Exemplos Modelos Binomiais de Dose-Resposta
|
|
|
- João Vítor Leão Schmidt
- 9 Há anos
- Visualizações:
Transcrição
1 Exemplos Modelos Binomiais de Dose-Resposta p. 1/14 Exemplos Modelos Binomiais de Dose-Resposta Gilberto A. Paula Departamento de Estatística IME-USP MAE Modelos Lineares Generalizados 2 o semestre de 2011
2 Exemplos Modelos Binomiais de Dose-Resposta p. 2/14 Modelos de dose-resposta Como aplicação de modelos binomiais de dose-resposta vamos considerar os dados descritos em Bliss (1935) em que besouros adultos são submetidos à exposição de disulfeto de carbono gasoso (CS 2 ) durante cinco horas. Os resultados obtidos a partir de 481 besouros expostos segundo diferentes doses de CS 2 são apresentados na tabela dada a seguir. Um dos objetivos desse estudo é estimar a dose letal que mata 100p%, denotada por DL 100p. Comparamos o ajuste de dois modelos aos dados.
3 Exemplos Modelos Binomiais de Dose-Resposta p. 3/14 Besoutos expostos a CS 2 Dose Besouros Besouros log 10 CS 2 expostos mortos 1, , , , , , , ,
4 Exemplos Modelos Binomiais de Dose-Resposta p. 4/14 Modelo inicial Seja Y i o números de besouros mortos dentre os n i submetidos à i-ésima dose de CS 2. Vamos supor Y i B(n i,µ(x i )), em que log { } µ(xi ) 1 µ(x i ) = β 1 +β 2 x i, sendo x i a i-ésima dose de CS 2. As estimativas de máxima verossimilhança são dadas por ˆβ 1 = 60,72(5,18) e ˆβ 2 = 34,27(2,91). Na Figura 1 temos a descrição da curva ajustada aos dados.
5 Exemplos Modelos Binomiais de Dose-Resposta p. 5/14 Figura 1. Curva logística ajustada. Porporcao de Mortos dose
6 Exemplos Modelos Binomiais de Dose-Resposta p. 6/14 Figura 2. Envelope modelo logístico. Componente do Desvio Percentis da N(0,1)
7 Exemplos Modelos Binomiais de Dose-Resposta p. 7/14 Interpretações Nota-se pela Figura 2 que a suposição de modelo logístico binomial não é adequada para este conjunto de dados. Isso pode ser confirmado pelo valor da função desvio D(y; ˆµ) = 11,23 (6 g.l.) cujo valor-p é dado por P=0,0815, indicando uma possível falta de ajuste. Como não há indícios de sobredispersão vamos tentar outra ligação. Pela Figura 1 nota-se que na segunda metade da curva a proporção de besouros mortos parece aumentar mais rapidamente do que na primeira metade.
8 Exemplos Modelos Binomiais de Dose-Resposta p. 8/14 Modelo proposto Isto sugere uma ligação complemento log-log. Assim, vamos supor agora que Y i B(n i,µ(x i )), porém com ligação dada por log{ log(1 µ(x i ))} = β 1 +β 2 x i. As estimativas de máxima verossimilhança são dadas aqui por ˆβ 1 = 39,57(3,24) e ˆβ 2 = 22,04(1,80). O desvio é dado por D(y; ˆµ) = 3,45 (6 g.l.) com valor-p P=0,751, indicando um ajuste adequado.
9 Exemplos Modelos Binomiais de Dose-Resposta p. 9/14 Figura 3. Curva e envelope modelo Cloglog. Porporcao de Mortos Componente do Desvio dose (a) Percentis da N(0,1) (b)
10 Exemplos Modelos Binomiais de Dose-Resposta p. 10/14 Dose letal Para o modelo com ligação complemento log-log temos a estimativa de máxima verossimilhança DL 100p = 1ˆβ2 [ log{ log(1 p)} ˆβ 1 ], cuja variância assintótica é dada por Var A [ DL100p ] = D(β) T (X T WX) 1 D(β), em que W é uma matriz diagonal de pesos dados por ω i = n i µ 1 i (1 µ i )log 2 (1 µ i ) para i = 1,...,k.
11 Exemplos Modelos Binomiais de Dose-Resposta p. 11/14 Dose letal modelo Cloglog Temos ainda para a ligação complemento log-log que D(β) = d(β) β = [ 1 β 2, 1 β 2 2 {β 1 log( log(1 p))}] T. Em particular, para p = 0,50, obtemos a estimativa pontual para a dose letal DL 50 = 1ˆβ2 [ log{ log(1 0,5)} ˆβ 1 ] = 1 22,04 ( 0, ,57) = 1,779.
12 Exemplos Modelos Binomiais de Dose-Resposta p. 12/14 Estimativas dose letal A variância estimada de DL 50 fica da por ( ) 0,0454 Var( DL50 ) = ( 0,0454, 0,0807) T (X T ŴX) 1 0, 0807 = 0, Logo, obtemos a estimativa intervalar de 95% para a dose letal DL 50 1,779 ± 1,96 0, = [1,771;1,787].
13 Exemplos Modelos Binomiais de Dose-Resposta p. 13/14 Conclusões Neste exemplo em que ajustamos a probabilidade de morte de besouros expostos a CS 2 nota-se que o modelo logístico linear não se ajusta bem aos dados, enquanto o modelo complementar log-log linear tem um ajuste muito superior. Isso deve-se ao fato do comportamento da proporção de mortes aumentar mais rapidamente após DL 50 do que antes de DL 50. Modelos binomiais com parâmetros na ligação (Aranda-Ordaz, 1981; Stukel, 1988) têm sido utilizados para ajustar esses dados.
14 Exemplos Modelos Binomiais de Dose-Resposta p. 14/14 Referências Aranda-Ordaz, F. J. (1981). On two families of transformations to additivity for binary response data. Biometrika 68, Bliss, C. I. (1935). The calculation of the dosage-mortality curve. Annals of Applied Biology 22, Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association 83,
Exemplos Modelos de Quase-Verossimilhança
Exemplos Modelos de Quase-Verossimilhança p. 1/40 Exemplos Modelos de Quase-Verossimilhança Gilberto A. Paula Departamento de Estatística IME-USP MAE5763 - Modelos Lineares Generalizados 2 o semestre de
Exemplos Equações de Estimação Generalizadas
Exemplos Equações de Estimação Generalizadas Bruno R. dos Santos e Gilberto A. Paula Departamento de Estatística Universidade de São Paulo, Brasil [email protected] Modelos Lineares Generalizados dos
Disciplina de Modelos Lineares Professora Ariane Ferreira
Disciplina de Modelos Lineares 2012-2 Regressão Logística Professora Ariane Ferreira O modelo de regressão logístico é semelhante ao modelo de regressão linear. No entanto, no modelo logístico a variável
Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados
Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:
1 z 1 1 z 2. Z =. 1 z n
Gabarito Lista 3. Tópicos de Regressão. 2016-2. 1. Temos que y i ind N (µ, φi ), com log φ i = α + γz i, para i = 1,..., n, portanto (i) para o γ = (α, γ) a matriz modelo ca Z = 1 z 1 1 z 2.. 1 z n (ii)
Técnicas computacionais em probabilidade e estatística II
Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.
Exemplo Vida Útil de Ferramentas
Exemplo Vida Útil de Ferramentas Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2016 G. A. Paula (IME-USP) Vida útil de Ferramentas 2 o Semestre 2016 1 /
MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS
MODELOS DE REGRESSÃO PARA DADOS CONTÍNUOS ASSIMÉTRICOS 1 Diversas distribuições podem ser consideradas para a modelagem de dados positivos com distribuição contínua e assimétrica, como, por exemplo, as
Modelos Lineares Generalizados
Modelos Lineares Generalizados Emilly Malveira de Lima Análise de Dados Categóricos Universidade Federal de Minas Gerais - UFMG 10 de Maio de 2018 Emilly Malveira (PGEST-UFMG) 10 de Maio de 2018 1 / 20
Faturamento de Restaurantes
Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2016 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2016 1 / 29
Exemplo Regressão Binomial Dados Emparelhados
Exemplo Regressão Binomial Dados Emparelhados Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2013 G. A. Paula (IME-USP) Desenvolvimento de Diabetes 2 o Semestre
Modelos Lineares Generalizados - Verificação do Ajuste do Modelo
1 Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 9 de Abril de 2015 2 3 Função Deviance Podemos ver o ajuste de um modelo a um conjunto de dados como: uma forma
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2. Veremos
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência
Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.
Introdução ao modelo de Regressão Linear
Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: [email protected] Local: Sala dos professores (junto ao administrativo)
Tratamento Estatístico de Dados em Física Experimental
Tratamento Estatístico de Dados em Física Experimental Prof. Zwinglio Guimarães o semestre de 06 Tópico 7 - Ajuste de parâmetros de funções (Máxima Verossimilhança e Mínimos Quadrados) Método da máxima
Teorema do Limite Central
Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2
Exame da OAB. Gilberto A. Paula. Departamento de Estatística IME-USP, Brasil
Exame da OAB Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2017 G. A. Paula (IME-USP) Exame da OAB 2 o Semestre 2017 1 / 29 Exame da OAB Sumário 1 Exame
Experimentos Fatoriais
Experimentos Fatoriais Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos
Esquema Fatorial. Esquema Fatorial. Lucas Santana da Cunha 06 de outubro de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 06 de outubro de 2018 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos mais simples comparamos
Análise de Dados Longitudinais Aula
1/35 Análise de Dados Longitudinais Aula 08.08.2018 José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/ jlpadilha 2/35 Sumário 1 Revisão para dados transversais 2 Como analisar dados longitudinais 3 Perspectiva
Exemplo MLG Misto. Gilberto A. Paula. Departamento de Estatística IME-USP, Brasil
Exemplo MLG Misto Gilberto A. Paula Departamento de Estatística IME-USP, Brasil [email protected] 2 o Semestre 2015 G. A. Paula (IME-USP) Placas Dentárias 2 o Semestre 2015 1 / 16 Placas Dentárias Sumário
Quantis residuais. Luziane Franciscon Acadêmica de Estatística Universidade Federal do Paraná
Quantis residuais Luziane Franciscon Acadêmica de Estatística Universidade Federal do Paraná Orientador: Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Resumo Uma etapa importante
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
Lista 1 - Gabarito. Prof. Erica Castilho Rodrigues Disciplina: Modelos Lineares Generalizados. 29 de Abril. f(y i, θ i ) = θ i exp( yiθ i ).
Lista 1 - Gabarito Prof. Erica Castilho Rodrigues Disciplina: Modelos Lineares Generalizados 29 de Abril 1. (Concurso Petrobrás - 2011) Em um modelo de regressão logística, o que indica se o modelo se
Modelos Lineares Generalizados - Análise de Resíduos
Modelos Lineares Generalizados - Análise de Resíduos Erica Castilho Rodrigues 28 de Junho de 2013 3 Assim como em Regressão Linear, também precisamos fazer Análise de Resíduos para os MLG s. São semelhantes
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
ESQUEMA FATORIAL. Lucas Santana da Cunha Universidade Estadual de Londrina Departamento de Estatística
ESQUEMA FATORIAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 22 de julho de 2017 Esquema Fatorial Nos experimentos mais simples
MAE0229 Introdução à Probabilidade e Estatística II
Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de
Introdução à Bioestatística Turma Nutrição
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição
Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos
Comparação entre intervalos de confiança calculados com métodos strap e intervalos assintóticos Selene Loibel Depto. de Estatística, Matemática Aplicada e Computação, IGCE, UNESP, Rio Claro, SP E-mail:[email protected],
Análise de Dados Categóricos
1/43 Análise de Dados Categóricos Modelo de Regressão de Poisson Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Departamento de Estatística Universidade Federal de Minas Gerais 2/43 Revisão:
UM MODELO DE FRAGILIDADE PARA DADOS DISCRETOS DE SOBREVIVÊNCIA. Eduardo Yoshio Nakano 1
1 UM MODELO DE FRAGILIDADE PARA DADOS DISCRETOS DE SOBREVIVÊNCIA Eduardo Yoshio Nakano 1 1 Professor do Departamento de Estatística da Universidade de Brasília, UnB. RESUMO. Em estudos médicos, o comportamento
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
Markov Switching Models. Profa. Airlane Alencar. Depto de Estatística - IME-USP. lane. Ref: Kim e Nelson (1999) e Hamilton (1990)
Markov Switching Models Profa. Airlane Alencar Depto de Estatística - IME-USP www.ime.usp.br/ lane Ref: Kim e Nelson (1999) e Hamilton (1990) 1 Objetivo Mudança nos parâmetros de um modelo de regressão
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1
AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância
Regressão de Poisson e parentes próximos
Janeiro 2012 Família Exponencial Seja Y uma variável aleatória. A distribuição de probabilidade de Y pertence à família exponencial se a sua função densidade de probabilidade é da forma ( ) yθ b(θ) f (y
3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25
3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.
Instituto Federal Goiano
Instituto Federal Goiano Conteúdo 1 2 A correlação mede apenas o grau de associação entre duas variáveis, mas não nos informa nada sobre a relação de causa e efeito de uma variável sobre outra Na correlação,
INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.
INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Modelos de Regressão Múltipla - Parte VIII
1 Modelos de Regressão Múltipla - Parte VIII Erica Castilho Rodrigues 15 de Fevereiro de 2017 2 3 Observações não usuais 4 As observações não usuais podem ser: Outliers: não se ajustam bem ao modelo (resíduo
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
Modelos de Regressão Linear Simples - parte III
1 Modelos de Regressão Linear Simples - parte III Erica Castilho Rodrigues 20 de Setembro de 2016 2 3 4 A variável X é um bom preditor da resposta Y? Quanto da variação da variável resposta é explicada
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Regressão Polinomial e Análise da Variância Piracicaba Setembro 2014 Estatística Experimental 18 de Setembro de 2014 1 / 20 Vimos
FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES
FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a
UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA DENNIS LEÃO GRR LUAN FIORENTIN GRR
UNIVERSIDADE FEDERAL DO PARANÁ CURSO ESTATÍSTICA DENNIS LEÃO GRR - 20160239 LUAN FIORENTIN GRR - 20160219 MODELAGEM DE DADOS DE ÓBITOS POR AGRESSÕES NO ESTADO DE SÃO PAULO NO ANO DE 2016 CURITIBA Novembro
Aula 8 : Estimação de parâmetros
UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos Aula 8 : Estimação de parâmetros DOCENTE:CIRA SOUZA
Ajuste e comparação de modelos para dados grupados e censurados
Ajuste e comparação de modelos para dados grupados e censurados 1 Introdução José Nilton da Cruz 1 Liciana Vaz de Arruda Silveira 2 José Raimundo de Souza Passos 2 A análise de sobrevivência é um conjunto
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC
Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
Análise de Regressão EST036
Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Regressão sem intercepto; Formas alternativas do modelo de regressão Regressão sem
Análise de Regressão Linear Simples e
Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável
Variáveis Aleatórias Contínuas
Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos
Modelos Lineares Generalizados - Componentes do Modelo
Modelos Lineares Generalizados - Componentes do Modelo Erica Castilho Rodrigues 01 de Abril de 2014 3 Vejamos agora quais as componentes de um Modelo Linear Generalizado. Temos um conjunto de variáveis
Inferência Estatística
Inferência Estatística Estimação Intervalar Média e Proporção Estimação Pontual x Estimação Intervalar Exemplo Inicial: Um estudo pretende estimar o valor de µ, a renda média familiar dos alunos da UFMG.
MAE0229 Introdução à Probabilidade e Estatística II
Exercício 1 Os registros do serviço de saúde de uma cidade indicam que a proporção de mães que amamentam até o terceiro mês de idade da criança é p = 0, 50. A fim de aumentar essa proporção, vem sendo
Estatística aplicada a ensaios clínicos
Estatística aplicada a ensaios clínicos RAL - 5838 Luís Vicente Garcia [email protected] Faculdade de Medicina de Ribeirão Preto Estatística aplicada a ensaios clínicos aula 8 amostragem amostragem
ME613 - Análise de Regressão
ME613 - Análise de Regressão Parte 12 Gráficos de Regressão Parcial Samara F. Kiihl - IMECC - UNICAMP file:///users/imac/documents/github/me613-unicamp/me613-unicamp.github.io/aulas/slides/parte12/parte12.html#1
