RESOLUÇÕES DA 2ª FASE

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÕES DA 2ª FASE"

Transcrição

1 Res RESOLUÇÕES DA 2ª FASE MODALIDADE PROGRAMAÇÃO

2 QUESTÃO 01. Primeiramente, transforma-se o número 156 em binário. Uma das formas para isso, seria fatorá-lo. Onde teriamos que 156 = 2 3 * 3 * 13 = 2 3 * ( ) * ( ) = 1* * * * * * * *2 0 = em binário. A negação seria inverter, tornando 0 em 1 e 1 em 0. Desse modo, o número em binário achado seria Para torná-lo decimal, basta multiplicar as bases e somar, sendo o resultado portanto 1* * * *2 0 = = 99. Alternativa correta: letra A. QUESTÃO 02. Transformando para a base 10 temos: = 1* * * *2 3 = = = Esse número na base 10 somado a x é igual a 6 10, ou seja, temos: x = 6 10 x = x = QUESTÃO 03. Caso seja um aumento de 10%, é necessário multiplicar por 1,1 para que possa acrescentar, ao valor do salário anterior, a diferença. Caso seja um aumento de 15%, é necessário multiplicar por 1,15 para que possa acrescentar, ao valor do salário anterior, a diferença. Caso seja um aumento de 20%, é necessário multiplicar por 1,2 para que possa acrescentar, ao valor do salário anterior, a diferença. QUESTÃO 04. Para que sejam verificados os números de 1 a 30 é necessário que haja um loop( de 1 a 30) para que esses sejam testados. Após, é preciso que a verificação, se o número é primo ou não,

3 seja feita e, para que isso ocorra é necessário verificar se o número é divisível por 2, isso é feito observando se o resto da divisão por 2 é zero. Alternativa correta: letras A e D (alternativas iguais). QUESTÃO 05. Analisando o algoritmo, podemos perceber que ele percorre todos os divisores que são menores ou iguais à metade desse número, uma vez que os números maiores que sua metade não poderão dividi-lo de maneira inteira. Para checar se o número tem um divisor que não seja 1 ou ele mesmo, existe o loop da linha 3. Na linha 4, ele captura o resto da divisão do número desejado (N) pelo número atual do loop (divisor). Quando o N é divisível por divisor, o resto da divisão é zero, por isso a condição na linha 5. QUESTÃO 06. a 0 para i de 1 até 100 faça: imprima a se i mod 4 = 0 então: a a + i Para toda iteração que o resto da divisão do número de i, que vai de 1 a 100, por 4 for zero, o valor de i será incrementado na variável a. Ou seja, quando x = 4, a soma dos múltiplos de 4 entre 1 e 100 é QUESTÃO 07. Primeiro decodificamos o binário do enunciado a fim de entender o código = Em seguida tenta-se encontrar uma relação entre esse número e a palavra que o representa. 3ª1ª2ª9ª4ª5 letra do alfabeto = C.A.B.I.D.E Logo, a ordem da letra representa o número em decimal que deverá ser codificado em binário.

4 C.H.E.F.E 3ª8ª5ª6ª5ª letra do alfabeto *1 = 8. QUESTÃO 08. Imaginando a situação menos trabalhosa, onde a mão do jogador já vem ordenada, o algoritmo precisa realizar 9 iterações para comparar a posição atual com a anterior. Para a pior situação, onde a mão vem inversamente ordenada, a quantidade de iterações será de 9*9, resultando em 81. QUESTÃO 09. A cada 3 entradas, é retirada 1 delas da fila. Com isso, após 99 entradas, serão retiradas os 33 primeiros números inseridos. Logo, o número que sairá após a 100 entrada será 34. Alternativa correta: letra A. QUESTÃO 10. Nosso primeiro caso é obter os nomes e idades dos alunos adultos. Para isso, devemos utilizar a projeção para obtermos apenas nome e idades. Para conseguirmos os alunos adultos (que são aqueles maiores de 18 anos), devemos fazer uma seleção sobre a idade dos alunos, com a condição idade >= 18. Assim, nossa álgebra para este caso seria: π Nome, Idade ( σ Idade >= 18 (ListaAlunos) ) ou σ Idade > 17 (π Nome, Idade (ListaAlunos) ) O nosso segundo caso será análogo ao primeiro, diferindo nos seguintes pontos: A projeção será sobre turma e média; A seleção será sobre a condição de média>8.0 Assim, obtemos a seguinte fórmula: π Turma, Media ( σ Media > 8.0 (ListaAlunos) ) Alternativa correta: letras B e D (há equivalência entre as alternativas).

5 QUESTÃO 11. Método 1: Método 2: Transformar cada número paa a base decimal, fazer a subtração e, em seguida, transformar o resultado para a base binária: ^5 + 2^2 + 2^0 = ^3 + 2^2 + 2^0 = = (Por divisão). QUESTÃO 12. Se i inicia-se com 0 e i MOD 2 é 0, concluímos que o número i inicial sempre será contado, logo o intervalo é fechado em i. Como a operação é MOD 2, estamos capturando os números pares e, como a condição do loop é enquanto i <= n, n entra na análise, tornando o intervalo também fechado em n. Assim, o algoritmo retorna a quantidade de números pares entre i e n. Alternativa correta: A e E (alternativas iguais). QUESTÃO 13. Ao conferirmos as interações do programa iremos ver que só haverá 4 iterações, e no final a variável mid receberá 4 atribuições: (11, 33, 16, 24) e as variáveis esq finalizará com valor 8 e dir = 8.

6 QUESTÃO 14. Como temos 777 o maior número octal, dividimos ele por 8 e ordenamos os restos da divisão resultando em 115, porém como é pegue de baixo para cima os restos das divisões, temos a resposta 511. Alternativa correta: letra A. QUESTÃO 15. Questão anulada, devido a ausência de operadores lógicos, essenciais para a resolução da questão. QUESTÃO 16. A frase é: B(A) D(C) Alternativa correta: letra A. QUESTÃO 17. Existem as seguintes possibilidades para as idades dos filhos de Alysson com produto igual a 72: 1 * 1 * 72 = 72 1 * 2 * 36 = 72 1 * 3 * 24 = 72 1 * 4 * 18 = 72 1 * 6 * 12 = 72 1 * 8 * 9 = 72 2 * 2 * 18 = 72 2 * 3 * 12 = 72 2 * 4 * 9 = 72 2 * 6 * 6 = 72 3 * 3 * 8 = 72 3 * 4 * 6 = 72 Em seguida Alysson diz qual a soma das idades de seus filhos para Stenio, logo é uma das seguintes possibilidades:

7 = = = = = = = = = = = = 13 Mas ainda assim Stenio responde que não é possível saber a idades dos filhos de Alysson, no entanto a única maneira de Stenio não ter descoberto sabendo a soma das idades é com resultados duplicados, como é o caso de: = = 14 Em seguida Alysson diz o nome de seu filho mais novo, logo Stenio sabe que Alysson possui um filho menor que os demais, sendo assim a única possibilidade é: = 14. Alternativa correta: letra C. QUESTÃO 18. Assuma: P = O universitário é inocente; Q = Professor culpado; S = Palestrante culpado; De acordo com as sentenças dadas, temos P Q, S Q ^ S. Logo temos já um culpado, o palestrante. Analisando as tabelas verdades das sentenças e tomando S como verdadeira temos que Q é falso, logo o professor é inocente.

8 Daí, analisando a outra sentença lógica, temos que como o professor não é culpado, a sentença torna-se falsa, e, para isso, temos o universitário como culpado. Logo o universitário e o palestrante são culpados. Operadores Lógicos: Implicação = Ou Exclusivo = E = ^. Alternativa correta: letra E. QUESTÃO 19. Negando a proposição, a resposta seria: Qualquer que seja o predador, existe uma presa tal que, ele não consegue caçar e nem comer. Alternativa correta: letra C. QUESTÃO 20. Considerando a=1, b=2,..., X=22 e z=23, temos que: B + J + A + E = = 18 H + D + F = = 18 C + P = = = S. QUESTÃO 21. Considerando a primeira verdadeira, teríamos: B não é maçã, ou seja, pode ser banana ou laranja. A não é maçã, ou seja, pode ser banana ou laranja. C é banana. Com a primeira declaração nenhum seria maçã, portanto não pode ser feito essa declaração.

9 Considerando a segunda verdadeira, teríamos: A é maçã B é maçã C é banana Novamente a declaração não pode ser feita. Considerando a terceira verdade: C pode ser maçã ou laranja, então c é laranja pois b já é maçã B é maçã A é laranja ou banana, então A é banana. Conclui-se então que: A é banana, B é maçã e C é laranja. QUESTÃO 22. Como são 5 cartas a serem puxadas de 52, temos que o total de combinações é a combinação de 52, 5 a 5, que equivale à Como não podemos ter uma tripla e um par de um mesmo número, temos que poderemos ter 13 tipos de triplas diferentes e 12 tipos de pares diferentes em uma mesma mão. Como cada número possui 4 cartas, temos que a tripla é uma combinação de 4, 3 a 3, e o par de 4, 2 a 2. Como são 13 triplas e a combinação é 4 e como são 12 pares e sua combinação da 6, multiplicando esses valores teremos 3744 possibilidades para um full house. Dividindo pelo total de possibilidades temos que a chance de um full house é de 0.144%. Alternativa correta: letra C. QUESTÃO 23. Sabemos que a soma das notas mínimas é 39 ( ) e a máxima é 42 (4,5 + 5,5 + 6,5 + 7,5 + 8,5 + 9,5), e que qualquer alteração muda 0,5 dessa soma. Para que a meta de média 6,84 não seja alcançada, a soma deve ser menor que 41,04 (6,84 * 6). Olhando as somas possíveis podemos perceber que as únicas que não podem acontecer é quando dá 41,5 ou 42, ou seja, quando 6 ou 5 notas possuem o seu maior valor. Logo, para ter um valor que não atinja a média devemos escolher ao menos 2 das 6 notas para ter o seu seu valor sendo o

10 menor possível para a nota. Como isso é no mínimo, outras opções com mais notas também deve ser consideradas. As possibilidades são, no mesmo pensamento da oitava, combinação de n escolhe m, sendo (n m), (6 2) + (6 3) + (6 4) + (6 5) + (6 6) = = 57. QUESTÃO 24. Melhor caso: Ocorre quando a primeira verificação feita, já é uma estrada de ida sem volta, ou seja, quando verifica-se que a posição M[1][2] possui o valor 1 e a posição M[2][1] possui o valor 0, ou vice-versa. Neste caso, houve apena um loop. Dessa forma, o melhor caso é 1. Pior caso: Ocorre quando todas as cidades tem conexões com todas as outras cidades e com estradas de ida com volta. Desse modo, o programa fará a comparação de todas as posições, menos as posições que possuem o mesmo índice para linha e para coluna, ou seja, quando A = B. Desse modo para cada linha ele percorrerá (N-1) colunas, como existem N linhas, então o algoritmo entra em (N-1)*N loops. QUESTÃO 25. Questão anulada devido ao problema com a gráfica que resultou na não impressão de alguns caracteres, no algoritmo, essenciais para a resolução da questão.

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof.

Conversão de Bases. Introdução à Organização de Computadores 5ª Edição/2007 Página 54. Sistemas Numéricos - Aritmética. Prof. Conversão de Bases Introdução à Organização de Computadores 5ª Edição/2007 Página 54 1 NOTAÇÃO POSICIONAL - BASE DECIMAL O SISTEMA DE NUMERAÇÃO É FORMADO POR UM CONJUNTO DE SÍMBOLOS UTILIZADOS PARA REPRESENTAR

Leia mais

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009

Argumentação em Matemática período Prof. Lenimar N. Andrade. 1 de setembro de 2009 Noções de Lógica Matemática 2 a parte Argumentação em Matemática período 2009.2 Prof. Lenimar N. Andrade 1 de setembro de 2009 Sumário 1 Condicional 1 2 Bicondicional 2 3 Recíprocas e contrapositivas 2

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos - Aritmética. Conversão de Bases. Prof. Celso Candido ADS / REDES / ENGENHARIA Conversão de Bases 1 NOTAÇÃO POSICIONAL - BASE DECIMAL Desde os primórdios da civilização o homem adota formas e métodos específicos para representar números, para contar objetos e efetuar operações aritméticas.

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 2

ESTRUTURAS DE REPETIÇÃO - PARTE 2 AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES. Prof. André Rabelo

SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES. Prof. André Rabelo SISTEMAS DE NUMERAÇÃO CONVERSÕES ENTRE BASES Prof. André Rabelo CONVERSÕES ENTRE BASES 2, 8 E 16 As conversões mais simples são as que envolvem bases que são potências entre si. Exemplo(base 2 para base

Leia mais

Sistemas de Numeração

Sistemas de Numeração Tecnologias de Informação e Comunicação Engenharia Mecânica 1º Ano / 1º Semestre Filipe Caldeira, 2006 Sistema Decimal No sistema decimal existem dez símbolos numéricos, algarismos : 0 1 2 3 4 5 6 7 8

Leia mais

Técnico em Eletrônica Módulo I Eletrônica Digital (ED) - Prof. Samuel M. B. Cavalcante

Técnico em Eletrônica Módulo I Eletrônica Digital (ED) - Prof. Samuel M. B. Cavalcante Técnico em Eletrônica Módulo I - www.samuelcavalcante.com [email protected] /5/ SISTEMAS DE NUMERAÇÃO SISTEMA DECIMAL Número de algarismos: Dígitos:,,,,, 5, 6, 7,, 9 Base: n Fórmula geral: a.... a. a.

Leia mais

2. Conversões de base

2. Conversões de base 0 2. Conversões de base Antes de começar a programar é preciso entender como o computador representa a informação. E quando falamos em informação estamos falando basicamente de números, pois os caracteres,

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

REVISÃO DE MATEMÁTICA BÁSICA

REVISÃO DE MATEMÁTICA BÁSICA REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original

Leia mais

Aritmética em Bases Não Decimais

Aritmética em Bases Não Decimais Aritmética em Bases Não Decimais Cristina Boeres Insituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material cedido por Fernanda Passos (IC/UFF) Aritmética em Bases Não Decimais FAC

Leia mais

Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Básicas. Aula Tópico 2

Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Básicas. Aula Tópico 2 Algoritmos e Estruturas de Dados I (DCC/003) Estruturas Básicas Aula Tópico 2 1 Problema 3 Exibir o maior número inteiro que pode ser representado no computador. 2 Qual o maior número inteiro? Para o compilador

Leia mais

Tema I Introdução à lógica bivalente e à teoria de conjuntos

Tema I Introdução à lógica bivalente e à teoria de conjuntos Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)

Leia mais

Cursos: Análise, Ciência da Computação e Sistemas de Informação Laboratório I - Prof. Aníbal Notas de aula 2 SISTEMAS NUMÉRICOS

Cursos: Análise, Ciência da Computação e Sistemas de Informação Laboratório I - Prof. Aníbal Notas de aula 2 SISTEMAS NUMÉRICOS Cursos: Análise, Ciência da Computação e Sistemas de Informação Laboratório I - Prof. Aníbal Notas de aula 2 SISTEMAS NUMÉRICOS Para entender como o computador armazena as informações, é importante conhecer

Leia mais

Olimpíada Pernambucana de Matemática 2016, Nível - 1, Caderno de Questões

Olimpíada Pernambucana de Matemática 2016, Nível - 1, Caderno de Questões Olimpíada Pernambucana de Matemática 2016 Nível - 1 Caderno de Questões LEIA COM ATENÇÃO 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha

Leia mais

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por:

Unidade II. A notação de que a proposição P (p, q, r,...) implica a proposição Q (p, q, r,...) por: LÓGICA Objetivos Apresentar regras e estruturas adicionais sobre o uso de proposições. Conceituar implicação lógica, tautologias, e as propriedade sobre proposições. Apresentar os fundamentos da dedução,

Leia mais

Resoluções das atividades

Resoluções das atividades Resoluções das atividades Capítulo Divisibilidade Testando seus conhecimentos (página ) a) I. divisível b) I. II. II. múltiplo III. III. divisor IV. fator IV. (0) Se forem bolas por caixa, precisará de

Leia mais

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração

Sistemas de Numeração. Exemplos de Sistemas de Numeração (1) Exemplos de Sistemas de Numeração (2) Sistemas de Numeração Sistemas de Numeração Sistemas de Numeração (Aula Extra) Sistemas de diferentes bases Álgebra Booleana Roberta Lima Gomes - LPRM/DI/UFES Sistemas de Programação I Eng. Elétrica 27/2 Um sistema de numeração

Leia mais

Frações Decimais. Matemática - UEL Compilada em 26 de Março de 2010.

Frações Decimais. Matemática - UEL Compilada em 26 de Março de 2010. Matemática Essencial Frações Decimais Conteúdo Matemática - UEL - 2010 - Compilada em 26 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 O papel das frações

Leia mais

Sistemas de Numeração

Sistemas de Numeração Infra-Estrutura de Hardware Sistemas de Numeração Conversão entre bases Bit e byte ECC Prof. Edilberto Silva www.edilms.eti.br [email protected] Sumário Conversão de bases Aritmética binária e hexadecimal

Leia mais

Aula de hoje. Códigos numéricos. Códigos binários. Armazenamento de dados. Armazenamento de dados. Armazenamento de dados

Aula de hoje. Códigos numéricos. Códigos binários. Armazenamento de dados. Armazenamento de dados. Armazenamento de dados SCC 24 - Introdução à Programação para Engenharias Aula de hoje Códigos numéricos Professor: André C. P. L. F. de Carvalho, ICMC-USP Pos-doutorando: Isvani Frias-Blanco Monitor: Henrique Bonini de Britto

Leia mais

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) =

01- Verifique se o número é múltiplo de 29. R.: a) D (25) = b) D (17) = c) D (20) = d) D (18) = PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 01- Verifique se o número 8 437 é

Leia mais

Linguagem e Técnicas em Programação. Gilson de Souza Carvalho

Linguagem e Técnicas em Programação. Gilson de Souza Carvalho Gilson de Souza Carvalho [email protected] 3.1.3 Condições compostas Linguagem e Técnicas em Programação As condições que vimos até agora sempre foram únicas. Entretanto, conforme aumenta a complexidade

Leia mais

Aprendendo. Raciocínio. Lógico

Aprendendo. Raciocínio. Lógico Aprendendo Raciocínio Lógico Sentenças Abertas Raciocínio Lógico Sentenças matemáticas abertas ou simplesmente sentenças abertas são expressões que não podemos identificar como verdadeiras ou falsas. Exemplos:

Leia mais

Programação II. Victor Amorim dos Santos

Programação II. Victor Amorim dos Santos Programação II Victor Amorim dos Santos Estrutura de repetição - Loops Definição Loop é uma palavra inglesa, que originalmente significa aro, anel ou sequência. Início X verdadeiro X!= 0 Exemplo: Ler um

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Universidade Federal do ABC Programação Estruturada Fabrício Olivetti França Lista de Exercícios 01

Universidade Federal do ABC Programação Estruturada Fabrício Olivetti França Lista de Exercícios 01 1 Objetivos da lista Universidade Federal do ABC Programação Estruturada Fabrício Olivetti França Lista de Exercícios 01 Esta lista de exercícios tem como objetivo introduzir os conceitos básicos da linguagem

Leia mais

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco

MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas

Leia mais

Algoritmos e Estruturas de Dados I (DCC/003) 2013/1. Estruturas Básicas. Aula Tópico 4

Algoritmos e Estruturas de Dados I (DCC/003) 2013/1. Estruturas Básicas. Aula Tópico 4 Algoritmos e Estruturas de Dados I (DCC/003) 2013/1 Estruturas Básicas Aula Tópico 4 1 Problema 3 Exibir o maior número inteiro que pode ser representado no computador. 2 Qual o maior número inteiro? Para

Leia mais

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total

1 x 10 3 = x 10 2 = x 10 1 = x 10 0 = 8 + Total Cursos Técnicos Habilitações Plenas Eletrônica Digital Professor Arnaldo Sistemas de Numeração Bases Numéricas - Conversões Op. Sistema de Numeração Decimal Composto pela Base 10 e pelos Símbolos ( Algarismos

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

70 Tons de. Raciocínio. Lógico

70 Tons de. Raciocínio. Lógico 70 Tons de Raciocínio Lógico BRDE 2015 Qual operação lógica descreve a tabela verdade da função Z abaixo cujo operandos são A e B? Considere que V significa Verdadeiro, e F, Falso. A B Z F F V F V V V

Leia mais

4. Algoritmos de Busca em Vetores

4. Algoritmos de Busca em Vetores Introdução à Computação II 5952011 4. Algoritmos de Busca em Vetores Prof. Renato Tinós Local: Depto. de Computação e Matemática (FFCLRP/USP) 1 Principais Tópicos 4.1. Introdução 4.2. Busca Linear 4.2.1.

Leia mais

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros.

Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. MATRIZES DEFINIÇÃO Uma matriz m x n é um quadro de elementos dispostos em m linhas e n colunas. Os valores de m e n são sempre positivos e inteiros. M = à M é uma matriz 2 x 3. Cada elemento da matriz

Leia mais

4.1 Cálculo do mdc: algoritmo de Euclides parte 1

4.1 Cálculo do mdc: algoritmo de Euclides parte 1 page 92 92 ENCONTRO 4 4.1 Cálculo do mdc: algoritmo de Euclides parte 1 OAlgoritmodeEuclidesparaocálculodomdcbaseia-senaseguintepropriedade dos números naturais. Observamos que essa propriedade está muito

Leia mais

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo

Os números decimais. Centenas Dezenas Unidades, Décimos Centésimos Milésimos. 2 Centenas 4 dezenas 0 unidades, 7 décimos 5 centésimos 1 milésimo Os números decimais Leitura e escrita de números decimais A fração 6/10 pode ser escrita na forma 0,6, em que 10 é a parte inteira e 6 é a parte decimal. Aqui observamos que este número decimal é menor

Leia mais

Noções de algoritmos - Aula 1

Noções de algoritmos - Aula 1 Noções de algoritmos - Aula 1 Departamento de Física UFPel Definição de algoritmo Sequência ordenada e finita de operações para a realização de uma tarefa. Tarefa: Experimento de Física I. Passo 1: Reunir

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

ARITMÉTICA BINÁRIA. São duas as operações executadas pelo computador:

ARITMÉTICA BINÁRIA. São duas as operações executadas pelo computador: ARITMÉTICA BINÁRIA São duas as operações executadas pelo computador: - A adição - A comparação Todas as outras operações são executadas por meio de adições. Assim, para a subtracção, acha-se o complemento

Leia mais

Aula 6: Aritmética em Bases Não Decimais

Aula 6: Aritmética em Bases Não Decimais Aula 6: Aritmética em Bases Não Decimais Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Aritmética em Bases Não Decimais FAC 1 / 35 Introdução

Leia mais

Frações. Números Racionais. Conceito de Fração:

Frações. Números Racionais. Conceito de Fração: Frações Números Racionais Consideremos a operação 4 : 5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números naturais porque

Leia mais

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y.

SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS. Como se trata de dois números, representamos por duas letras diferentes x e y. SISTEMA DE EQUAÇÕES DO 1º GRAU COM DUAS VARIÁVEIS Equação do 1º grau com duas variáveis Ex: A soma de dois números é 10. Quais são esses números? Como se trata de dois números, representamos por duas letras

Leia mais

Programação em C. Victor Amorim dos Santos

Programação em C. Victor Amorim dos Santos Programação em C Victor Amorim dos Santos Proposições Lógicas Expressões Lógicas e o tipo Boolean Importante para a tomada de decisão; Tipo Boolean: tipo de dados para representar a satisfação ou não de

Leia mais

Um sistema de numeração posicional utiliza um conjunto de símbolos. O valor que cada

Um sistema de numeração posicional utiliza um conjunto de símbolos. O valor que cada APÊNDICE B Sistema de Numeração Posicional Um sistema de numeração posicional utiliza um conjunto de símbolos O valor que cada símbolo representa, no entanto, depende do seu valor nominal e do valor posicional,

Leia mais

S is temas numéricos e a Repres entação Interna dos Dados no Computador

S is temas numéricos e a Repres entação Interna dos Dados no Computador S is temas numéricos e a Repres entação Interna dos Dados no Computador Ricardo Azambuja Silveira INE-CTC-UFSC E-Mail: [email protected] URL: http://www.inf.ufsc.br~silveira Material elaborado pelo

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

BCC201 Introdução à Programação ( ) Prof. Reinaldo Silva Fortes. Prática 05 Modularização

BCC201 Introdução à Programação ( ) Prof. Reinaldo Silva Fortes. Prática 05 Modularização BCC Introdução à Programação (4-) Prof. Reinaldo Silva Fortes Funções: Passagem de parâmetros. Prática 5 Modularização ) Escreva uma função que receba um número inteiro e imprima o mês correspondente ao

Leia mais

Formação dos números: Aplicação da fórmula geral para o numero

Formação dos números: Aplicação da fórmula geral para o numero www.samuelcavalcante.com [email protected] /5/ SISTEMAS DE NUMERAÇÃO SISTEMA DECIMAL Número de algarismos: Dígitos:,,,,, 5, 6, 7,, 9 Base: n Fórmula geral: a.... a. a. a. Formação dos números: Aplicação

Leia mais

Aula 9. Aritmética Binária. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira

Aula 9. Aritmética Binária. SEL Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira Aula 9 Aritmética Binária SEL 044 - Sistemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira . SOMA DE DOIS NÚMEROS BINÁRIOS Álgebra Booleana (OR) Aritmética (+) 0 + 0 = 0 0 + = + 0 = + = 0 + 0 = 0

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Colégio Motiva Jardim Ambiental. Professor: Rivaildo Alves da Silva. Turmas de 9º Anos ETAPA II

Colégio Motiva Jardim Ambiental. Professor: Rivaildo Alves da Silva. Turmas de 9º Anos ETAPA II Colégio Motiva Jardim Ambiental Professor: Rivaildo Alves da Silva Turmas de 9º Anos ETAPA II 2019 CONJUNTO DOS NÚMEROS REAIS (Operações com números Reais) Adição Considere a seguinte adição: 1,28 + 2,6

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 1 QUESTÃO 1 ALTERNATIVA A Observamos na primeira balança que o objeto tem o mesmo peso que a soma dos pesos de e. Consequentemente,

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

01/08/2011. Tipos de dados Numéricos Alfanuméricos Lógicos. Numéricos. Tipos de dados. Dados Numéricos Inteiros. Dados Numéricos Reais.

01/08/2011. Tipos de dados Numéricos Alfanuméricos Lógicos. Numéricos. Tipos de dados. Dados Numéricos Inteiros. Dados Numéricos Reais. Engenharia de Controle e Automação Programação I Prof. Ricardo Sobjak [email protected] Tipos de dados Numéricos Alfanuméricos Lógicos Tipos de dados Os tipos de dados primitivos ou básicos são

Leia mais

Programação imperativa

Programação imperativa Capítulo 8 Programação imperativa 8.1 Exercícios de revisão 1. Distinga entre programação imperativa e programação funcional. 2. Explique a necessidade da introdução do operador de atribuição. 3. Diga

Leia mais

Mat. Mat. 1. Luanna Ramos. Monitor: Rodrigo Molinari

Mat. Mat. 1. Luanna Ramos. Monitor: Rodrigo Molinari Mat. Professor: Gabriel Miranda Luanna Ramos Monitor: Rodrigo Molinari Divisibilidade 15 mar RESUMO Divisão é a operação aritmética que nos permite separar grupos. Por exemplo: Sabemos que 15:3=5 ou seja

Leia mais

ESTRUTURA CONDICIONAL E SELEÇÃO

ESTRUTURA CONDICIONAL E SELEÇÃO Algoritmos e Estruturas de Dados 1 Prof. Eduardo 1 ESTRUTURA CONDICIONAL E SELEÇÃO 1 - ESTRUTURA CONDICIONAL (ESTRUTURAS DE CONTROLE OU DECISÃO) Até o momento da disciplina vimos algoritmos e programas

Leia mais

Arquitetura e Organização de Computadores. Professor: Lucas Cambuim Aula: Conversão de Bases e Aritmética Computacional

Arquitetura e Organização de Computadores. Professor: Lucas Cambuim Aula: Conversão de Bases e Aritmética Computacional Arquitetura e Organização de Computadores Professor: Lucas Cambuim Aula: Conversão de Bases e Aritmética Computacional 1 Objetivos Entender conceitos básicos de sistemas de numeração como base, valor posicional

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

ALGORITMOS COM SELEÇÃO 1 - ESTRUTURA CONDICIONAL (ESTRUTURAS DE CONTROLE)

ALGORITMOS COM SELEÇÃO 1 - ESTRUTURA CONDICIONAL (ESTRUTURAS DE CONTROLE) Algoritmos e Estruturas de Dados 1 Prof. Eduardo 1 ALGORITMOS COM SELEÇÃO 1 - ESTRUTURA CONDICIONAL (ESTRUTURAS DE CONTROLE) Até o momento da disciplina vimos comandos de entrada, processamento e saída

Leia mais

Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos

Apontamentos de matemática 6.º ano Decomposição de um número em fatores primos Divisores de um número (revisão do 5.º ano) Os divisores de um número são os números naturais pelos quais podemos dividir esse número de forma exata (resto zero). Exemplos: Os divisores de 4 são 1, 2 e

Leia mais

Sistemas Numéricos, Operações Lógicas e Tipos de Dados Tratados pelo Computador

Sistemas Numéricos, Operações Lógicas e Tipos de Dados Tratados pelo Computador Capítulo 2 Sistemas Numéricos, Operações Lógicas e Tipos de Dados Tratados pelo Computador 2.0 Índice 2.1 Sistemas Numéricos 2 2.1.1 Sistema Binário 2 2.1.2 Sistema Octal 3 2.1.3 Sistema Hexadecimal 3

Leia mais

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA

Sistemas Numéricos. Soma Subtração. Prof. Celso Candido ADS / REDES / ENGENHARIA Soma Subtração 1 Introdução Sistemas Numéricos Nesta aula iremos analisar como podemos usar o Sistema Numérico para calcular operações básicas usando a Aritmética Decimal na: Adição; Subtração. 2 SOMA

Leia mais

Expoente 10 Dossiê do Professor 2

Expoente 10 Dossiê do Professor 2 Expoente 0 Dossiê do Professor Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade Proposições Páginas a 9. a) é uma designação. b) = 6 é uma proposição. c) é o único número primo par

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

Pesquisa Operacional. Prof. José Luiz

Pesquisa Operacional. Prof. José Luiz Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

Matemática FRAÇÕES. Professor Dudan

Matemática FRAÇÕES. Professor Dudan Matemática FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou

Leia mais

AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes.

AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. AULA 8 Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. 8.1 Tarefa 1: Problema Gerador Na terça-feira, a turma dividiu um bolo pequeno

Leia mais

Português Estruturado (VISUALG)

Português Estruturado (VISUALG) Português Estruturado (VISUALG) Estrutura do programa Exemplo: algoritmo "Ola mundo" // Função : Mostrar na tela uma saudação // Autor : Christianne Dalforno // Data : 09/03/2016

Leia mais

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores

BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores BAC004 Informática Teórica T2 Professora: Fabiana Costa Guedes Lista 05 Vetores e Matrizes Vetores 1- Faça um programa que preencha um vetor com seis elementos numéricos inteiros, calcule e mostre: a.

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais

Observando incógnitas...

Observando incógnitas... Reforço escolar M ate mática Observando incógnitas... Dinâmica 2 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Algébrico-Simbólico Sistemas Lineares. Aluno Primeira etapa

Leia mais

Introdução à Lógica Matemática

Introdução à Lógica Matemática Introdução à Lógica Matemática Disciplina fundamental sobre a qual se fundamenta a Matemática Uma linguagem matemática Paradoxos 1) Paradoxo do mentiroso (A) Esta frase é falsa. A sentença (A) é verdadeira

Leia mais

Lógica de Programação e Algoritmos. Prof. André Y. Kusumoto

Lógica de Programação e Algoritmos. Prof. André Y. Kusumoto Lógica de Programação e Algoritmos Prof. André Y. Kusumoto [email protected] 2 Prof. André Y. Kusumoto [email protected] Constantes, Variáveis e Tipos de Dados Variáveis e constantes

Leia mais

Prof. a : Patrícia Caldana

Prof. a : Patrícia Caldana CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C

Leia mais

Sistemas Digitais. Circuitos Aritméticos. Monitoria SD Daniel Alexandro/Reniê Delgado/Vanessa Ogg. Editado por (DARA)

Sistemas Digitais. Circuitos Aritméticos. Monitoria SD Daniel Alexandro/Reniê Delgado/Vanessa Ogg. Editado por (DARA) Sistemas Digitais Circuitos Aritméticos Monitoria SD 2011.2 Daniel Alexandro/Reniê Delgado/Vanessa Ogg Editado por (DARA) Circuitos Aritméticos Circuitos Aritméticos são aqueles que realizam operações

Leia mais

Circuitos Digitais. Conteúdo. Soma de Números Binários. Soma de Números Binários. Exemplos. Exemplos. Aritmética Binária

Circuitos Digitais. Conteúdo. Soma de Números Binários. Soma de Números Binários. Exemplos. Exemplos. Aritmética Binária Ciência da Computação Aritmética Binária Prof. Sergio Ribeiro Material adaptado das aulas de Sistemas Digitais do Prof. Dr. Marcelo Andrade da USP Conteúdo Soma de números binários. Soma de números BCD.

Leia mais

MATEMÁTICA. Polinômios. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Polinômios. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Polinômios Professor : Dêner Rocha Monster Concursos 1 Monômio, o que isso Professor Dêner? Monômios Denominamos monômio ou termo algébrico quaisquer expressões algébricas representadas por

Leia mais

FRAÇÕES. Professor Dudan

FRAÇÕES. Professor Dudan FRAÇÕES Professor Dudan Frações Fração é um modo de expressar uma quantidade a partir de uma razão de dois números inteiros. A palavra vem do latim fractus e significa "partido", dividido ou "quebrado

Leia mais

Simplex. Investigação Operacional José António Oliveira Simplex

Simplex. Investigação Operacional José António Oliveira Simplex 18 Considere um problema de maximização de lucro relacionado com duas actividades e três recursos. Na tabela seguinte são dados os consumos unitários de cada recurso (A, B e C) por actividade (1 e 2),

Leia mais

Pseudolinguagem (ou Portugol) Profº Elton Rodrigo

Pseudolinguagem (ou Portugol) Profº Elton Rodrigo Pseudolinguagem (ou Portugol) Profº Elton Rodrigo Pseudolinguagem Funciona como uma linguagem simplificada de programação, logo, facilita a posterior implementação. algoritmo "Somar dois valores" var n1,

Leia mais

Introdução à Computação: Sistemas de Numeração

Introdução à Computação: Sistemas de Numeração Introdução à Computação: Sistemas de Numeração Beatriz F. M. Souza ([email protected]) http://inf.ufes.br/~bfmartins/ Computer Science Department Federal University of Espírito Santo (Ufes), Vitória,

Leia mais

Sistemas Digitais Módulo 2 Representações com Sinal e Aritmética Digital

Sistemas Digitais Módulo 2 Representações com Sinal e Aritmética Digital Universidade Federal de Uberlândia Faculdade de Computação Sistemas Digitais Módulo 2 Representações com Sinal e Aritmética Digital Graduação em Sistemas de Informação Prof. Dr. Daniel A. Furtado Prof.

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais