Circuitos Electrónicos Básicos
|
|
|
- Melissa Lara Paiva Carneiro
- 9 Há anos
- Visualizações:
Transcrição
1 Fonte de corrente ideal Fonte de corrente ideal: Corrente definida num ramo, qualquer que seja a diferença de potencial entre os dois nós. Resistência infinita. Fonte de corrente constante e controladas: Por tensão (VCCS) Por corrente (CCCS) O que conseguimos fazer? Fontes com resistência dinâmica elevada. Corrente quase constante numa gama de tensões Circuitos Electrónicos Básicos 2
2 Fonte de corrente simples fonte: ; Conv. V / : R; Conv. / V : Q; Conv. V / : Q VCC VBE1 = constante ( VBE1 0.7 V) R Q z. activa: V 0.7 V, Q z. activa: V = V 2 CE2 1 CE1 BE1 V O BE V V T CE C = e S 1+ se β, VA VA VBE1 = VBE2; Q1 = Q2 ( S1 = S 2) C2 = C1 RE F( B 1+ B2«O) VBE1 = VBE 2; Q1 Q2 ( S1 S2 ) C2 / C1 = S 2/ S1 = A2 / A1 Q, Q repetidor de corrente (CCCS) espelho de corrente "current mirror" Circuitos Electrónicos Básicos 3
3 Fonte de corrente simples (R) 1 Efeito das corrente de base: β = β = β, V, Q = Q A C1 C2 = C1+ +, C1 = C2 β β 2 Efeito de Early: β =, V, Q = Q 1 + V / V = 1 + V / V C2 CE2 A C1 A CE1 A ( V 0.7 V) CE1 C2 3 resistência in cremental (res. dinâmica) = O = 1 + 2/ β R//(g m1 ) -1 r g m2 v r o2 R o =r o2 Q 2 Circuitos Electrónicos Básicos 4
4 Fonte de corrente simples Q3 Compensação das corrente de base: β = β = β = β 3 2O = O + = = 2 β 1+ 2/ β menor efeito de β < C 2 O 2 Circuitos Electrónicos Básicos 5
5 Fonte de corrente múltipla 1 a N podem ser múltiplosou simples cópias de. Associação de transistores unitários ou escalonamento da área de emissor: proporcional a A e Partilham a mesma referência, reduz consumo....com extracção e injecção de corrente. Circuitos Electrónicos Básicos 6
6 Fonte de corrente simples fonte: ; O Conv. V / : R; Conv. / V : Q; Conv. V / : Q D2 2 DS 2 2 = VDD VGS1 = constante R Q Sat: V V V, Q Sat: V = V 2 DS2 GS1 t 1 DS1 GS1 kv V 2 D = ( GS t)(1 + λvd S) Valor da corrente k 1 + λv ( W / L) k 1 + λv ( W / L) área dos transistores. 1 GS1 1 o é controlado pela relação da R O = r O2 Circuitos Electrónicos Básicos 7
7 Áreas de elementos em C s Circuitos Electrónicos Básicos 8
8 Áreas de elementos em C s Circuitos Electrónicos Básicos 9
9 Amplificador com carga activa V CC Regime incremental v Q 2 Q 3 v O Q 1 R Q e Q ZActiva. R = r G = g R = r // r i π1 m m1 o o1 o2 ( // ) A = g r r V m1 o1 o2 g / V 1 VT V r r V V V V m1 C1 T = = = 1 1 C1 C2 o1 o2 AN AP AN AP T v i i i r g m1 v r o1 r o2 i o v o Exemplo: V = V = 100V AN comparação com carga resistiva R «r A g R = V m1 C AP A = 2000 o2 } 1 2 V R C C AV = VT V C Circuitos Electrónicos Básicos 10
10 Amplificador com carga activa Circuitos Electrónicos Básicos 12
11 Amplificador com carga activa Regime incremental Q e Q Saturação R = G = g i m m1 R = r // r o o1 o2 ( // ) A = g r r V m1 o1 o2 v i g m1 v i r o1 r o2 i o v o Exemplo: V = 100 V; = 10 µ AV ; V = 1V A D GS R = G = 20µ S R = 5MΩ A = 100 i m o menor que com transistores bipolares t V Circuitos Electrónicos Básicos 13
12 fonte: Q = Q exemplo: V = 10 V, pretende-se: permite Fontes de corrente de Alta mpedância Fonte de Widlar S1 S2 O C2 C2 E2 C1 BE2 BE1 C1 C2 C2 E BE1 BE2 T T S1 S2 C 2 O ;(só com BJTs) ( = ) = «( V < V ; 0.7 V mas não 0.7V! ) β»1, R = V V = V ln V R = V E Circuitos Electrónicos Básicos 14 ln C 2 CC fonte de Widlar: T C2 E T E C2 fonte simples : A / A = 5 ln O = 5µ A VCC VBE = 1mA R = = 9.3kΩ Q = Q R = V ln R = 26.5kΩ VCC VBE = A1/ A2 C2 = 25µ A R = = 372kΩ resistência de valor excessivo em C
13 Fontes de corrente de Alta mpedância Fonte de Widlar Resistência incremental ( ) RO ro2 1 + gm2 rπ2 // RE (degeneração de emissor) [ ] se R «r R r 1+ g R E π2 O O2 m2 E R g R = = V V mV C2 E m2 E BE1 BE 2 VT R O 5 10r O2 Nota: se R E elevada R O fica muito alta fi substituír R E por fonte elementar fi Cascode Circuitos Electrónicos Básicos 15
14 Fontes de corrente de Alta mpedância Fonte de corrente de Wilson Compensação de R O elevado Transistores iguais: = C3 C1 C2 pode mostrar-se: 2 O = 1 2 β + 2β Regime incremental: RO βr 2 B o3 Com transistores MOS iguais, pode mostrar-se: Regime increment al: R r ( 2 + g r ) g r r O o3 m3 o2 m3 o3 o2 O = Circuitos Electrónicos Básicos 16
15 Fontes de corrente de Alta mpedância Fonte Cascode O Q 4 Q 3 Q 1 Q 2 Resistência incremental 1 R r g r R βr { 2 O O3 m3 O2 O O3 efeito de QQ Circuitos Electrónicos Básicos 17 1, 4
16 mpedância de fonte CascodeMOS vx = r o2 ix ( gm2 + gmb2) v gs2 vgs2 vx Ro2 = = ro 1+ r o2 1 ( gm2 gmb2) ro 1 i + + vgs2 = ri o1 x x se g r»1 e r, r mesma ordem de grandeza, desprezando o efeito de corpo, m2 o1 o1 o2 R g r r o2 m2 o2 o1 Circuitos Electrónicos Básicos 18
17 Amplificador Cascode R o2 R o1 Regime incremental Q e Q ZActiva. Fonte de corrente de alta impedância (ex. cas code) R = r G = g R = R // R i π1 m m1 o o1 o2 ( // )» ( // ) A = g R R g r r R R V m1 o1 o2 m1 o1 o2 o1 o2 βr o 1 βro 2 Circuitos Electrónicos Básicos 19
R1 R4 R1 I SA. V sa. V en -10V
ES238 Eletrônica Geral I 1ř semestre de 2006 18/set/2006 SEGUNDO EXERCÍCIO ESCOLAR Para todos os transistores bipolares presentes, considere que I sat = 1 10 12 A, V T = 25mV e β = 100. Para um coletor
3 e I x = 0,2I E (considere inicialmente = ). (b) Recalcule I E (somente) para o caso do transistor apresentar = 100.
1) (271099) Para o circuito mostrado na figura abaixo, encontre as tensões indicadas no circuito para (a) = + (b) = 100 (c) = 10. 2) (271099) (a) Projete R C e R B para o circuito mostrado na figura abaixo
Décima Lista-Aula - Disciplina : Eletrônica I - PSI 3321
Décima Lista-Aula - Disciplina : Eletrônica I - PSI 3321 Assunto : Transcondutância e modelos π-híbrido e T aplicados ao cálculo do ganho de tensão em amplificadores simples com TBJ s Exercício 1 Sabendo-se
Aula 18: Fontes e Espelhos de corrente MOS. Prof. Seabra PSI/EPUSP
Aula 18: Fontes e Espelhos de corrente MOS 396 Aula Data Matéria Capítulo/página Teste 17 11/10 Ganho de modo Semana comum, da rejeição Pátria (04/09 de modo a comum. 08/09/017) Sedra, Cap. 7 11 13/09
Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio
Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Prof. Dr. Hugo Valadares Siqueira Princípio da Superposição O Princípio da Superposição para circuitos elétricos contendo
O MOSFET como Amplificador. ENG04055 Concepção de CI Analógicos Eric Fabris
O MOSFET como Amplificador Amplificador Básico Amplificador Fonte Comum Topologia Básica Representação Gráfica da Reta de Carga eterminação da Curva de Transferência v i i O v S f ( v f ( v V GS GS R )
Circuitos Eletrónicos Básicos
Circuitos Eletrónicos Básicos Licenciatura em Engenharia Eletrónica Transparências de apoio às aulas Cap. 1: Circuitos com um transístor 1º semestre 2013/2014 João Costa Freire Instituto Superior Técnico
Aula 22: Amplificadores de Múltiplos Estágios Um Amp Op CMOS. Prof. Seabra PSI/EPUSP
Aula 22: Amplificadores de Múltiplos Estágios Um Amp Op CMOS 438 Aula Data Matéria Capítulo/página Teste 7 /0 Ganho de modo Semana comum, da rejeição Pátria (04/09 de modo a comum. 08/09/207) Sedra, Cap.
Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki
Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x
Aula 22: O Transistor como Amplificador (p , p )
Aula 22: O ransistor como Amplificador (p.263-264, p.275-276) 88 88 19ª 17/05 20ª 20/05 21ª 31/05 22ª 03/06 23ª 07/06 24ª 14/06 25ª 17/06 PSI 3321 Eletrônica Programação para a erceira Proa Estruturas
MÓDULO 8: INTRODUÇÃO AO AMPLIFICADOR DIFERENCIAL
DISCIPLINA: CIRCUITOS ELETRÔNICOS Amplificadores Diferenciais MÓDULO 8: INTRODUÇÃO AO AMPLIFICADOR DIFERENCIAL Introdução: O amplificador diferencial é um bloco pertencente aos circuitos analógicos ou
Polarização do BJT FABRÍCIO RONALDO - DORIVAL
FABRÍCIO RONALDO - DORIVAL Basicamente precisaremos lembrar que: v BE = 0.7 V (fornecido) i E = (β + 1) i B i C i C = β i B Iniciamos as análises determinado i B e posteriormente usamos as relações acima
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico Amplificador com transistor Exemplo: Análise Modelo CC Modelo CA V CC C 2 R L R G C 1 C E Análise CA Para se fazer a análise CA é necessário: Eliminar as
CIRCUITO AUTOPOLARIZAÇÃO Análise do modelo equivalente para o circuito amplificador em autopolarização a JFET.
MÓDULO 6: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta de entrada e ampla faixa de resposta
Folha 5 Transístores bipolares.
Folha 5 Transístores bipolares. 1. Considere um transístor npn que possui uma queda de potencial base emissor de 0.76 V quando a corrente de colector é de 10 ma. Que corrente conduzirá com v BE = 0.70
EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS.
EXERCÍCIOS DE PREPARAÇÃO B1i Exercícios Preparação B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. Exercício Resolvido : Projetar a polarização de um amplificador diferencial, segundo os
Aula 21: Análise CC (Polarização) em circuitos com TBJs (p.246, p )
Aula 21: Análise CC (Polarização) em circuitos com TBJs (p.246, p.264-269) 48 48 19ª 17/05 20ª 20/05 21ª 31/05 22ª 03/06 23ª 07/06 24ª 14/06 25ª 17/06 PSI 3321 Eletrônica Programação para a Terceira Prova
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306
Segunda Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Transcondutância e modelos -híbrido e T aplicados ao cálculo do ganho de tensão em amplificadores simples com TBJ s. Exercício 1 Sabendo-se
Resumo. Espelho de Corrente com Transistor MOS
p. 1/1 Resumo Espelho de Corrente com Transistor MOS Efeito de V 0 em I 0 Espelho de Corrente com Transistor Bipolares Diferenças entre espelhos de corrente MOS e Bipolares Fontes de Corrente Melhoradas
MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET.
DISCIPLINA: CIRCUITOS ELETRÔNICOS MÓDULO 5: RESPOSTA EM FREQÜÊNCIA DO AMPLIFICADOR DE PEQUENOS SINAIS A JFET. 1. Introdução: O circuito amplificador de sinal a JFET possui ganho alto, uma impedância alta
VCC M4. V sa VEE. circuito 2 circuito 3
ES238 Eletrônica Geral I ř semestre de 2006 09/out/2006 SEGUNDA CHAMADA Para os transistores bipolares presentes, considere que I sat = 0 2 A, V T = 25mV e β = 00.. Obtenha o ganho de tensão M7 v en v
SOMENTE PARA QUEM PERDEU A B1
SOMENTE PARA QUEM PERDEU A B1 UNIP 3.a Prova EE7W01 EN7W01 ET7W01 - Eletrônica III 06/06/2005 - Duração 80 min Permitido Consulta à folha única de formulários. Nota Nome... N.o - 1.a Questão : (Valor 3.0)
4 o Trabalho de Laboratório - Circuitos não-lineares
4 o Trabalho de Laboratório - Circuitos não-lineares Grupo 18, Turno 4 a feira André Patrício (67898) Bavieche Samgi (67901) Miguel Aleluia (67935) MEFT, TCFE 6 de Abril de 2011 Resumo Com este trabalho
MOSFET: Polarização do MOSFET Aula 4
MOSFET: Polarização do MOSFET Aula 4 69 Aula Matéria Cap./página 1ª 03/08 Eletrônica PS33 Programação para a Primeira Prova Estrutura e operação dos transistores de efeito de campo canal n, características
O Amplificador Operacional 741. p. 2/2
p. 1/2 Resumo O Amplificador Operacional 741 Circuito de Polarização e circuito de protecção contra curto-circuito O andar de Entrada O Segundo andar e andar de Saída Polarização do 741 Análise de pequeno
A figura 1 apresenta um esboço da polarização de um J-FET canal N: junção PN inversamente polarizada, VGS 0, e VDS positivo (VDS > 0).
EXPERIMENTO N O 06 Transistor de Efeito de Campo OBJETIVO: Estudar o funcionamento do J-FET MATERIAIS: Instrumentos: Osciloscópio duplo traço Gerador de funções Materiais (responsabilidade do aluno): Fonte
Díodo Zener. Para funcionar com polarização inversa. Modelo mais simples assume r z =0. Electrónica 1
Díodo Zener Para funcionar com polarização inversa. Modelo mais simples assume r z =0 exemplo como é que calcula I, I Z e I L? Díodo Zener Ef.Zener(V z 7V) Especificações: corrente
Exemplo 4.1 (pag.245)
Exemplo 4.1 (pag.245) Considere um processo tecnológico com min =0,4 μm, t ox =8nm, μ n =450 cm 2 /V.s, e V t =0,7 V. a) Determine C ox e k n. b) Para um MOSFET com W/=8 μm/0,8 μm, determine os valores
Atuadores. Exemplos de atuadores: Translação linear com motor de passo. Mecânicos : -Motor elétrico (DC, AC, de passo) -Motor piezoelétrico -Válvulas
Atuadores Em instrumentação Eletrônica, Atuador é um elemento que, a partir de um sinal elétrico, vai ser capaz de atuar na grandeza que se deseja controlar A atuação ocorre dentro de limites pré-determinados
AULA 11- Amplificador de Múltiplos Estágios
UNVRSDAD TCNOLÓGCA FDRAL DO PARANÁ DPARTAMNTO ACADÊMCO D LTROTÉCNCA LTRÔNCA 2 T74BC Prof.ª lisabete Nakoneczny Moraes AULA 11- Amplificador de Múltiplos stágios Curitiba, 25 de outubro 2016. AMPLFCADOR
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 12 1 Transistor de junção bipolar Da mesma forma que vimos o MOSFET, apresentaremos
Espelhos e Fontes de Correntes. Aula 9 Prof. Nobuo Oki
Espelhos e Fontes de Correntes Aula 9 Prof. Nobuo Oki Espelhos e Fontes de Correntes (1) As fonte e espelhos de correntes são bastante usadas em circuitos integrados analógicos. Eles podem trabalhar como
Assunto : Amplificadores com configuração base comum e coletor comum.
Quarta Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração base comum e coletor comum. Amplificadores base-comum Os amplificadores com configuração base comum têm
Atuadores. Exemplos de atuadores: Translação linear com motor de passo. Mecânicos : -Motor elétrico (DC, AC, de passo) -Motor piezoelétrico -Válvulas
Atuadores Em instrumentação Eletrônica, Atuador é um elemento que, a partir de um sinal elétrico, vai ser capaz de atuar na grandeza que se deseja controlar A atuação ocorre dentro de limites pré-determinados
Transistor BJT FABRÍCIO RONALDO - DORIVAL
Transistor BJT FABRÍCIO RONALDO - DORIVAL Construção Transistor Bipolar de Junção (BJT) Construção análoga à do diodo. No diodo, junta-se semicondutores do tipo P e N, com mesmo nível de dopagem. Temos
Amplificadores de Múltiplos Estágios
Universidade do Estado de Santa Catarina CCT Centro de Ciências Tecnológicas Amplificadores de Múltiplos Estágios Acadêmicos: Chrystian Lenon Remes Fernando Raul Esteche Pedrozo Gilmar Nieckarz Hallan
AULA PRÁTICA #3 REALIMENTAÇÃO NEGATIVA Amostragem de tensão (V) Comparação de tensão (V)
I) Objetivos AULA PRÁTICA #3 REALIMENTAÇÃO NEGATIVA Amostragem de tensão (V) Comparação de tensão (V) Utilizar um amplificador operacional elementar como base para a observação dos efeitos da realimentação
Electrónica II INSTITUTO POLITÉCNICO DE TOMAR. Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica ELECTRONICA II
INSTITUTO POITÉCNICO DE TOMAR Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica EECTRONICA II Eng. Jorge Guilherme Jorge Guilherme 009 # Bibliografia: Electrónica II Manuel
1 a AULA PRÁTICA - ESTUDO DE BJT (NPN)
a AULA PÁTICA - ESTUDO DE BJT (NPN) ) Objetio: * Obter características de CC de um transistor bipolar de junção NPN. * Fazer um projeto de polarização. ) Trabalho Preparatório: A) Descrea sucintamente
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br ELETRÔNICA, princípios e aplicações 2 Capítulo 8 Amplificador de Sinais Sumário do capítulo: 8.1
TE054 - Cap.1 - Amplificadores de Múltiplos Estágios
TE054 - Cap.1 - Amplificadores de Múltiplos Estágios 1.1. Configurações compostas (Amplificadores de dois estágios em cascata) Sedra, Cap. 6.8, 6.11 e 7.7. Boylestad, Cap. 12.2, 12.3, 12.4, 12.5. 1.2.
Transistores Bipolares de Junção (TBJ) Parte II
AULA 08 Transistores Bipolares de Junção (TBJ) Parte Prof. Rodrigo Reina Muñoz [email protected] T1 2018 Conteúdo Aplicações do Transistor Polarização Ponto de Operação Análise por Reta de Carga
Análise CA para o TBJ. Prof. Dr. Ulisses Chemin Netto ET74C Eletrônica 1
Análise CA para o TBJ Prof. Dr. Ulisses Chemin Netto ([email protected]) 09 de Novembro de 2015 Objetivo da Aula Conhecer o modelo r e aplicado na representação do TBJ à análise CA. 2 Conteúdo Programático
SOLUÇÃO DOS EXERCÍCIOS REFERENTES A FET DIVISOR DE TENSÃO E AUTOPOLARIZAÇÃO ANÁLISE CC.
SOLUÇÃO DOS EXERCÍCIOS REFERENTES A FET DIVISOE TENSÃO E AUTOPOLARIZAÇÃO ANÁLISE CC. 1.o Para o Amplificador a seguir, calcular : DADOS : I DSS = 6mA V P = - 4 V V DD = 12 V = 1K Pede-se : a) ( I Dq,V
LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Experimento 4 Transistor Bipolar Amplificador
Transístores MOS. Assuntos. João Canas Ferreira Modelo de funcionamento do transístor MOS. 2 Condensadores intrínsecos
Transístores MOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia 2012-02-17 Assuntos 1 Modelo de funcionamento do transístor MOS 2 Condensadores intrínsecos 3 Correntes de fugas João
Colectânea de problemas
lectânea de problemas Capítulo 3 Transistores de efeito de campo (FET) P-1 nsidere o circuito da figura P1 em que o MOSFET tem as seguintes características: V t =2V, K=1mA/V 2 e λ=0; V DD =15V, R D =4kΩ
Transístores MOS. João Canas Ferreira Universidade do Porto Faculdade de Engenharia
Transístores MOS João Canas Ferreira Universidade do Porto Faculdade de Engenharia 2013-02-17 Assuntos 1 Modelo de funcionamento do transístor MOS 2 Condensadores intrínsecos 3 Correntes de fugas João
Amplificador realimentado Série-Paralelo
p. 1/2 Resumo Amplificador realimentado Série-Paralelo Amplificador realimentado Série-Série Amplificador realimentado Paralelo-Paralelo Amplificador realimentado Paralelo-Série Amplificador realimentado
INSTITUTO POLITÉCNICO DE TOMAR
INSTITUTO POLITÉCNICO DE TOMAR Departamento de Engenharia Electrotecnica Electrónica II 2007-2008 Recurso Data: 15-07-2008 ---------------------------------------------------------------------------------------------------------------
Introdução sobre Pares Diferenciais (Bipolares e MOS)
p. 1/1 Resumo Introdução sobre Pares Diferenciais (Bipolares e MOS) Par Diferencial com Transistor MOS Gama de Tensão em Modo Comum Operação com sinal diferencial Operação para grandes sinais Operação
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306
Terceira Lista-Aula - Disciplina : Eletrônica - PSI 2306 Assunto : Amplificadores com configuração emissor comum sem e com a resistência no emissor. Determinação dos parâmetros destes circuitos. Obs: embora
Circuitos Electrónicos Básicos
Andar de Emissor comum: ondensadores com alor irrealizáel em esistências com área eleada Elementos passios com dispersão de parâmetros da ordem de 10% Par iferencial Motiação Par diferencial: ircuito fundamental
Eletrônica II. Germano Maioli Penello. Aula 13
Eletrônica II Germano Maioli Penello [email protected] Aula 13 1 BJT como amplificador BJT tem que estar na região ativa (fonte de corrente controlada por tensão) Corrente i c em função de v BE Claramente
Circuitos Analógicos com Transístores MOSFET
Circuitos Analógicos com Transístores MOFET Electrónica 1 (2º semestre) Instituto uperior Técnico 2013/2014 1 Transístor Estrutura - Transístor de Efeito de Campo (Field Effect Transistor - FET) - Transístor
Introdução Teórica aula 9: Transistores
Introdução Teórica aula 9: Transistores Definição de Transistores de Junção Bipolar Os Transistores de Junção Bipolar (TJB) são dispositivos não- lineares de 3 terminais construídos com base em duas junções
ELETRÔNICA II. Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL. Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino
ELETRÔNICA II Aula 09 CONFIGURAÇÕES COMPOSTAS PAR DIFERENCIAL Claretiano 2015 Mecatrônica Prof. Dra. Giovana Tripoloni Tangerino CONFIGURAÇÕES COMPOSTAS Conexão em cascata Conexão cascode Conexão Darlington
AMPLIFICADOR DIFERENCIAL
AMPLIFICADOR DIFERENCIAL Introdução : O amplificador diferencial é um bloco pertencente aos circuitos analógicos ou lineares com o qual é construído o amplificador operacional. Sendo o seu estágio de entrada
Relatório. 1º Trabalho de Laboratório Transístor Bipolar de Junção
Instituto Superior Técnico Mestrado em Engenharia Biomédica 2º Semestre (2011/2012) Electrónica Geral Relatório 1º Trabalho de Laboratório Transístor Bipolar de Junção Grupo 2: Ana Filipa Vieira 67302
Universidade Federal de São João del-rei. Material Teórico de Suporte para as Práticas
Universidade Federal de São João del-rei Material Teórico de Suporte para as Práticas 1 Amplificador Operacional Um Amplificador Operacional, ou Amp Op, é um amplificador diferencial de ganho muito alto,
AULA 12- Exercício Amplificador de Múltiplos Estágios e Multivibrador 555
0//06 UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA ET74BC Prof.ª Elisabete Nakoneczny Moraes AULA - Exercício Amplificador de Múltiplos Estágios e Multivibrador
ELETRÔNICA II CAPÍTULO 3
ELETRÔNICA II CAPÍTULO 3 SUPERPOSIÇÃO DE AMPLIFICADORES O fato do sinal de áudio apresentar-se em corrente alternada (c.a.), a qual difere daquela que polariza o transistor (que é c.c., neste caso), nos
Amplificadores Diferenciais Aula 17
8 Amplificadores Diferenciais Aula 17 1 PSI 2306 Eletrônica Programação para a Segunda Prova 2 17ª Aula: Amplificadores Diferenciais e Operacionais Ganho e Rejeição de Modo Comum Ao final desta aula você
Eletrônica Aula 04 - transistor CIN-UPPE
Eletrônica Aula 04 - transistor CIN-UPPE Transistor O transistor é um dispositivo semicondutor que tem como função principal amplificar um sinal elétrico, principalmente pequenos sinais, tais como: Sinal
Eletrônica Aula 06 CIN-UPPE
Eletrônica Aula 06 CIN-UPPE Amplificador básico (classe A)! Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar
Eletrônica II. Germano Maioli Penello. II _ html.
Eletrônica II Germano Maioli Penello [email protected] http://www.lee.eng.uerj.br/~germano/eletronica II _ 2015-1.html Aula 11 1 Transistor de junção bipolar Da mesma forma que vimos o MOSFET, apresentaremos
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t.
4 Oscilador Capítulo em Duplo-T Meta deste capítulo Entender o princípio de funcionamento de osciladores em duplo-t. objetivos Entender o princípio de funcionamento de um oscilador em duplo-t; Analisar
Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D
G V GS Transistor NMOSFET (Metal-Oxide-Semiconductor Field Effect Transistor, canal N, tipo Enriquecimento) I DS D S V DS Porta (G-Gate) Fonte Dreno (S-Source) Metal (D-Drain) Óxido N+ Sem. N+ P Substrato
4. AMPLIFICADORES OPERACIONAIS
. AMPLIFICADOES OPEACIONAIS Fernando Gonçalves Instituto Superior Técnico Teoria dos Circuitos e Fundamentos de Electrónica - 00/005 O Amplificador Operacional O amplificador operacional é um componente
5. Lista de Exercícios - Amplificadores e Modelos TBJ
5. Lista de Exercícis - Amplificadres e Mdels TBJ. Um TBJ tend β = 00 está plarizad cm uma crrente cc de cletr de ma. Calcule s valres de g m, r e e r π n pnt de plarizaçã. Respsta: 40 ma/; 25 Ω; 2,5 kω.
CAPÍTULO 3 TRANSISTOR BIPOLAR DE JUNÇÕES
APÍTLO 3 TRANSISTOR IPOLAR D JNÇÕS ap. 3 1 Nota: Na resolução dos problemas consideraram-se as equações de bers-moll ou derivadas = T 1 α I T 1 IS e RIS e = α T 1 + I T 1 FIS e IS e onde I I I e = β +
IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista
IFBA 1 a Parte CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 JFET s - estrutura e símbolo Transistor de junção por efeito de campo (Junction
III. Análise de Pequenos Sinais do BJT. Anexo
III Anexo Análise de Pequenos Sinais do BJT Meta deste capítulo Relembrar os principais conceitos e técnicas envolvidos na análise de pequenos sinais de transistores bipolares objetivos Apresentar a importância
Eletrônica Básica II. Amplificadores Diferenciais e Multiestágio
Eletrônica Básica II Amplificadores Diferenciais e Multiestágio Amplificadores Diferenciais O amplificador diferencial é a configuração mais utilizada em circuitos integrados analógicos Como exemplo, o
1/6/2010 IFBA. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista, 2010 IFBA.
IFBA TBJ - Análise CA para pequenos sinais CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista, 2010 IFBA 1 a Parte Amplificador EC Introdução 1 Capacitor
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II DEPARTAMENTO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Guia de Laboratório - Eletrônica
Transistores de Efeito de Campo FET Parte I
EN2719 Dispositivos Eletrônicos AULA 11 Transistores de Efeito de Campo FET Parte I Prof. Rodrigo Reina Muñoz [email protected] T1 2018 Conteúdo Transistores de Efeito de Campo JFET MOSFETS Exercícios
Electrónica e Instrumentação
Electrónica e Instrumentação Engenharia Mecânica 4º ano Caderno de Exercícios 2002 / 03 FM EI 4EM Introdução O presente Caderno de Problemas destinase a apoiar as aulas da disciplina de Electrónica e Instrumentação
Curso Técnico em Eletroeletrônica Eletrônica Analógica II
Curso Técnico em Eletroeletrônica Eletrônica Analógica II Aula 04 Transistores BJT: configurações básicas Curvas características Prof. Dra. Giovana Tripoloni Tangerino 2016 BJT CONFIGURAÇÕES BÁSICAS npn
Colectânea de Problemas
Teoria dos Circuitos e Fundamentos de Electrónica Mestrado em Engenharia Física Tecnológica (MEFT) Mestrado em Engenharia Biomédica (MEBiom) Colectânea de Problemas 1 Teoria dos Circuitos 2 Circuitos com
TE 046 DISPOSITIVOS ELETRÔNICOS
TE 046 DISPOSITIVOS ELETRÔNICOS Oscar C. Gouveia Filho Departamento de Engenharia Elétrica UFPR URL: www.eletrica.ufpr.br/ogouveia/te046 E-mail: [email protected] TE 046 Dispositivos Eletrônicos
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II
GUIA DE LABORATÓRIO PARA AS AULAS PRÁTICAS DE ELETRÔNICA II DEPARTAMENTO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Guia de Laboratório - Eletrônica
Capítulo 2. Espelhos de Corrente. 2.1 Espelho de Corrente em Inversão Forte, na Configuração Cascode
50 Espelhos de Corrente Capítulo Os espelhos de corrente são elementos fundamentais nos circuitos integrados CMOS. Através deles, é possível realizar cópias muito precisas de uma corrente de referência,
Amplificadores Cascode. Aula 7 Prof. Nobuo Oki
Amplificadores Cascode Aula 7 Prof. Nobuo Oki Amplificador Cascode Simples(1) Serão consideradas diferentes topologias do amplificador cascode, incluindo 1. Amplificador cascode simples 2. Amplificador
Capítulo. Meta deste capítulo Entender o princípio de funcionamento de osciladores com ponte de Wien.
6 Oscilador Capítulo com Ponte de Wien Meta deste capítulo Entender o princípio de funcionamento de osciladores com ponte de Wien. objetivos Entender o princípio de funcionamento de um oscilador com ponte
Lista de Exercícios n o.3 +V CC = 5 V I C I E
Universidade Federal da Bahia - DEE Dispositivos Semicondutores ENG C41 Lista de Exercícios n o.3 1) Dimensione o resistor para que a porta inversora da Fig.1 funcione satisfatoriamente: + V I - I B =
Electrónica I. Jorge Fernandes. Instituto Superior Técnico
Electrónica I Jorge Fernandes Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores e Licenciatura em Engenharia Aeroespacial ºano/3ºano, º semestre 005-006 Electrónica
Análise de TJB para pequenos sinais Prof. Getulio Teruo Tateoki
Prof. Getulio Teruo Tateoki Constituição: -Um transístor bipolar (com polaridade NPN ou PNP) é constituído por duas junções PN (junção base-emissor e junção base-colector) de material semicondutor (silício
TRANSISTOR BIPOLAR DE JUNÇÃO (Unidade 5)
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA TÉCNICO EM ELETROMECÂNICA DISCIPLINA: ELETRÔNICA GERAL TRANSISTOR
ELETRÔNICA II CAPÍTULO 2
ELETRÔNCA CAPÍTULO CRCUTOS DE POLARZAÇÃO DO TRANSSTOR O objetivo deste capítulo é fazer uma (breve) revisão sobre conceitos envolvendo a reta de carga (c.c.) do transistor e algumas das polarizações nas
EN 2602 Fundamentos de Eletrônica
EN 2602 Fundamentos de Eletrônica NBESTA00713SA Eletrônica Analógica Aplicada AULA 03 esposta em Frequência de Amplificadores Prof. odrigo eina Muñoz [email protected] T2 de 2018 1 Conteúdo Definição
Conversão de Saída Diferencial para saída única
p. 1/ Resumo Conversão de Saída Diferencial para saída única O par diferencial MOS com carga activa O ganho diferencial do par diferencial MOS Ganho em Modo Comum e CMRR do par diferencial MOS com carga
