 TIPOS DE FACES E ÂNGULOS SÓLIDOS PENTAEDROS 7 Cubo achatado/rombo ou cuborrombo (snub-cubo) 13 Dodecaedro achatado/rombo ou dodecaedrorrombo (snub-dodecaedro)
6 6 POLIEDROS SEMI-REGULARES EQUIANGULARES COM 3 TIPOS DE FACES E ÂNGULOS SÓLIDOS TRIEDROS 6 Troncocuboctaedro (cuboctaedro truncado) 12 Troncoicosidodecaedro (icosidodecaedro truncado) POLIEDROS SEMI-REGULARES EQUIANGULARES COM 3 TIPOS DE FACES E ÂNGULOS SÓLIDOS QUADRAEDROS 11 - Rombicosidodecaedro
7 7 TABELA DE POLIEDROS SEMI-REGULARES E SEUS ELEMENTOS Terminologia Moderna Terminologia Antiga Face Face Face Faces Vértices Arestas Poliedros com dois tipos de faces Ângulos sólidos triedros Antiprismas arquimedianos Triaexagonal (4 34 6) Troncotetraedro 4F 6 4F Tetraesagonal (6 48 6) Troncoctaedro 8F 6 6F Pentaexagonal ( ) Troncoicosaedro 12F 5 20F Triatogonal (8 36 8) Troncocubo 6F 8 8F Triadecagonal ( ) Troncododecaedro 20F 10 12F Ângulos sólidos quadraedros Antiprismas arquimedianos Triatetragonal ( ) Rombicuboctaedro 18F 4 8F Triatetragonal (8 36 4) Cuboctaedro 8F 3 6F Triapentagonal ( ) Icosidodecaedro 20F 3 12F Ângulos sólidos pentaedros Triatetragonal ( ) Cubo achatado / rombo 32F 3 6F Triapentagonal ( ) Dodecaedro achatado / rombo 80F 3 12F Poliedros com três tipos de faces Ângulos sólidos triedros Antiprismas arquimedianos Triaexagonal (4 34 6) Troncocuboctaedro 12F 4 8F 6 6F Tetradecapentagonal ( ) Troncoicosidodecaedro 30F 4 20F 6 12F Ângulos sólidos quadraedros Triatetrapentagonal ( ) Rombicosidodecaedro 30F 4 20F 3 12F BIBLIOGRAFIA LOTUFO, Vitor Amaral e LOPES, João Marcos de Almeida (1982). Geodésicas & CIA. São Paulo: Projeto editores associados Ltda. MARTINEZ, Emilio Diaz. Poliedros Semirregulares - I Parte - Poliedros Equiangulos. Sevilla: Escuela Tecnica Superior de Arquitectura de La Universidad de Sevilla. SÁ, Ricardo Cunha da Costa e (1982). Edros. São José dos Campos. SCHATTSCHNEIDER, Dóris e WALKER, Wallace (1991). Caleidociclos de M. C. Escher. Köln: Benedikt Taschen Verlag GmbH.
POLIEDROS REGULARES. São os poliedros cujas faces são polígonos regulares iguais entre si, e cujos ângulos poliédricos são todos iguais.
1 POLIEDROS REGULARES DEFINIÇÃO E CLASSIFICAÇÃO DE POLIEDROS Do grego - poly (muitas) + edro (face). Os poliedros fazem parte do pensamento grego, foram estudados pelos grandes filósofos da antiguidade
POLIEDROS ARQUIMEDIANOS: MATERIAIS MANIPULÁVEIS E O SOFTWARE POLY COMO ALTERNATIVA DIDÁTICA
POLIEDROS ARQUIMEDIANOS: MATERIAIS MANIPULÁVEIS E O SOFTWARE POLY COMO ALTERNATIVA DIDÁTICA Bruna Gisele Rodrigues UNESPAR/FAFIUV [email protected] Vanessa Verbanek UNESPAR/FAFIUV [email protected]
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.
POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Determine o número de vértices de um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 pentagonal e 2 hexagonais. 07) Um poliedro de sete vértices tem cinco ângulos tetraédricos
RESGATANDO O ESTUDO DOS SÓLIDOS ARQUIMEDIANOS NAS AULAS DE GEOMETRIA. Ana Regina da Rocha Mohr [email protected]
ISSN 2177-9139 RESGATANDO O ESTUDO DOS SÓLIDOS ARQUIMEDIANOS NAS AULAS DE GEOMETRIA Ana Regina da Rocha Mohr [email protected] Daniel Silveira dos Santos - [email protected] Eli Regiane
POLIEDROS AULA I. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
POLIEDROS AULA I Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos POLIEDROS Vértice Face Aresta 1) Definição de POLIEDRO: É uma região do espaço delimitada por um conjunto finito de polígonos,
Roberto Batista Conrado Valdemar Winkler INTRODUÇÃO
1 CONSTRUINDO UM CUBO TRUNCADO COM MATERIAL RECICLÁVEL MÓDULO DE PESQUISA: DE QUE MODO A GEOMETRIA ESTÁ PRESENTE NO NOSSO DIA-A-DIA? UNIDADE DE APRENDIZAGEM: A GEOMETRIA DO DIA-A-DIA: DO ESPAÇO AO PLANO
EXERCÍCIOS RESOLVIDOS MALHAS PLANAS
1 EXERCÍCIOS RESOLVIDOS MALHAS PLANAS 1. CONSTRUIR UMA MALHA REGULAR QUADRADA COM CINCO LINHAS E CINCO COLUNAS SENDO DADO O LADO AB DO QUADRADO. Seja o segmento AB igual ao lado do quadrado. Construa um
Posições relativas entre elementos geométricos no espaço
Geometria no espaço Posições relativas entre elementos geométricos no espaço Plano: constituído por três pontos distintos e não colineares; o plano é bidimensional (tem duas dimensões: altura e largura);
1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem
ESTUDANDO POLIEDROS COM AUXÍLIO DE SOFTWARE EDUCACIONAL
ESTUDANDO POLIEDROS COM AUXÍLIO DE SOFTWARE EDUCACIONAL Gilmara Teixeira Barcelos - Centro Federal de Educação Tecnológica de Campos (CEFET- Campos) - [email protected] Silvia Cristina Freitas Batista
Trabalho 4: Os Sólidos Geométricos
Departamento de Matemática Mestrado em Ensino de Matemática no 3º Ciclo do Ensino Básico e no Ensino Secundário Trabalho 4: Os Sólidos Geométricos Meios Computacionais no Ensino Professor: Jaime Carvalho
Geometria Euclidiana II
Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1:
Poliedro de Escher (dodecaedro rômbico estrelado) (Jogos de Engenho S1 Laboratório de Educação Matemática) Parte 1: Observando a natureza A primeira descrição formal do dodecaedro rômbico deve-se a Kepler,
Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro
Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte
Resoluções das atividades
Resoluções das atividades ódulo Geometria spacial I 01 tividades para sala Um plano divide o espaço em dois semiespaços opostos, dos quais ele é origem. Observe os casos: I. α 17 d 17 itágoras ( 17) =
Estudando Poliedros com Auxílio do Software Poly
DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Poliedros com Auxílio do Software
3º trimestre SALA DE ESTUDOS Data: 25/09/18 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
3º trimestre SALA DE ESTUDOS Data: 5/09/18 Ensino Médio º ano classe: Prof. Maurício Nome: nº.. 1. (Uem 018) Sobre geometria espacial, assinale o que for correto. 01) Dois planos sempre se interceptam.
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
EXPLORANDO O SOFTWARE POLY- PRO Natália Lummertz 1 Sabrini Micheli da Silva dos Anjos 2 RESUMO
EXPLORANDO O SOFTWARE POLY- PRO Natália Lummertz 1 Sabrini Micheli da Silva dos Anjos 2 RESUMO O Poly-pro é um software matemático que pode ser utilizado no conteúdo de Geometria Espacial. Com o poly pode-se
Poliedros de Arquimedes: um estudo enriquecedor para as aulas de geometria espacial na rede pública
Thais de Sales Ribeiro Poliedros de Arquimedes: um estudo enriquecedor para as aulas de geometria espacial na rede pública Dissertação de Mestrado Dissertação apresentada como requisito parcial para a
Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros
Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,
Poliedros. INF2604 Geometria Computacional. Waldemar Celes. Departamento de Informática, PUC-Rio. W.
Poliedros INF2604 Geometria Computacional Waldemar Celes [email protected] Departamento de Informática, PUC-Rio W. Celes Poliedros 1 Poliedros Poliedros Região 3D delimitada por uma fronteira composta
Poliedros AULA Introdução Denições
AULA 13 13.1 Introdução Nesta aula estudaremos os sólidos formados por regiões do espaço (faces), chamados poliedros. O conceito de poliedro está para o espaço assim como o conceito de polígono está para
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental
Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:
Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado
Os Poliedros Platônicos. Por que existem só 5 sólidos platônicos?
Os Poliedros Platônicos Por que existem só 5 sólidos platônicos? Introdução O sufixo edro vem da palavra grega hédra que significa face. Os prefixos, também oriundos do grego, indicam a quantidade de faces
Questão 1. Com base nas informações, qual é a quantidade de cores que serão utilizadas na pintura das faces do troféu?
SE18 - Matemática LMAT 6C4 - Poliedros convexos Questão 1 (Enem 2015) Para o modelo de um troféu foi escolhido um poliedro P, obtido a partir de cortes nos vértices de um cubo. Com um corte plano em cada
GEOMETRIA ESPACIAL PROF. VALDIR AGUIAR
GEOMETRIA ESPACIAL PROF. VALDIR AGUIAR Sólidos geométricos PARA COMEÇAR... No mundo de hoje, as inúmeras obras de engenharia, arquitetura, artes plásticas etc. mostram a imensa quantidade de formas que
Prof. Márcio Nascimento. 1 de abril de 2015
Geometria dos Sólidos Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria
APLICAÇÃO DA GEOMETRIA, ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA NO ESTUDO DE POLIEDROS: REPRESENTAÇÃO 3D E TRANSFORMAÇÕES LUIZ HENRIQUE ZEFERINO
APLICAÇÃO DA GEOMETRIA, ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA NO ESTUDO DE POLIEDROS: REPRESENTAÇÃO 3D E TRANSFORMAÇÕES LUIZ HENRIQUE ZEFERINO UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO UENF
TRABALHO DE CONCLUSÃO DE CURSO B
UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTO DE CIÊNCIAS EXATAS E DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA TRABALHO DE CONCLUSÃO DE CURSO B POLIEDROS REGULARES E SEMIRREGULARES. CONCEITOS, HISTÓRIA E CLASSIFICAÇÃO.
III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso
1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino
1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes
UNIVERSIDADE ESTADUAL DO CEARÁ CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL JOSÉ KILMER TAVARES SILVA
1 UNIVERSIDADE ESTADUAL DO CEARÁ CENTRO DE CIÊNCIAS E TECNOLOGIA CURSO DE MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL JOSÉ KILMER TAVARES SILVA UM ESTUDO COMPLEMENTAR DOS POLIEDROS VOLTADO PARA
Plano de Trabalho sobre Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: C. E. Madre Teresa de Calcutá. PROFESSORA: Angela Saida Alvarez Jacob. GRUPO 6 MATRÍCULA: 0913098-0 TURMA: 2 ano.
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo
Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015
GEOMETRIA Adriana da Silva Santi Coord. Pedagógica de Matemática SMED - Abril/2015 O MATERIAL COMO SUPORTE DO PENSAMENTO Muita gente usa o material na sala de aula como se a Geometria estivesse no material.
Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS 1 Sólidos Geométricos Introdução Grande parte dos objetos que nos são familiares tem formas geométricas definidas; são
Durante a atividade Divida os alunos em duplas; 1 - Peça para que cada dupla inicie a atividade; 2 - Depois de reconhecer e classificar os tipos de fi
Geometria 3ª atividade Relacionando formas Introdução Após várias atividades que possibilitaram a classificação das formas tridimensionais desejamos que os alunos continuem a percebê-las e que possam ser
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ PLANO DE TRABALHO MATEMÁTICA 2º ANO 1º BIMESTRE/2014 GEOMETRIA ESPACIAL Tarefa 1 Aluno: Thiago Milani Cabral Grupo 2 Tutora: Susi Cristine
PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas
PLANTA BAIXA AULA 02 (parte I) Introdução ao Desenho Técnico (continuação) Escalas 1 Escalas escala medida _ no _ desenho medida _ real _ ou _ verdadeira _ grandeza D VG Escala de ampliação Objeto real
Sólidos arquimedianos: um estudo sobre truncaduras e suas construções no Ensino Médio
Sólidos arquimedianos: um estudo sobre truncaduras e suas construções no Ensino Médio Ana Regina da Rocha Mohr 1 Silvio Luiz Martins Britto 2 Resumo A Geometria, desde os tempos mais antigos, é uma área
Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)
Regulares, são só esses?
Reforço escolar M ate mática Regulares, são só esses? Dinâmica 8 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Ensino Médio 2ª Geométrico Introdução à Geometria Espacial Primeira Etapa Compartilhar
Geometria Espacial: Sólidos Geométricos
Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.
Exemplos: [Ag(NH 3 ) 2 ] +, [AgCl 2 ] -, [Ag(CN) 2 ] -, [CuCl 2 ] -, [Cu(NH 3 ) 2 ] +, [Au(CN) 2 ] -, [HgCl 2 ] e [Hg(CN) 2 ].
NÚMERO DE COORDENAÇÃO E GEOMETRIA Número de Coordenação 2 Poucos complexos com NC = 2 são conhecidos, eles são, geralmente, limitados aos íons +1 do Grupo 11 e para o Hg(II), todos com configuração d 10.
GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE
GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO
Tarefa nº 9. (Plano de trabalho nº 4)
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 10º ANO DE MATEMÁTICA A Tarefa nº 9 VAMOS DESCOBRIR NOVOS POLIEDROS A PARTIR DO CUBO Pretende-se, com esta actividade, e utilizando o que estudou e trabalhou até
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS DE UNIÃO DA VITÓRIA COLEGIADO DE MATEMÁTICA VANESSA VERBANEK
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS DE UNIÃO DA VITÓRIA COLEGIADO DE MATEMÁTICA VANESSA VERBANEK OS TREZE POLIEDROS ARQUIMEDIANOS: COMPREENSÃO, CARACTERIZAÇÃO E UMA PROPOSTA DIDÁTICA PARA
Chama-se poliedro a uma figura geométrica, a três dimensões, cujas faces são polígonos. Um poliedro regular é aquele em que as faces são polígonos
Ana Salgado INTRODUÇÃO Acedendo ao site The Geometry Junkyard, encontrei o link All the junk in one big pile onde escolhi o tema Poly. Poly, é um programa para explorar várias classes de poliedros, incluindo
Exercícios de Matemática Poliedros
Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro
RELATÓRIO Data: , e
RELATÓRIO Data:25.06.2015, 26.06.2015 e 29.06.2015 Objetivo(s) Objetivo Geral: - Abordar conceitos de geometria espacial e plana por meio da construção, manipulação e planificação dos poliedros de Platão.
1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma
UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG DEPARTAMENTO DE CIÊNCIAS EXATAS - ICEX TELMA CRISTINA DE SOUZA ALBINO POLIEDROS
1 UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG DEPARTAMENTO DE CIÊNCIAS EXATAS - ICEX TELMA CRISTINA DE SOUZA ALBINO POLIEDROS PROFESSOR ORIENTADOR: ANTÔNIO ZUMPANO Belo Horizonte 2011 2 POLIEDROS Monografia
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015
Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 3ª SÉRIE ENSINO MÉDIO GABARITO PROVA A GABARITO PROVA B A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10
CONCEITO E PROPRIEDADES ELEMENTARES DE POLIEDROS E SEU ENSINO
CONCEITO E PROPRIEDADES ELEMENTARES DE POLIEDROS E SEU ENSINO Autora: Fabiana Brianez Orientador: Prof. Dr. Roberto Ribeiro Paterlini Disciplina: Trabalho de Conclusão de Curso B Curso: Licenciatura em
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2. Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 -
Março/2013 CECIERJ CEDERJ PLANO DE TRABALHO 2 Introdução à Geometria Espacial Danielle Gomes Gioseffi - 0 - Formação Continuada em Matemática Fundação CECIERJ / Consórcio CEDERJ MATEMÁTICA 2º ANO/ENS.
DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008
DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
Material manipulável no ensino de geometria espacial
Material manipulável no ensino de geometria espacial BARBOSA, Lucas Dias Ferreira [1] ; COSTA, Gustavo Arcanjo [1] ; FEITOSA, Antônio Joaquim Rodrigues [2]. 1 1. Resumo A teoria construtivista de Piaget,
Mat. Monitor: Roberta Teixeira
1 Mat. Professore: Alex Amaral Monitor: Roberta Teixeira 2 Poliedros 19 set RESUMO Poliedros São sólidos geométricos formados por vértices, arestas e faces, cujas superfícies são polígonos planos (triângulos,
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
Poliedros. MA13 - Unidade 22. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT
Poliedros MA13 - Unidade 22 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Poliedros Poliedro é um objeto da Matemática que pode ser definido com diversos
Estudo das Superfícies. Luís Miguel Cotrim Mateus, Assistente (2006) 2ª versão
1 Estudo das Superfícies Luís Miguel Cotrim Mateus ssistente (2006) 2ª versão 2 1. Os destinatários No contexto da aplicação Planos de Estudo de 2004 esta planificação integra o conjunto de aulas da disciplina
4. Superfícies e sólidos geométricos
4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das
O Universo dos Poliedros Regulares
Universidade Federal de Mato Grosso Instituto de Ciências Exatas e da Terra Departamento de Matemática O Universo dos Poliedros Regulares Nayara Longo Sartor Mestrado Profissional em Matemática: PROFMAT/SBM
Volume do dodecaedro e do icosaedro
Capítulo Volume do dodecaedro e do icosaedro.1 Introdução. Os cálculos do volume dos sólidos platônicos que geralmente são abordados pelos livros didáticos de Matemática do ensino médio, resumem-se ao
Aula 26 Poliedros. Objetivos. Identificar poliedros. Aplicar o Teorema de Euler
MÓDULO 2 - AULA 26 Aula 26 Poliedros Objetivos Identificar poliedros Aplicar o Teorema de Euler Introdução Nesta aula estudaremos outros exemplos de figuras no espaço: os poliedros Começaremos com a definição
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP TALITA CARVALHO SILVA DE ALMEIDA
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP TALITA CARVALHO SILVA DE ALMEIDA SÓLIDOS ARQUIMEDIANOS E CABRI 3D: UM ESTUDO DE TRUNCATURAS BASEADAS NO RENASCIMENTO MESTRADO PROFISSIONAL EM ENSINO
Formação Continuada Nova EJA. Plano de Ação 22
Formação Continuada Nova EJA Plano de Ação 22 Nome: ANDRÉ LUIZ REBELLO SOARES Regional 3 - IE CARMELA DUTRA Tutor: CARLOS EDUARDO LIMA DE BARROS INTRODUÇÃO: Sistematizando os conhecimentos que outros povos
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA
Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies
INTRODUÇÃO À GEOMETRIA ESPACIAL
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 1º Bimestre/2014 Plano de Trabalho INTRODUÇÃO À GEOMETRIA ESPACIAL Tarefa 1 Cursista: Wendel do Nascimento Pinheiro
ESTADO DE ALAGOAS UNIVERSIDADE ESTADUAL DE ALAGOAS - UNEAL PRÓ-REITORIA DE GRADUAÇÃO - PROGRAD Reitoria Arapiraca PLANO DE MONITORIA
PLANO DE MONITORIA CAMPUS: Campus III - Palmeira dos Índios CURSO: Matemática ANO LETIVO: 2017 PROFESSOR ORIENTADOR: ELIELSON MAGALHÃES LIMA DISCIPLINA: Geometria Euclidiana Espacial EXISTE DISCIPLINA
Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
PLANO DE TRABALHO SOBRE GEOMETRIA ESPACIAL. H07 Relacionar diferentes poliedros ou corpos redondos com suas planificações.
FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: COLÉGIO ESTADUAL PAULINO PINHEIRO BAPTISTA PROFESSORA: PATRÍCIA DOMINGUES DE SOUZA MATRÍCULA: 0912303-5 TUTOR: SUSI
CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO
CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030362 Geometria Espacial DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 45 horas CARGA HORÁRIA
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
FORMAÇÃO CONTINUADA EM MATEMÁTICA TAREFA 4 MARCIA LEPSCH FERREIRA BARCELLOS. Matemática 2º ano - 1º Bimestre. Grupo: 4
FORMAÇÃO CONTINUADA EM MATEMÁTICA TAREFA 4 MARCIA LEPSCH FERREIRA BARCELLOS Matemática 2º ano - 1º Bimestre Grupo: 4 Tutor: Maria Cláudia Padilha Tostes Plano de trabalho: Geometria Espacial Introdução:
UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG DEPARTAMENTO DE CIÊNCIAS EXATAS - ICEX TELMA CRISTINA DE SOUZA ALBINO POLIEDROS
1 UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG DEPARTAMENTO DE CIÊNCIAS EXATAS - ICEX TELMA CRISTINA DE SOUZA ALBINO POLIEDROS PROFESSOR ORIENTADOR: ANTÔNIO ZUMPANO Belo Horizonte 2011 2 POLIEDROS Monografia
José Ribamar de Souza Neves Poliedros Arquimedianos
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE MATEMÁTICA Mestrado Profissional em Matemática em Rede Nacional José Ribamar de Souza Neves Poliedros Arquimedianos RECIFE 2017 UNIVERSIDADE FEDERAL
Geometria Espacial. Projetos SEEDUC Formação Continuada. Matemática 2ª Série do ensino médio 1º Bimestre
Projetos SEEDUC Formação Continuada Geometria Espacial Matemática 2ª Série do ensino médio 1º Bimestre Plano de Trabalho 2 Professora: Viviane de Almeida Ramos Tutor: Claudio Rocha de Jesus Grupo: 6 Introdução
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
Expressão Gráfica II Geometria Descritiva Engenharia Civil - 2014 13 MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ D PNT 1. Planos fundamentais de referência (PFR) Consideremos π e π dois planos
JOGOS COM POLIEDROS E PERMUTAÇÕES
JOGOS COM POLIEDROS E PERMUTAÇÕES JORGE REZENDE. Introdução Este artigo descreve um conjunto de jogos didácticos com poliedros e permutações. Num texto escrito já há alguns anos [] foi atribuído a estes
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2019 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2019 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 4 - Geometria Espacial 01/03/2019 Obs.: É importante
O origami no ensino da Matemática
O origami no ensino da Matemática A construção de um origami parte sempre da dobragem de uma folha de papel num quadrado perfeito. Ao voltarmos a dobrar este quadrado podemos obter triângulos e outros
